
KOSTAS DIMITRIOU rns & MARKOS HATZITASKOS wsc

ADVANCED COMPUTER

SCIENCE
For the IB Diploma

Program

(I AETLE]

KOSTAS DIMITRIOU Phd & MARKOS HATZITASKOS wmsc

ADVANCED COMPUTER
SCIENCE

For the IB Diploma

Program

(International

Baccalaureate)

¥ HIGH LEVEL COMPUTER SCIENCE &5
1

KOSTAS DIMITRIOU Pha & MARKOS HATZITASKOS wmsc

For the IB Diploma

Program

(International

Baccalaureate)

Published by Express Publishing

Liberty House, Greenham Business Park, Newbury,

Berkshire RG19 6HW, United Kingdom

Tel.: (0044) 1635 817 363

Fax: (0044) 1635 817 463

email: inquiries@expresspublishing.co.uk

www.expresspublishing.co.uk

© Express Publishing, 2016

Design and lllustration © Express Publishing, 2016

First published 2016

Made inEU

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form, or by any means, electronic, photocopying, or otherwise, without the prior
written permission of the publishers.

This book is not meant to be changed in any way.

ISBN 978-1-4715-5233-5

Copyright page

List of licensed 1B material used:

DP Computer Science Guide (first exams 2014):

Topic 5—Abstract data structures
5.1 Abstract data structures

Thinking recursively

3.1.1 Identify a situation that requires the use of recursive thinking.
3.1.2 Identify recursive thinking in a specified problem solution.
3.1.3 Trace a recursive algorithm to express a solution to a problem.
Abstract data structures

3.1.4 Describe the characteristics of a two-dimensional array.
3.1.5 Construct algorithms using two-dimensional arrays.
5.1.6 Describe the characteristics and applications of a stack.
3.1.7 Construct algorithms using the access methods of a stack.
5.1.8 Describe the characteristics and applications of a queue.
5.1.9 Construct algorithms using the access methods of a queue.
5.1.10 Explain the use of arrays as static stacks and queues.
Linked lists

Linked lists will be examined at the level of diagrams and descriptions. Students are not expected to construct
“nked list algorithms using pseudocode.

5.1.11 Describe the features and characteristics of a dynamic data structure.
5.1.12 Describe how linked lists operate logically.
5.1.13 Sketch linked lists (single, double and circular).

Trees

Sinary trees will be examined at the level of diagrams and descriptions. Students are not expected to construct
=z algorithms using pseudocode. Tracing and constructing algorithms are not expected.

5.7.14 Describe how trees operate logically (both binary and non-binary).

5 Define the terms: parent, left-child, right-child, subtree, root and leaf.

16 State the result of inorder, postorder and preorder tree traversal.
5.7.17 Sketch binary trees.

Applications
5 .7.18 Define the term dynamic data structure.
.18 Compare the use of static and dynamic data structures.

= 7.20 Suggest a suitable structure for a given situation.

Topic 6—Resource management
5.1 Resource management

System resources

=77 Identify the resources that need to be managed within a computer system.

=72 Evaluate the resources available in a variety of computer systems.
=7 3 Identify the limitations of a range of resources in a specified computer system.

=7 £ Describe the possible problems resulting from the limitations in the resources in a computer system.
Bole of the operating system |

7 5 Explain the role of the operating system in terms of managing memory, peripherals and hardware
es.

=7 7 Outline OS resource management techniques: scheduling, policies, multitasking, virtual memory, paging,
me=rrupt, polling.

=7 2 Discuss the advantages of producing a dedicated operating system for a device.
= Outline how an operating system hides the complexity of the hardware from users and applications.

Topic 7—Control

7.1 Control

Centralized control systems

7 7.7 Discuss a range of control systems.
= 7 Z Outline the uses of microprocessors and sensor input in control systems.

Evaluate different input devices for the collection of data in specified situations.
< Explain the relationship between a sensor, the processor and an output transducer.

7.1.5 Describe the role of feedback in a control system.

7.1.6 Discuss the social impacts and ethical considerations associated with the use of embedded systems.

Distributed systems

7.1.7 Compare a centrally controlled system with a distributed system.

7.1.8 Outline the role of autonomous agents acting within a larger system.

D—Object-oriented programming

D.4 Advanced program development

D.4.1 Define the term recursion.

D.4.2 Describe the application of recursive algorithms.

D.4.3 Construct algorithms that use recursion.

D.4.4 Trace recursive algorithms.

D.4.5 Define the term object reference.

D.4.6 Construct algorithms that use reference mechanisms.

D.4.7 Identify the features of the abstract data type (ADT) list.

D.4.8 Describe applications of lists.

D.4.9 Construct algorithms using a static implementation of a list.

D.4.10 Construct list algorithms using object references.

D.4.11 Construct algorithms using the standard library collections included in JETS.

D.4.12 Trace algorithms using the implementations described in assessment statements D.4.9-D.4.11.

D.4.13 Explain the advantages of using library collections.

D.4.14 Outline the features of ADT’s stack, queue and binary tree.

D.4.15 Explain the importance of style and naming conventions in code.

KOSTAS DIMITRIOU Phd & MARKOS HATZITASKOS wmsc

For the IB Diploma

Program

(International

Baccalaureate)

Kostas Dimitrou Dedication

70 mg/ _som p/m/u?{//; a/n/o/ my a/afuf/b/ié/ 4%&

orer /m/je/ /fll/a/f ./mre &ma

Markos Hatzitaskos Dedication

70 a// mfi f//'e/ma{v //b/n/ /»/e%ao/ Me 7%‘; /m% a /éd/é

%a é/wmf/ W/b/fl&fifu ave.

Preface

fostas Dimitriou holds a PhD in Spatial Decision Support Systems and Environmental
Planning, and has taught computer science courses in various undergraduate and

oostgraduate University courses. He has participated in many scientific conferences and
workshops, twenty research projects, and presented sixty scientific articles. He has been
z=aching the IB computer science in the Hellenic American Educational Foundation since

2002. He is a Microsoft Certified Educator, Microsoft Expert Educator, Microsoft Expert
Education Trainer and Microsoft Innovative Educator Fellow. {kdimitriou@haef.gr}

Markos Hatzitaskos holds an MSc in Advanced Computing and has taught computer science
courses throughout all school levels (from primary to high school and the I.B.). He has been
==2ching in the Hellenic American Educational Foundation since 2011. In his free time,
wnenever that might be, he develops mobile applications and attends the Athens School of
=02 Arts as an undergraduate. {markosh@haef.gr}

7= authors would like to thank the Board of Directors and the Administration of the
—=llenic American Educational Foundation (HAEF) for providing an ideal working
=nwironment. Thanks are also due to Kostas Ziogas who gave us some valuable advice. Both
=uthors would like to express their gratitude to the employees of Express Publishing and

=soedially to our friend Tzeni Vlachou.

“ne= authors would like to acknowledge the ongoing, valuable support of Sophia Arditzoglou,
—%ZF IB coordinator, over the years. A lot of Computer Science students contributed with
+= uzble ideas, comments and suggestions on early drafts. The computer science class of
Z21< encouraged us to start this book.

o= purpose of this document is to facilitate learning and help our colleagues and CS

stucents around the world. This book is based on the IB computer science syllabus and

"= ows the IB computer science syllabus. The authors did their very best to cite all resources
—==c_Ifyou find a source that is not properly cited please report it to the authors. This book
w=s inspired by the book™ Jones, R & A. Meyenn. (2004). Computer science Java Enabled.

‘~==rnational Baccalaureate. Series, IBID press, Victoria.

F -2m=s, R & Meyenn, A. (2004). Computer science Java enabled. International Baccalaureate. Series,
=2 press, Victoria.

The following IBO documents were used during the development of this book:

1. International Baccalaureate Organization. (2004). IBDP Computer Science Guide.

International Baccalaureate Organization. (2012). IBDP Computer Science Guide.

International Baccalaureate Organization. (2012). IBDP Approved notations for

developing pseudocode.

International Baccalaureate Organization. (2012). IBDP Java Examination Tool

Subset.

International Baccalaureate Organization. (2012). IBDP Pseudocode in examinations.

of Contents

5 — Abstract data structures..
1 &oswract data structures

SReking recursively................

=11-5.1.3Recursive thinking

===tract data structures

Z<-5.1.5Two dimensional arrays..

P I /A LaCKS i eveeeresoroeomnareeens

S1E2-5.19Queues

= 110 Arrays as static stacks and queues

Dl lists....

5 I 11 Features and characteristics of a dynamic data structure ..
= 112 Operation of linked lists

= 113 Sketch linked lists

i

S 114 Logical operation of trees

= 115 Binary-tree related terminology...

S 115 Tree traversal

5 118 Definition of the term dynamic data structure ...
=1 13 Comparison of static and dynamic data structures
= 120 Suitable structures .

= 21 Identification of critical resources
= 2.2 Availability of resources

= 13 Limitation of resources

o= of the operating system...

=15 Role of the Operating System (0S)

S15-6.1.7 OS resource management techniques

= 1.8 Dedicated OS for a device ...

£21.20S and complexity hiding....

=2 of chapter example questions with answers
. E=pter References Searats et Ceeesesitesy

BRRREOREolILEE - i Seseseeas s eenenee 95
#.1 Control. e Seb e taas o eeeeeeseeattessene e seatteeaaeeasstaas e satennnnaeeesnseeaannressnnsessensensns 95

C=ntrzlized control systems

7.2.1 A range of control systems

7.1.2 The uses of microprocessors and sensor input in control systems
7.1.3 Different input devices for the collection of data in specified situations

7.1.4 The relationship between a sensor, the processor and an output transducer o
7.1.5 The role of feedback in a control system ..106

7.1.7 Comparison of centrally controlled systems with distributed systems .
7.1.8 The role of autonomous agents acting within a larger system

End of chapter example questions with answers..

Chapter References

Topic D — Object-oriented PrOSramMMing Fotie s oo e ol -
Toollused. ey s e e |

D.4.2 Application of recursive algorithms.
D.4.3 Construction of algorithms that use recursion .
D.4.4 Trace of recursive algorithms

D.4.6 Construct algorithms that use reference mechanisms..
D.4.7 Identify the features of the Abstract Data Type (ADT) list
D.4.8 Describeithelapplicationsiof Iists ... 000+ [0 el gl 1 ot 10
D.4.9 Construct algorithms using a static implementation of a list ..
D.4.10 Construct list algorithms using object references
D.4.11 Construct algorithms using the standard library collections included in JETS.
D.4.12 Trace algorithms using the implementations described in assessment statements
D.4.9-D.4.11

D.4.13 Explain the advantages of using library collections ..

Appendix A — Stacks & Queues TSR M e s e 285
A.1 Stack implementation using the Arraylisteclass HSRYE Binmouailifo 08 285
A.2 Queue implementation using the ArrayList class RIS AN o el a il 287

Chapter 1

TOPIC 5 — ABSTRACT DATA STRUCTURES
1
1
i
i
1
1
1
i
i
i
.

Most IB compatible pseudocode examples of this book have been tested using the EZ

Pcode practice tool found at:

https://dl.dropboxusercontent.com/u/275979/ibcomp/pseduocode/pcode.html

This excellent tool was developed by Mr. Dave Mulkey. The authors wish to express

their gratitud&to the developer of this valuable educational resource.

> Topic 5 — Abstract data structures?

5.1 Abstract data structures

Thinking recursively

5.1.1 - 5.1.3 Recursive thinking

Exit skills. Students should be able to

| Identify a situation that requires the use of recursive thinking. Identify recursive
nking in a specified problem solution. Trace a recursive algorithm to express a

olution to a problem.

Image 5.1: The Towers of Hanoi game

Recursion is when a method calls itself until some

terminating condition is met. This is accomplished without

any specific repetition construct, such as a while or a for

loop. Recursion follows one of the basic problem solving

techniques, which is to break down the problem at hand into

smaller subtasks. Any algorithm that may be presented in a

recursive manner can also be presented in an iterative

manner and vice versa. In most cases, recursive algorithms

are considered as harder to code.

Towers of Hanoi?

In order to gain a firm understanding of the basic idea, as well

as the application of recursion, the following example

! International Baccalaureate Organization. (2012). IBDP Computer Science Guide.

2 Towers of Hanoi. (2015, November 17). In Wikipedia, The Free Encyclopedia. Retrieved 14:03,
November 17, 2014, from https://en.wikipedia.org/wiki/Tower_of Hanoi

=
=

presents what is known as the Towers of Hanoi. The Towers of Hanoi is a puzzle that

consists of three rods and a number of discs of different sizes, which can slide onto any rod.

The puzzle starts with the discs in a neat stack in ascending order of size on the first rod, the

smallest at the top, as shown in Image 5.1. The goal of the puzzle is to move the stack of

discs from the first rod to the third rod, obeying the following rules:

A disc may not be placed on top of a smaller one.

Only one disc may move on every move.

A disc may not be moved if it is not the top disc on a stack.

e For temporary storage, the third rod may be used.

There are various approaches that can solve the Towers of Hanoi problem, including both

iterative and recursive solutions. We will be concentrating on a recursive solution, by

recognizing that this puzzle may be solved by breaking it into smaller and smaller similar

puzzles, until a solution is reached.

Assume that the rods are named A, B and C and that n represents the number of discs (with

1 being the smallest, at the top, and n being the largest, at the bottom). A recursive solution

to the Tower of Hanoi problem, in order to move n discs from rod A to rod C could be the

following:

e Move n-1 discs from rod A to rod B, leaving disc n

in rod A.

e Move disc n from rod A to rod C.

e Move n-1 discs from rod B to rod C.

The algorithm above is recursive as it is applied again and

again in both the first and the third steps for n-1 discs. At

some point n will be equal to 1 and a single disc will be

moved from rod A to rod C, resulting in an algorithm with

finite number of steps.

A working example of this algorithm is examined. Figure 5.1

represents the three rods (named A, B and C) as well as

three discs, stacked on top of each other in rod A. The

algorithm goes as follows:

Move green disc from A to C.

Move orange disk from A to B.

Move green disk from C to B

Move grey disk from A to C

Move green disk from B to A

Move orange disk from B to C

S
E
O
E
D

B

S
R
l

Move green disc from A to C

Fi 5.1: St f th 5 ; :
e i i The recursive algorithm for the solution of the Towers of

Hanoi problem is also presented in Figure 5.2. Pay

attention to the fact that a sub-procedure called moveDiscs is used. moveDiscs takes four

arguments. The number of the discs (n), the rod the discs are to be moved from (from), the

rod to which the discs are to be moved to (dest), as well as the rod that will not be used i

(aux). The arguments of the moveDiscs sub-procedure (that is, n, from, aux, dest) should not i

be confused with the name of the rods used previously (A, B and C).

moveDiscs(n, from, dest, aux)

moveDiscs(n-1, from, dest, aux)

moveDiscs

Move disk n from from to dest

v

moveDiscs(n-1, aux, from, to)

Move disk 1

Return
from from to

dest

Figure 5.2: The Towers of Hanoi flowchart

Snowflakes

The Koch snowflake is a mathematical curve which is based on the Koch curve, developed by

the Swedish mathematician Helge von Koch.

This mathematical curve can be constructed by starting with an equilateral triangle. Using

recursion each line segment changes using the following steps:

1. divide the initial line segment into three sub-segments of the same length.

draw an outward pointing equilateral triangle that has the middle segment from

step (1) as its base.

delete the line segment that is the base of the triangle from previous step.

The following algorithm expressed in IB pseudocode creates a 400 by 461 window and draws

a Koch fractal:

//Three curves that shape an equilateral triangle

//pen originally is heading at 90 degrees (x axis)

//the method pen.goForward is supposed to control

//a pen that plots line segments on the screen

//the method pen.turnLeft is supposed to change the original

//heading of the pen counter clockwise by the degrees given as a parameter.

//the method pen.turnRight is supposed to change. the original

//heading of the pen clockwise by the degrees given as a parameter.

method Draw_Koch_fractal (N)

width = 400//width of the window

height = 2*width/Math.sqrt(3)//calculation of the height of the window

size = width/Math.pow(3.0, N)//size of each drawing step

initial pen position = pen.setposition(0, width*Math.sqrt(3)/2, 0)

//calculation of the initial pen position (0,114)

pen.setWindowSize (width, height) //initialization of the window

koch fractal (N)//call of the Koch_fractal method

pen.turnrRight (120) //turn right by 120 degrees

koch_fractal (N)//call of the Koch fractal method

pen.turnRight (120) =

koch fractal (N)

end method

method koch_ fractal (n)

if (n == 0) then

pen.goForward (size)

else

koch fractal (n-1)

pen. turnLeft (60)

koch fractal (n-1)

pen.turnRight (120)

koch_fractal (n-1)

pen. turnLeft (60)

koch~fractal(n—1)

end if

end method

output Draw_Koch_fractal(N)

/’ .

The following table depicts the snowflakes produced by the above algorithm for N=0 to 5:

The following program uses recursion to create the method addIntUpTo (n) for n>0 that
will add all numbers from and including n down to 1. For example, if addIntUpTo (4) is

called, the result would be: 4 + 3 + 2 + 1 = 10

method addIntUpTo (n)

if (n == 1) then

return 1
else

return n + addIntUpTo (n-1)
end if

end method

This method is a recursive function since it calls itself. On each call, the argument is reduced
by one (every time addIntUpTo is called, its argument is n-1). n-1 calls are made until the

terminating conditionn = 1 is met.

Programming Example 2: Example o{f:fire‘ctfisiqn.

Wheat is going to be the output of the following algorithm?

method foo (n)

if (n <= 1) then

return 1

else

return foo(n-1) + foo(n-2)

end if

end method

output foo (5)

Answer: 8

Programming Example 3: Exal "blé*dfféc;fifiqn. i

What is going to be the output of the following algorithm?

method foo(n, m)

if (n <= 1) OR (m <= 1) then

return 2

else

return foo(n-1, m) + foo(n, m-2)

end if

end method

output foo (5,4)

Answer: 30

What is going to be the output of the following algorithm?

method foo(n, m)

output "value of n=", n, "value of m =", m

if (n <= 1) OR (m<=1l) then

return 2

else

return foo(n-1, m-n)+foo(n, m-2) =

end if

end method

output "Output is", foo(3,2)

Answer:

value of n= 3 value of m = 2

value of n= 2 value of m = -1

value of n= 3 value of m = 0

Output is 4

cample of recursion.

Programming Example 5: E»

What is going to be the output of the following algorithm?

method Foo (X,Y)

= if X < Y then

return Foo (X+1,Y-2)

else if X = Y then

return 2*Foo (X+2,Y-3)-3

else

return 2*X+3*Y

end if

end method

output "Output is", Foo(3,12)

Answer:

Output is 47

Abstract data structures

5.1.4 - 5.1.5 Two dimensional arrays
Exit skills. Students should be able to"

Describe the characteristics of two-dimensional arrays.

) Construct algorithms using two-dimensional arrays.

A one-dimensional array should be considered as a single line of elements. However, in

many cases, data comes in the form of a data table. Each element in a 2D array must be of

the same type, either a primitive or object type. Take, for example, five exam scores of a

student, as a data record, and represent it as a row of information. The data records for ten

students, would then be a table of 10 rows. Below is the visualization of this collection of

- Alot of information and examples of two-dimensional arrays can be found in the book

~ Core Computer Science for the IB Diploma Program’.

Index 0 Index 1 Index 2

Index 0 98 68 65

Student 2 Index 1 7 7 88

- Student 10 Index 9 88 86 90

Table 5.2: Two dimensional array Scores

2D arrays are indexed by two subscripts. The indices must be integers. The first one refers to
<he row, while the second to the column. Scores[1][1] refers to Exam 2 of the second

student. Its value is 77.

. /This program will use the array Scores which is a 2D ARRAY.
//It will print the contents of the array.
/5 students with 5 exams each
Scores =

[[S88,68,65,73,67],

177,77,88,78,901,
153,63,74,85,72],
177,717,68,78,91],

128,86,90,56,81]1

i STUDENT = 0

=EE2M = 0

Zoop STUDENT from O to 4

output STUDENT +1, "Student”

loop EXAM from 0 to 4

output "----", "Exam ", EXAM+l, Scores[STUDENT] [EXAM]
end loop

==d loop

OUTPUT

1 Student

---- Exam 1 98

—--—- Exam 2 68

—--—- Exam 3 65

—--—- Exam 4 73

---- Exam 5 67

2 Student

---- Exam 1 77

---- Exam 2 77

---- Exam 3 88

---- Exam 4 78

---- Exam 5 90

3 Student

—--—- Exam 1 53

---- Exam 2 63

---- Exam 3 74

---- Exam 4 85

---- Exam 5 72

4 Student

--—- Exam 1 77

---- Exam 2 77

---- Exam 3 68

---- Exam 4 78

---- Exam 5 91

5 Student

--—- Exam 1 88

-—-- Exam 2 86

---- Exam 3 90

---- Exam 4 56 g

---- Exam 5 81

Scores =

[[98,68,65,73,67],

[77,77,88,78,90],

[53,65,74,85,72],
[77,77,68,78,91],

[88,86,90,56,81]]

STUDENT = 0

EXAM = 0

loop STUDENT from 0 to 4

output STUDENT +1, "Student”

loop EXAM from 0 to 4

if (Scores[STUDENT] [EXAM] mod 10 = 5) then

output "----", "Exam ", EXAM+l, Scores[STUDENT] [EXAM]

end if

end loop

end loop

OUTPUT

1 Student

---- Exam 3 65

2 Student

3 Student

---- Exam 2 65

---- Exam 4 85

4 Student

5 Student

3 Programming Example 8: Finds and outputs the number of “8”s each score contains. It also

outputs the total number of appearance of digit “8”.

Scores =

[[98,68,65,73,67],

[77,77,88,78,90],

[77,77,88,78,91],

[88,86,90,56,81]]

STUDENT = 0

EXAM = 0

TCOUNTER = 0

loop STUDENT from 0 to 3

output STUDENT +1, "Student"

loop EXAM from 0 to 4

X=1

COUNTER = 0

X = Scores [STUDENT] [EXAM]
loop while X>0

if X mod 10 = 8 then

COUNTER = COUNTER + 1

TCOUNTER = TCOUNTER +1

end if

X = div (X, 10)

end while 2

output "----", "The grade of exam ", EXAM+1, "has",
COUNTER, "eight(s)"

end loop

end loop

output " A total of ", TCOUNTER, "eights appear in all grades"

OUTPUT

1 Student

—--- The grade of exam 1 has 1 eight(s)

---- The grade of exam 2 has 1 eight(s)

---- The grade of exam 3 has 0 eight (s)

---- The grade of exam 4 has 0 eight(s)

—--- The grade of exam 5 has 0 eight(s)

2 Student

---- The grade of exam 1 has 0 eight(s)

—---- The grade of exam 2 has 0 eight (s)

---- The grade of exam 3 has 2 eight (s)

—---- The grade of exam 4 has 1 eight(s)

—---- The grade of exam 5 has 0 eight (s)

3 Student

—--- The grade of exam 1 has 0 eight(s)

---- The grade of exam 2 has 0 eight(s)

---- The grade of exam 3 has 2 eight(s)

---- The grade of exam 4 has 1 eight(s)

---- The grade of exam 5 has 0 eight(s)

4 Student

---- The grade of exam 1 has 2 eight(s)

---- The grade of exam 2 has 1 eight(s)

---- The grade of exam 3 has 0 eight(s)

——--- The grade of exam 4 has 0 eight(s)

—-—- The grade of exam 5 has 1 eight(s)

A total of 12 eights appear in all grades

5.1.6 - 5.1.7 Stacks

Exit skills. Students should be able to':

Describe the characteristics and applications of a stac

Construct algorithms using the access methods of a
Trace algorithms that use stacks.

Characteristics

A stack stores a set of elements in a particular order and allows access only to the last item

inserted. Items are retrieved in the reverse order in which they are inserted. The stack is a

Last-In, First-Out data (LIFO) structure. The elements of a stack may be numbers, Boolean

values, characters, objects, arrays, strings, etc.

Stacks utilize three methods:

1. push(). Pushes an item onto a stack.

2. pop().Removes and returns the last item entered in the stack.

3. isEmpty (). Tests if a stack is empty. It will return true if stack contains no

elements.

Suppose we want to add the elements 5, 4, 3 in a stack named Numbers. The following

diagram explains this situation:

| Stackis initially empty. f

| Numbers.push (5)
| 5 was added to the stack.

i
i
{

§
{

b

 | Numbers .push(4)

| 4 was added to the stack

= N S B e}

|

 5

 | Numbers .push (3)
3 was added to the stack

I

Suppose we want to remove all the elements from the stack.

The following example presents this situation:

3 | Stack contains 3 numbers.

4

5
e —— y‘

2 Top element was removed from the stack. This element was |

5 the number 3. 3 was assigned to variable X |

X = Numbers.pop ()
~ Top element was removed from the stack. This element was

S - the number 4. 4 was assigned to variable x

T ————— S L |

Top element was removed from the stack. This element was

the number 5. 5 was assigned to variable X. Stack is empty.

Aoplications :

o The back button of a web browser uses a stack to function. Every time a URL is

visited it is stored on a stack. The last address that was visited is on the top of the

stack. The first address that was visited during the current web session is on the

bottom of the stack. If one selects the Back button, he/she begins to visit the

previous pages they have visited in reverse order.

» Microprocessors usually use a stack to handle methods. Suppose a method, A, which

returns an integer, with parameters b and ¢ of type integer, is called. In Java this

would look like this:

int ¢ = A(a, b);

The method header would look like this:

public static int A(int b, int c)

The method body should look like this:

{method body

return r}

When As called, its return address, as well as b and c are pushed onto the microprocessors

sz=c<. When the method returns z, the return address and the parameters (arguments) are

zooped off the stack. The overall process is more complicated, but further explanation is

==yond the scope of this book.

e Recursive methods also utilize the system stack to keep track of each recursive call.

This block of memory is used to store temporary data required for program

execution. The calls are nested inside each other. Initially, all recursive calls are

unfolded and pushed onto the stack, until the base case is reached and then all

recursive calls are popped from the stack, when necessary. In the following example

the left-hand code fragment will return 4. The right-hand code fragment will

generate a run time error because the recursive program will never reach the

terminating condition.

public class Rec_Demo public class Rec_Demo

{ {
public static int question(int n)| public static int question (int n)

{ {
if (n <= 0) if (n <= 0)

return -2; return -2;

else else I

return (question(return (question (n#100)+3);

} 1

public static void main(String[] public static void main(String[]

a) a) |
{ {

int 1 = question(111); int 1 = question(111);

System.out.println ("1= "+1) ; System.out.println("1l= " + A

} }
} }
OUTPUT OUTPUT

1=4 java.lang.StackOverflowError:null

Algorithms
 Programming Example 9: Use of a staék, an arrdy and a collection.

//==== Reverse and store ===

// This algorithm uses an array, a stack and a collection.

// It reads names from the array, reverses them,

// using the stack, and stores the contents of the stack

// inside the collection.

/!

NAMES = ["Kostas", "Markos", "Anna", "Mary", "Takis"]

NAMES_C = new Collection()

STACK_NAMES = new Stack ()

I=0

loop I from 0 to 4

STACK_NAMES .push (NAMES [I])
end loop

output "Add names in the collection:"

output "=====

loop while NOT(STACK_NAMES.isEmpty())

NAME = STACK_NAMES.pop()

NAMES_C.addItem (NAME)
output NAME, "was entered in the collection"

end loop

output ""

output "Names stored in the collection:"

loop while NAMES C.hasNext ()

output NAMES_ C.getNext ()
end loop

OUTPUT

24d names in the collection:

Tzkis was entered in the collection

¥=ry was entered in the collection

2Znna was entered in the collection

M=rkos was entered in the collection

Eostas was entered in the collection

“he following program uses 4 stacks to solve the Towers of Hanoi problem:

//Declaration and initialization of variables
= new Stack() //a new stack

new Stack() //a new stack

new Stack() //a new stack
new Stack() //a new stack
new Array() //auxiliary array to use in display method
new Array() //auxiliary array to use in display method
new Array() //auxiliary array to use in display method

= [SPa, SPb, SPc, SPd] //an array of four stacks T

n
n

H
o
p
o
o
o

b

m

e

Il
O
O
0
O
O
0
O
W
N

K
O

i b
 i

n
n

5 //the number of disks

s

H '] o S i o B 0 b ~
 a = ® !%‘

(] H o) I3
 = © 3 o

//The following method is the starting point

//of the program

method TowersofHanoi (n)

loop I from 0 to n-1
m = n-I

PEGS[1] .push (m)

end loop

display ()

move(n,1,2,3)

end method

//This is a recursive method used to solve the problem

method move(n, a, b, c)

if n>0 then

move(n-1, a, c, b)

t = PEGS[a] .pop()

PEGS[c] .push (t)

display ()

move (n-1, b, a, c)

end if

end method

//The following method is used to visualize the

//pegs and the disks. Three auxiliary arrays are

//used so as to display the contents of each stack.
method display ()

output ""

output " | A | B | C |"

loop I from 0 to NUM-1

daa[I] = PEGS[1].pop()//put the elements of the stack to an array
dbb[I] = PEGS[2].pop()//put the elements of the stack to an array
dce[I] = PEGS[3].pop()//put the elements of the stack to an array

end loop

loop I from 0 to NUM-1

da = daa[I]

db = dbb[I]

dc = dcc[I]

fl = String(da)//covert to string
if £f1 == "null" then

fl="-"

end if

£2 = String(db) //covert to string

if £2 == "null" then
fF2="—n

end if

£3 = String(dec) //covert to string

if £3 == "null" then
£3=1om

end if

output=UEIWETE SIS W ED -) . f3, TN

end loop

loop I from 0 to NUM-1

m = NUM-1-I

PEGS[1] .push(daa[m]) //put the elements of the array daa back to the stac
PEGS[2] .push(dbb[m]) //put the elements of the array dbb back to the stack
PEGS[3] .push(dcc[m]) //put the elements of the array decc back to the stac

end loop

end method

FORMATED OUTPUT

R

L
y

U
H

N
V
e

v

A
N

v
w

L

v

1|
U
H

M

M
m
N

m
o
n
l

o

M
e
E
H
N
m
S

m
e

1
l

a
1

M
m
N

a
1

g

||
d
s
n

1
a
A
H
N
w
n

g

1ol
a
1

d
H
N
m

Q
e

o
1
l

1
1

-
w

S
2

8
%

2
8

o
L

v
a
m

I
veem

ol
U

1
l

v
N
n

I
v
l

V
e
l

V
v
N
m
S
n

|l

N

1
@

m
e

M
m
o
o

m
e

<t
1

M
m
o
o

m
a

M
o

d
o
w
i
n

11l
-
l

g

1
g
1
l

g
1
l

d
a
m

il
o
1
l

L

T
N

|

@
&

=
4

2
q

S
=

A
L

U
M

v
N
M
m

L
U
M
l

v

v
a
w
m

i
1

U

V
e

|

m
o
r
o
r
n
t

m
e

M

m
e

s
1

mea
e

m
e

m
o
r
n

M
o

d
o
a
m
n

|
A
=
l

g
l

A
o
a
n

i
l

a
0

g
l

g
a
N
m

1
A
o

~
©

S
S

=
S

%
8

O
t

v
e

V
U
H
N
M

v

v

1ol
U
H
N
I

I
V
s

I
V
M
m
N

1

m
o
r
r

M
m
N

@

Moy
1

m
e
N
m
S

o
l

m
o

M
m
o
o

A
H
N
M
m
I
I
n

a
u
n

ol
@
i

1l
o
l

@
1

o
1

C
H
N
m

g
1

5
0

o
2

S
s

&
Q

5.1.8-5.1.9 Queues

‘ Exit skills. Students should be able to'"

| Describe the characteristics and applications of queues.

| Construct algorithms using the access methods of queues.

Characteristics of queues

A queue stores a set of elements in a particular order and allows access only to the first item

inserted. Items are retrieved in the order in which they are inserted. The queue is a First-In,

First-Out (FIFO) data structure. The elements of a queue may be numbers, Boolean values,

characters, objects, arrays, etc.

Queues utilize three methods:

1. engqueue (). Puts anitem into the end of the queue.

dequeue (). Removes and returns the first item entered in the queue.

3. isEmpty (). Tests if a queue is empty. It will return true if queue contains no

elements.

Suppose we want to add the elements 5, 4 and 3 in a queue named Numbers.

The following example presents this situation:

\:Dj Queue initially empty

. Numbers . enqueue (5)

| ~ 5 was added to the queue
7 Numbers.enqueue (4)

4 was added to the queue
Numbers .enqueue (3)

3 was added to the queue

Suppose we want to remove all the elements from the queue.

The following example presents this situation:

Queue contains 3 numbers

X = Numbers.dequeue ()

. First element was removed from the queue. This element

was the number 5. 5 was assigned to variable X.

X = Numbers.dequeue ()

First element was removed from the queue. This element

was the number 4. 4 was assigned to variable X.

X = Numbers .dequeue () {

First element was removed from the queue. This element

was the number 3. 3 was assigned to variable X. Queue is

_empty.

Applications of queues

e Queues are used to model physical queues, such as people waiting in line at a

supermarket checkout.

e The print queue displays the documents that are waiting to be printed. These

documents will follow the first-send first-print policy.

e When sending data over the internet, various data packets wait in a queue to be

sent.

o A server usually serves various requests. In most cases these requests are stored in a

queue. The first-come first-served request procedure is followed.

Algorithms that use queues

Programming Example 11: Use of a queue and arrays.

A small school uses two buses to transport students. As soon as the buses arrive, all students

enter a queue and a teacher uses a registry to check which students are present. The

following algorithm uses two arrays to represent the school buses, a queue to represent the

queue, and an array to represent the registry:

BUS1 = ["Roger", "John", "Nikos", "Marion", "Hellen"]

BUS2 = ["Nora", "Bill", "Eliza", "Takis", "Alex"]

REGISTRY = ["Alex", "John", "Elina", "Nikos", "Leo", "Marion",

"Hellen", "Nora", "Bill", "Eliza", "Takis", "Roger"]

STUDENTS = new Queue () //Queue for Students
A= nn

I=0

FOUND = 1

//copy students from BUS1l
loop I from 0 to 4
STUDENTS . enqueue (BUS1[I])

end loop

//copy students from BUS2

loop I from 0 to 4

STUDENTS . enqueue (BUS2[I])

end loop

loop while NOT (STUDENTS.isEmpty())

A = STUDENTS.dequeue ()

loop I from 0 to 12

if REGISTRY[I] = A then

FOUND = 1

end if

end loop

if FOUND = 1 then

output A, "is not absent"

end if

end loop

OUTPUT

4

Roger is not absent

John is not absent

Nikos is not absent

Marion is not absent

Hellen is not absent

Nora is not absent

Bill is not absent

Eliza is not absent

Takis is not absent

Alex is not absent

Programming Ekarhhle 12: Use of queues, arrays and a collection.

A supermarket has two express cashiers. The array CASHIER1 contains the customers that
enter the queue CUSTOMER1, while the array CASHIER2 contains the customers that enter
the queue CUSTOMER2. The TIME collection stores the names of the customers that waited
more than 60 secs, counting from the moment that their turn to be served had come. The
supermarket administration wishes to minimize the waiting for these two express cashiers. A
questionnaire is sent by email, from the administration of the supermarket, to the
customers stored in the collection TIME to understand why this situation took place. A
message that outputs the overall slower express cashier is output at the end of the day.

CASHIER]1 = ["Roger", "John", "Nikos", "Marion"]
CASHIER2 = ["Nora", "Bill", "Eliza", "Takis"]
CUSTOMERL = new Queue () //Queue for CUSTOMER1
CUSTOMER2 = new Queue () //Queue for CUSTOMER2
TIME = new Collection()
A=

B=0
c1 =0
c2=0
I=0
Dl =0
D2 =0
TOT B = 0
TOT C = 0
FOUND = 1

//copy CUSTOMER1 from CASHIERL
loop I from 0 to 3

CUSTOMERI.enqueue(CASHIERl[I])

end loop

//copy CUSTOMER2 from CASHIER2
loop I from 0 to 3

CUSTOMER2 . enqueue (CASHIER2[I])
end loop

loop while NOT(CUSTOMERl.isEmpty())

D1 = (CUSTOMERLI . dequeue ())

Cl = Math.floor ((Math.random() * 100) + 1)// use of random function
to generate random times between 1 sec to 100 sec

if C1>60 then //only customers waiting more than 60 secs enter the

collection

TIME.addItem(D1)

"end if
TOT B = TOT_B + C1

end loop

loop while NOT (CUSTOMER2.isEmpty ())

D2 = (CUSTOMER2.dequeue ())

C2 = Math.floor((Math.random() * 100) + 1)

if C2>60 then

TIME.addItem (D2)

end if

TOT_C = TOT_C + C2
end loop

TIME.resetNext ()

loop while TIME.hasNext()

output TIME.getNext ()

end loop

if TOT_B > TOT _C then//outputs the slower cashiexr

output "CASHIER] is slower"

else

output "CASHIER2 is slower"

end if

A POSSIBLE OUTPUT

Roger

John

Bill

Eliza

CASHIER2 is slower

5.1.10 Arrays as static stacks and queues

Exit skills. Students should be able to':

i
| Explain push and pop operations, and test on empty/full stack.

| Explain enqueue and dequeue operations, and test on empty/full queue.

{

Algorithms to implement stacks using an array

The program starts with an array of 10 elements. The methods used are the following:

push ()

this method is used to add elements in the stack. Inserting an element increments high by 1

and adds the element in this array position. The high is incremented before the insertion of

the new item takes place.

pop ()

this method returns the value of the top element and then decrements high. It serves to

remove the top element from the stack. The item removed actually remains in the array but

is inaccessible.

isempty ()

it is based on the high variable. It returns true (1) if the stack is empty.

isfull()

itis based on the high variable. It returns true (1) if the stack is full.

size ()

it is based on the high variable. It returns the number of elements stored in the stack.

s _array = new Array () OUTPUT:

s_array = [0,0,0,0,0,0,0,0,0,0] Message: stack is empty

maxgizess 10 Message: stack is full high = -1 :
n=0

high =9

POP(EE e e e e L e

push (1) s_array contains :
push(2) 1,2,7,9,10,9,33,29,11,49
push (7)

push (8) T
pop () size of stack = 10

push (9) Vs
push (10) stack contents display and removal

Eusn) T 1]
push (33)

push (29) 49
push (11) 11
push (49) 29

push (10) 33

9
outputiECestss s ¥ 10

output "high = ", high

output "-----—--—-—— 4 9

output "s_array contains :", s array 7

outputEEEE e EE T i 2

output "size of stack = ", size() 1

S I
LI i
output "stack contents display and Explanation:

removal" This algorithm uses the s_array to

output implement a stack The methods used
LI are push (), pop (), isempty ()
loop while isempty() = 0O : < e g
e isfull () and size () .

output n

end loop When this algorithm starts an array of

output

LI

method push (n)

if (isfull() == 1)

output "Message:

else

high = high + 1

s_array[high] = n

end if

end method

then

stack is full"

method pop ()

if (isempty() == 1) then

output "Message: stack is empty"

else
high = high - 1

return s array[high+1]

end if

end method

method isempty ()

if (high == -1) then

return 1

else

return 0

end if

end method

method isfull ()

if (high == maxsize-1) then

return 1

else

return 0

end if

end method

method size ()

return high+l

end method

ten elements is created.

maxsize variable is used to hold the

maximum stack size, high variable is

used to point the array position that is

the top of the stack.

The first pop () instruction generates a

“Message: stack is empty” output.

push (1), push(2), push(7),

push (8) instructions add four

elements in the stack.

pop () instruction removes 1 from the

stack.

push (9), push (10), push (9),

push (33), push (29), push (11),

push (49) instructions add 7 elements

in the stack. The stack is now full.

push (10) instruction causes

“Message: stack is full “ message to be

displayed.

Instruction “output "high =

" high”

prints the number 9 which is the array

position used to point the end of the

queue.

Instruction “output s_array

contains :", s_array” outputs

the contents of the actual array used.

The numbers 1,2,7,9,10,9,33,29,11,49

are printed.

The size of stack is 10

After a “stack contents display and

removal” message a loop that removes

and outputs all elements of stack is

used. 49,11,29,33,9,10,9,7,2,1 are

printed.

Progi-amming Exampl'e 14: Convert integer to binary using a stack.

//This algorithm uses a stack to convert an integer to its binary
equivalent

//Declaration of variables

s_array = new Array()

s2_array = new Array()

s_array = [0, O, O, O, O, O, O, O, O, O]

maxsize = 10

high = -1

x=0

y=20

n=20

t =0

2 dig value = 0

number = 123

output "Convert number ", number

//Call method convert in binary

convert to_binary(number) //max number is 1023

//Use of an auxiliary array to properly output the result
output " "

output "Final result"

loop a from 0 to 9

s2_array[a] = s_array[9-a]

end loop

output s2_array

method convert to_binary (x)

output "Calculations"

loop while x > 0

Yy = x mod 2

push(y) //use of push method

x = div(x,2) //division of x over 2

end loop

//the next loop will use the isempty method
loop while isempty() = 0

t = pop() //use of pop method

dig value = Math.pow(2, (high+l)) //2*(high+1)

output "Binary digit number", high+l," (" ,dig_value,")", "is", t

end loop

end method

method push (n)

if (isfull() == 1) then

output "Message: stack is full"

else

high = high + 1

s_arrayl[high] = n

end if

end method

method pop ()

if (isempty() == 1) then

output "Message: stack is empty"

else

high = high - 1

return s_array[high+1]

end if

end method

method isempty ()

if (high == -1) then

return 1

else ;

return 0

end if

end method

method isfull ()

if (high == maxsize-1) then

return 1

else

return

end if

end method

OUTPUT

Calculations

Binary digit

Binary digit

Binary digit

Binary digit

Binary digit

Binary digit

Binary digit

Final result

0,0,0,1,1,1,1,0,1,1

Algorithms to implement queues using an array

Prdgfian‘iming Example 15: Irfi:ilementafion of .quéue*usingf,an array.

When using an array to implement a queue, insertion takes place at the REAR index, while
deletion takes place at the FRONT index only. At the beginning both FRONT and REAR are 0.
When entering the first element, FRONT remains 0, while REAR becomes 1. When entering
another element, FRONT again remains 0, while REAR becomes 2. When entering yet
another element, FRONT remains 0 and REAR becomes 3. If we remove an element, FRONT
becomes 1 and REAR remains 3. If we remove another element, FRONT becomes 2 and REAR
remains 3. If we remove yet another element, both FRONT and REAR become 0, since the
queue is empty.

The following algorithm implements this approach. Unfortunately, this array-based
implementation is tricky. It works well when entering elements and then removing them all
before entering new elements again. This is not the case when adding and deleting data in a
random order since the end of the array will eventually be reached and an out-of-bounds
exception will be raised.

g_array = new Array ()
gq_array [0F05 0, 80FN.0 S0 0] 0, 0, 0]
FRONT = 0

REAR = 0

SIZE = 10

n=20

dequeue ()

enqueue (71)

enqueue (1)

enqueue (2)

enqueue (112)

enqueue (14)

enqueue (52)

enqueue (67)

enqueue (14)

enqueue (52)

enqueue (62)

dequeue ()

dequeue ()

dequeue ()

dequeue ()

dequeue ()

dequeue ()

enqueue (61)

output "Queue contents display"
output "---—--——-—— 2
if (FRONT == REAR) then

output "Message: queue is empty"
else

loop I from FRONT to REAR-1
n = q_array[I]
output n

end loop

end if

output "---—-—-—— i

method enqueue (N)

if REAR == SIZE then

output "Message: queue is full"

else

g_array[REAR] = N

REAR = REAR + 1

end if

end method

method dequeue ()

if FRONT == REAR then

output "Message: queue is empty"
else

N = g_array[FRONT]

if (FRONT+l == REAR) then
REAR = 0

FRONT = 0

else

FRONT = FRONT + 1

end if
end if

end method

OUTPUT

Message: queue is empty

Message: queue is full

Queue contents display

As we can see the queue contains only 4 elements. Although the array can hold 10 elements

the FRONT is now 7 and the REAR is 10 so enqueue (61) will generate the queue is

full message. This situation can be solved by using a circular implementation of a queue.

Algorithms to implement a circular queue using an array

The problem with the previous implementation is that the new elements are added to

successively higher-numbered positions in the array. When elements of the queue are

deleted, the FRONT index increases and this process continues until the queue runs out of

space. The array might have free positions at the indices that are smaller than the FRONT

index, but these positions are unusable. The following circular implementation of a queue

solves this problem:

[11]

[10]

[9]

[8]

[7]

[6]

FRONT = 0

REAR = -1

[11]

[10]

[9]

(8]

[7]

[6]

DELETE 20

ADD 30

FRONT =1

REAR=1

[0]

[5]

[0]

[5]

[2]

[31

[4]

[1]

[11] [0]

[10] 20 1]

[9] [2]

(8] [3]

[6] [5]

ADD 20

FRONT = 0

REAR =0

ADD

30,40,50,60,70,80,90,100,110,120,130

FRONT =1

REAR =11

[0]

140

REAR =0

This is the benefit of a circular queue.

Item 140 was inserted in the array index 0.

Figure 5.3: Explanation of the operation of a circular queue

The following algorithm starts with an array of 10 elements. The methods used are the

following:

enqueue ()

This method is used to add elements to the queue. Inserting an element increments rear by

1 and inserts the element in the new array position where rear points to. If rear is at the

end (top) of the array, then rear should be set to -1 before the addition of the element

takes place. This means that a wraparound takes place and the next element will be placed

at the start (bottom) of the array. Finally, the variable that holds the number of elements,

nelements, is incremented by 1.

dequeue ()

This method is used to remove elements from the queue. A temporary variable, temp, is

used to hold the value of £ront. £ront is then incremented by 1. If front equals to the

array length, then a wraparound takes place and 0 is assigned to £ront. Finally, the variable

that holds the number of elements, nelements is decremented by 1.

isempty ()

This is based on the nelements variable. It returns true (1) if the queue is empty.

isfull ()

This is based on the nelements variable. It returns true (1) if the queue is full.

size()

This is based on the nelements variable. It returns the number of elements stored in the

queue.

g _array = new Array ()

q array = [0, O, O, O, O, O, O, O, O, O]
//you can replace the previous two
lines

//with g array = new Array(10)
maxsize = 10

front = 0

rear = -1

nelements = 0
n =0

dequeue ()

enqueue (1)

enqueue (2)

enqueue (7)

enqueue (8)

dequeue ()

enqueue (9)

enqueue (10)

output "front = ", front

output "rear = ", rear

output "q array contains :", q_array

output "--------— L

output "size = ", size()

output "---—-—-----— v

output "queue contents display and
removal"

output "------—-- 0

loop while isempty() = 0
n = dequeue ()

output n

end loop

output "----—---——-— v

method enqueue (n)

if isfull() = 1 then

output "Message: queue is full"
else

if (rear == maxsize-1) then

rear = -1
end if

rear = rear +1

q_array[rear] = n

nelements = nelements + 1
end if

end method

method dequeue ()

if isempty() = 1 then
output "Message: queue is empty"

else

temp = g _array[front]
front = front + 1

if (front==maxsize) then

front = 0

end if

nelements =

return temp

end if

nelements - 1

Output:

Message: queue is empty

front = 1

rear = 5

g_array contains

1,2,7,8,9,10,0,0,0,0

removal

Explanation:

This algorithm uses the q_array

to implement a circular queue. The

methods used are: enqueue (),

dequeue (), isempty (),

isfull () and size() .

When this algorithm begins, an

array of ten elements is created.

maxsize variable is used to hold

the maximum queue size, the

front variable is used to point to

the start of the queue, the rear

variable is used to point to the end

of the queue and nelements is

used to hold the total number of

elements stored in the queue.

The first dequeue () instruction

generates a “Message: queue

is empty” output.

enqueue (1), enqueue (2),

enqueue (7), enqueue (8)

instructions add four elements in
the queue.

dequeue () instruction removes 1

from the queue.

enqueue (9) and enqueue (10)

add two elements to the queue.

Instruction output "front =
", £ront prints the number 1

end method

=ethod isempty ()

if (nelements

return 1

else

return 0

end if o

end method

method isfull ()

if (nelements maxsize) then

return 1

else

return 0

end if

=nd method

=method size ()

return nelements

end method

which is the array position used to

point to the front of the queue.

Instruction output "rear = ",

rear prints the number 5 which is

the array position used to point to

the end of the queue.

Instruction output "size = ",

size () outputs size = 5, which

is the size of the queue.

Instruction output "q_array

contains:", g_array outputs

the contents of the actual array

used. The numbers

1,2,7,8,9,10,0,0,0,0 are printed.

After a “queue contents

display and removal”

message, a loop that removes and

outputs all elements of queue is

used.2 7 8 9 10 are printed.

Linked lists

5.1.11 Features and characteristics of a dynamic data structure

Exit skills. Students should be able to®

Linked lists will be examined at the level of diagrams and descriptions. Students are not
expected to construct linked list algorithms using pseudocode.

Suppose you want to develop a program to handle a variable number of airplanes that arrive
at an airport every day. The array based implementation has the disadvantage that its size
must be predetermined. The size of the array must be determined before the actual use of
the array. Declaring a large array means allocating an amount of memory that might be not

next

I O >

S node

Figure 5.4: A node of a linked list

utilized, while declaring a small array means that the array may run out of space during the
execution of the program. The solution to this inconvenient situation is to use dynamic
allocation of memory. The resulting data structure will be flexible enough to shrink or grow,
as the request for data storage decreases or increases respectively. This provides the
programmer with the ability to control the amount of memory that is utilized.

In programming, a node is a basic unit (object) that contains both data and a pointer. A
pointer is a field of the node whose value points to another object, stored in some other
memory location. Each node in a linked list stores a pointer to the next value of the linked
list. Thus, every node requires memory for both its data and its pointer. THE NULL pointer is
a special pointer that points to nothing, meaning that it has no pointee. The NULL pointer is
drawn as a diagonal line between the left lower corner and the right upper corner of the
pointers variable box.

Figure 5.5: The NULL pointer

5.1.12 Operation of linked lists

Exit skills. Students should be able to*

Describe how linked lists operate logically.

A linked list is constructed from a series of nodes. Every node of the list is a distinct object

that contains both data, as well as a reference (pointer) to the next node. A reference refers

10 an object’s address in the RAM. In C++ we use pointers, while in Java we use references.

A linked list is very different from an array. Although they are both used to create lists, their

operational characteristics are completely different. In an array, each element resides in a

particular position which can be directly accessed using an index. In a linked list, a particular

element can only be accessed by following the references (pointers) of all the previous

element. In a way, linked lists resemble a chain. There is no way to access an element

directly. One can only access every element in turn, starting with the initial one in the list.

It is important to stress the difference between the logical representation, which refers to

how the data and the links are “seen” by the programmer, and the physical representation,

which refers to the underlying mechanisms that store the data in RAM. The physical

representation includes details like memory addresses, type of data, number of bytes used,

the way the pointers are handled etc. This is another example of abstraction where all

unnecessary details are hidden.

Key Characteristics of a linked list:
/

e To traverse a linked list, you start at the first node and then go from node to node,

following each node’s pointer to find the next node.

e A node with a specific key value can be found by traversing the list. Once found, a

node’s data can be accessed.

e Alinked list consists of a sequence of nodes.

e Each node contains data and a pointer.

e Alinked list may be empty.

e The length of a linked list is the number of elements that it contains.

e The last node contains a null pointer.

e Anode’s successor is the next node.

e Anode’s predecessor is the previous node.

e e

Header node

I List:

Figure 5.6: A diagram of linked list with four elements

In the previous Figure the existence of a dummy header node, which is just an initial node
that exists at the front of a linked list even when the list is empty, is assumed. Its purpose is
to point at the first element and to keep the linked list from being null. This node doesn’t
contain any data, but only a pointer.

Representing linked lists with pseudocode

Suppose we have an object named student with the following properties:

Name (of type) string
Surname (of type) string
ID (of type) integer

A node object will have one additional field to store information about the reference to the
next node of the linked list:

Next (of type) pointer (or reference)

So the node of a single linked list that is used to store student objects should have the
following fields:

Name (of type) string
Surname (of type) string
ID (of type) integer
Next (of type) pointer (or reference) //reference to the next node

Itis clear that the node is not only the data that it stores, but it also includes a pointer.

Another approach would be to create two classes. A student class and a node class. In this
approach the data are not placed directly in the node. A reference is used in the node object
to represent the student’s data.

 node Student
Student sl //reference to student Name of type string
object Next of type pointer (or Surname of type string
reference) ID of type integer

l

|

5.1.13 Sketch linked lists

Table 5.3: Pseudocode for the two classes

It is important to mention that the ID will be used as the key value. So all linked list
operations (finding, inserting, deleting etc.) will be implemented according to this key.

Exit skills. Students should be able o

NG lmked Ilsts (single, double and circular).
Sketch diagrams UGS

e adding a data item to linked list.
e deleting specified data item.
e modifying the data held in the linked list.
® searching for a given item.

Single linked lists

Empty linked list Header

L _List: Hfi o

r

L_List: >

Header

L_List: Hmp NULL

Header

L List: | @

Figure 5.7: Possible representations of an empty linked list (IL_List).

Adding (inserting)

After an element

Rl

2 Jotrl - | ale

Figure 5.8: Adding an element involves 4 steps: (a) find the node you want to insert after, (b) create the new
node, (c) copy the pointer from the node that’s already in the list, (d) change the pointer in the node that’s

already in the list to point to the inserted node.

L_List:

At the beginning

D e

(Wb

- T[T
Figure 5.9: Inserting to the head involves the following steps: (a) create the new node, (b) make the new node

point to the old first, (c) make header node point to the inserted node.

L_List:

33

At the

L _List:

Figure 5.10: Inserting to the tail involves the following steps: (a) create the new node, (b) make the new node

point to ng’!l, (c) make the old last node point to the new inserted node.

Deleting

After an element

L List:

Figure 5.11: To delete a node, just change the link in its previous node to point its next node.

At the beginning

L _List:

Figure 5.12: To delete the first node, change the link in the header to point to the next (second) node.

At the end

L_List:
 [T [T

Figure 5.13: To delete the last node, change the pointer of the previous (second to last) node to point to NULL.

Modifying

To modify the data of a node one can follow two different procedures:

1. Delete the node and insert a new node with different data in the same position

of the list

2. Find the node and change its data by replacing it with the new data

Searching

To search for a specific element, in a sorted or unsorted linked list, linear search must be

followed. Starting from the first node, all elements are examined until the desired element is

found. If the element is not in the linked list, an appropriate message is returned.

Sorted linked list

Before discussing the advantage= of sorted linked lists, it is useful to examine a program that

keeps all array elements sorted, in descending order, at all times. Keeping a list sorted makes

it possible to apply binary search, when searching for a data item.

Programmihg Exanip’le/ 16: Keeping an a‘r’réil sorted.

The following program starts with an empty array of 10 elements. When an element is

inserted, the correct location is found in order to keep the array sorted in a descending

order. Deletion works by shifting elements, with higher index numbers, to fill in the gap left

by the deletion process. To find the position of an element to be deleted, binary search is

applied. The advantage of using an ordered array becomes apparent when binary search is

applied, since it performs much faster than a sequential search.

ARRAY = new Array (10) OUTPUT
n_elements = 0
element = 0 A inserting 4
searchKey = 0 A

C_index = 0 inserting 8

found = 0 8,4,/ rrrrrs
inserting 5

insert (4) 85,4
insert (8) inserting 12
insert (5) 28 DA
insert (12) inserting 34
insert (34) 341278175 4TS
insert(18) inserting 18
insert (15) 34,18,12,8,5,4,,,,
insert(23) inserting 15
insert (77) 34,18,15,12,8,5,4,,,
insert (1) inserting 23
del (15) 34,23,18,15,12,8,5,4,,
del (23) inserting 77
insert(99) 77,34,23,18,15,12,8,5,4,
del (11) inserting 1
del (4) 77,34,23,18,15,12,8,5,4,1

deleting 15
method insert (element) 77,34,23,18,12,8,5,4,1,

output "inserting", element deleting 23

j=0 77,34,18,12,8,5,4,1,,
k=0 inserting 99
loop while (j < n_elements 99,77,34,18,12,8,5,4,1,

AND ARRAY[j]>element) deleting 11
g5 = gl 11 not found

end loop deleting 4
k = n _elements 99,77,34,18,12,8,5,1,,
loop while k > j

ARRAY[k] = ARRAY[k-1]

 k=%k -1
end loop

ARRAY[j] = element

n_elements = n elements + 1
output ARRAY

end method

method del (searchKey)

output "deleting", searchKey
LOW = 0

HIGH = n _elements % 1
C index = 0

m = 0

found = 0

loop while (LOW <= HIGH)
C_index = div ((LOW + HIGH), 2)
if (ARRAY[C_index] == searchKey)
then

found = 1

loop m from C_index to
n_elements - 2

ARRAY [m] = ARRAY [m+1]

end loop

ARRAY[n elements - 1] = "»
n_elements = n elements - 1
output ARRAY

else if (ARRAY[C_index] >
searchKey) then

LOW = C_index + 1
else

HIGH = C _index - 1
end if

end loop

if (found = 0) then

output searchKey, "not found"
end if

end method

Sometimes, it is very useful to maintain a sorted linked list. In such a linked list, all data are
stored according to a key value. A programmer can use a sorted linked list in the same way
that a sorted array is used. Although a linked list is more difficult to implement than a sorted
array, the advantages of a sorted linked list is that the elements do not need to be moved,
but only pointers need to be altered. This results in a high speed element insertion, which, in
addition to the fact that the linked list can easily expand to any size that is supported by the
available RAM, makes linked lists ideal in various situations. To insert an element in a sorted
linked list, one must first search through the linked list until he/she finds the correct place to
insert the new element. After that, the element can be inserted in the usual manner
described above.

Double-linked lists

In a double-linked list each node contains data, a pointer to its successor, and a pointer to its
predecessor. The header node points to the first node and to the last node of the list. If the
linked list is empty, the pointers point to NULL. The first node and the last node of such a list
are directly accessible without traversal, and allow traversal of the list from the beginning or

the end. The pointers of each node allow traversal of the list in either direction. Another

advantage of a double-linked list is that deletion and insertion before a node, become

easier. A serious disadvantage of the double-linked list is the additional space used. The

double-linked list requires two pointers per node, and so it needs twice as much overhead as

the singly linked list. Applicatichs of double-linked lists include web browsers, where the

back and forward buttons are used for backward and forward navigation, implementation of

undo and redo functions etc.

B IL:

Figure 5.14: A double-linked list

ircular-linked lists

A circular list is a linked list in which the last link points back to the first link. In such a list it is

=asy to loop and access all nodes circularly, and one has the ability to traverse the entire list

starting from any node. The implementation of the circular-linked list is more complex and

=xtra caution is needed so as not to end up in an infinite loop. Applications of Circular-linked

“stsinclude OS time sharing algorithms and multiplayer games.

L_List:

L List:

.. e

Sinary trees will be examined at the level of diagrams and descriptions. Students are not:

=xpected to construct tree algorithms using pseudocode. Tracing and constructing:

a'gorithms are not expected. .

Trees combine the quick insertion and deletion of linked lists, as well as the quick searching

of an ordered array. Tress in general are fascinating dynamic data structures that have been

studied as abstract mathematical entities. They belong to the graph category and consist of

nodes that are connected by edges. In algorithms, nodes (usually circles or rectangles)

represent values or objects and the edges (lines) represent the way the nodes are

related/connected. In Java, edges are represented by references while in C++ by pointers.

Top node

levelioWwsli=r=r s = i i Car Company

Levelffow X ne s raenanl 8odleSillcsar oo oo win i Manufacturing |

Level/row 3 === Europe |- Other countries F=—=---

Level/row 4

\
\
\

Figure 5.17: A tree used to represent an abstract model of a hierarchical structure.

The top node is connected to two or more nodes on the next row. These nodes are

connected to more nodes on the next row. The resulting shape looks like a “real tree” that

was turned upside-down. Trees, in general, may have more than two children per node.

However, a binary tree may have 0, 1 or 2 children.

5.1.15 Binary-tree related terminolegy

Exit skills. Students should be able tol:

fiLe nght-chrld, subtree, ¢:Tsls and ieaf

children is called a leaf.

[The level of a particular node refers to how many generatxons the node is |

from the root. If we assume the root is Level 1, then its children will be

Level 2, its grandchildren will be Level 3, etc.

Number of edges from the top node to the deepest leaf (i.e. the one that

|s furthest away).

AII nodes except ‘from the root which has no parent node, have exactly

. one edge running upward to their parent node.

Suppose one wants to travel from node to node, along the edges that link

them The sequence of nodes that are travelled is called a path.

Root The node at the top of th tree is called the root.

| Any node may be considered to be the root of a subtree. That subtree will

. consist of the node’s descendants. Sy

' To traverse means to visit all the nodes of the tree in some Specnfled

order. =

' To visit a node means to arrive at a node for the purpose of performlng

Visiting - some operation on the node. If an algorithm passes over a node on the

__path from one node to another then it is not considered a visit.
Table 5.4: Some common terms used in bmary tree

Parent

Path

Subtree

Traversing

A is the root node.

Bis the parent of D and E.

Fand G are the children of C.

E is the right-hand child of B.

Fis the left-hand child of C.

D, E, F, and G are leaves.

The level of E is 3.

The height of the tree is 2.

The ancestors of node E is A and B.

The descendants of node C is F,

and G.

8 is the root node of the subtree

consisted of B and its descendants,

DandE.

Figure 5.18: A binary tree and the equivelant terminology

A tree that has at most two children is called a binary tree.

o

Figure 5.19: A binary search tree

A recursive definition of a binary tree is the following: Every binary tree has only one root.

Each node of the tree can be considered as the root of a subtree of the tree. Consequently,

every tree consists of a root and one or more subtrees. Each subtree is a tree.

In a binary tree when a node’s left-hand child has a key less than its parent and a node’s

right-hand child has a key greater than or equal to its parent, then the tree is a binary search

tree. These trees keep their keys in sorted order and allow fast lookup of data. The binary

search algorithm can be applied when looking for a particular key in the tree.

Representing a binary tree using pseudocode

Suppose we have an object named Student with the following properties:

Name of type string

Surname of type string

ID of type integer

A Node object will have two additional fields to store information about the references to

this particular node’s children:

Left Child of type Node

Right Child of type Node

So the Node of a tree that is used to store Student objects should have the following fields:

Name of type String

Surname of type String

ID of type Integer

Left Child of type Node //reference to Node’s left-hand child

Right_clg.ld of type Node //reference to Node’s right-hand child

It is clear that the Node encompasses more than just the data that it stores (i.e.: the Name,

Surname and ID). It may also include references to its children, if any.

Another approach would be to create two separate classes: a Student and a Node class. In

this approach the data are not placed directly in the Node. A reference is used in the Node

object to represent the student’s data.

- Node object Student object

Student sl //reference to student Name of type string

| cbject Surname of type string

- Left Child of type node ID of type integer

Right Child of type node

Table 5.5: Pseudocode for the two classes

It is important to mention that the ID will be used as the key value. As such, all tree

operations (finding, inserting, deleting etc.) will be implemented according to this key.

5.1.16 Tree traversal

Exit skills. Students should be able to':

31 r,e,s-uh: of inorder, preord:

Traversing a tree means to visit each node in a specified order. There are three ways to

implement tree traversal: inorder, preorder and postorder. All traversals work with all binary

trees, not only with binary search trees. But it is important to mention that the inorder

traversal of a binary search tree will visit all the nodes in ascending order, according their

key values.

Inorder traversal algorithm

It is assumed that the tree is not empty. The algorithm initially starts with the root node as

an argument and performs the following recursive steps:

1. The algorithm calls itself to traverse the node’s left-hand subtree.

© 2. The algorithm visits the current node.

The algorithm calls itself to traverse the node’s right-hand subtree.

In pseudocode this algorithm looks like:

in_Order (localRoot)

if (localRoot != null) then

in Order (localRoot.Left Child)

output localRoot.ID //ID is the key value
in_Order (localRoot.Right Child)

end if

This rec@rsive method is first called with the root of the tree as an argument, as such:

in_Order (root)

Preorder traversal

It is assumed that the tree is not empty. The algorithm initially starts with the root node as

an argument and performs the following recursive steps:

1. The algorithm visits the current node.

2. The algorithm calls itself to traverse the node’s left-hand subtree.

i 3. The algorithm calls itself to traverse the node’s right-hand subtree.

In pseudocode this algorithm looks like:

pre_ Order (localRoot)

if (localRoot != null) then

output localRoot.ID //ID is the key value

pre Order (localRoot.Left Child)

pre Order(localRoot.Right Child)

end if

This recursive method is first called with the root of the tree as an argument, as such:

pre_Order (root)

Postorder traversal

It is assumed that the tree is not empty. The algorithm initially starts with the root node as

an argument and performs the following recursive steps:

1. The algorithm calls itself to traverse the node’s left-hand subtree ¥

2. The algorithm calls itself to traverse the node’s right-hand subtree

3. Visit the node //Recall that visit a node means to perform an action

In pseudocode this algorithm looks like:

post_Order (localRoot)

if(localRoot != null) then

post Order(localRoot.Left Child)

post_Order (localRoot.Right Child)

output localRoot.ID //ID is the key value

end if

This recursive method is first called with the root of the tree as an argument, as such:

post Order (root)

Binary search tree Binary tree

Inorder: ABCDEFG-sorted in ascending order Inorder: DBEAFCG

; Preorder: DBACFEG Preorder: ABDECFG

| Postorder: ACBEGFD Postorder: DEBFGCA
 Table 5.6: Examples of tree traversals

Tree traversal - a practical approach

Figure 5.21: Diagram that illustrates empirical tree traversal

The approach presented in Figure 5.21 is very useful and can be used during examination to

answer tree traversal questions. Suppose every node is illustrated as a circle and has four

points at 0, 90, 180 and 270 degrees. The names of these points are N for 0°, E for 90°, S for

180° and W for 270° respectively. Figure 5.21 illustrates an orange coloured path that circles

the tree starting from the root. The path tightly follows the outline of the tree without

intersecting with any path or node.

In-order traversal: following the path, if you are able to approach the point S of a node then
print the name of the node: ABCDEFG

Post-order: following the path, if you are able to approach the point E of a node then print
the name of the node: ACBEGFD

Pre-order: following the path, if you are able to approach the point W of a node then print
the name of the node: DBACFEG

Infix, prefix and postfix notation

A binary tree can be a valuable tool to symbolize an algebraic expression that involves
operands and operators (+, -, /, *). The root holds an operator, and the other nodes of the
tree hold either an operand or an operator. Each subtree is an algebraic expression. Three
notations may be used: infix, prefix or postfix.

e In the infix notation an operator is placed between two operands.

® Inthe postfix notation the operator follows the operands.

e In the prefix notation the operator comes before the operands.

In the infix notation an algebraic expression such as X*(6+Y)/Z means:

e ADD 6 AND Y TOGETHER.

® MULTIPLY THE RESULT OF THE ABOVE OPERATION BY X.
e DIVIDE THE RESULT OF THE ABOVE OPERATION BY Z.

It is clear that precedence of operations, left associativity and brackets play an important
role.

In the postfix notation (a.k.a. reverse polish notation) operators are written after their
operands. The expression given above can be written as X6 Y + * Z /. Brackets cannot be
used to change the order of evaluation of operators which is always left-to-right. So in
postfix notation, operators act on values that are immediately to the left of them. For
example:

e THE+USESTHEG6ANDY.

e THE * USES THE RESULT OF THE ADDITION AND X,
® THE / USES THE RESULT OF THE MULTIPLICATION AND Z.

In the prefix notation (a.k.a. polish notation) operators are written before their operands.
Operators are evaluated from left-to-right and brackets are unnecessary since operators act
on the two nearest values to the right. The expressions given above can be written as:
/*X+6YZ. In this example:

e THE+USES6ANDY.

e THE * USES THE RESULT OF THE ADDITION AND X.
® THE / USES THE RESULT OF THE MULTIPLICATION AND THE iz

[X*(Y+Z/2) XYZ2[/+*

X*Y+Z/2 Xz iz
| X (2N YA X 20!

Xy /z2l]
Table 5.7: Examples of different notations

=~

Traversing a binary tree (expression tree) using preorder would generate the prefix notation

while traversing an expression tree using postorder would generate the postfix notation.

Expression Expression Expression

(infix). (prefix). (postfix).
3 Tree
inorder postorder preorder

traversal traversal traversal

(2+3)*6 36 23+t6*

1 7/9)+5)*6 *+/7956 79/5+6*

#=J6)/(632) | / /46 *632| 46/632*/

2%6)+3)/6 | /+ * 8636 86 *3+6/

 Table 5.8: Various expressions their notations and the equivalent binary trees’

*Tool used: http://cstar.iiit.ac.in/~kkishore/DSVL/exp6/exptree.swf

5.1,17 Sketch binary trees
Exit skills. Students should be able to®

Adding a new data item in a binary search tree.

Adding a new data item means to add a new object. An object is added in the correct
position of the tree as a node according to its key value. Thus, adding a new data item is
similar to adding a new node.

Searching for a particular data item in a binary search tree

Searching for a particular data item involves comparing the value to be found with the key
value of a node, and following:

e that node’s left-hand child if the search value is smaller than the current node’s key
value.

® the node’s right-hand child if the search value is greater than the current node’s key
value.

Finding the minimum value in a binary search tree

Move to the left-hand child of the root.
Then move to the left-hand child of that child.
Repeat the process until you find a node that has no left-hand child.
The key value of that node is the minimum value in the binary search tree.

S
R
S

Finding the maximum value in a binary search tree

1. Move to the right-hand child of the root.
2. Then move to the right-hand child of that child.
3. Repeat the process until you find a node that has no right-hand child.
4. The key value of that node is the maximum value in the binary search tree.

Adding one or more new nodes to a binary search tree.

To insert a new nodeinto a binary search tree, follow the steps:
1. Ifthe binary search tree is empty, insert the new n
2. If the binary search tree is not empty, f

e at the root.

to the parent of the node

follow the r
to be inserted. The parent will be a leaf node. Insert the new node, according
to the following rules:

a. |If the key of the new node is smaller than the key of the parent node,
then connect the new node as the parent’s left-hand child.

b. If the key of the new node is greater than the key of the parent node,
then connect the new node as the parent’s right-hand child.

To follow the root, simply compare the key value of the node that needs to be inserted with !

the root’s node key value. If it is smaller, then move to the left-hand subtree. If it is greater, :

then move to the right-hand subtree. Continue with the next node and repeat the above :

process, until a leaf node is reached.

Duplicate keys

To deal with duplicate keys two methodologies may be applied:

1. The first and safest is to forbid the existence of duplicate keys. The candidate

numbers of IB students, the tax identification numbers, the car license and

registration numbers etc. are all unique and are used as key fields for searching,

deleting and adding operations.

The second is to modify the insertion process so as to insert a node with a duplicate

key as the right-hand child of the node with the same key. This will cause minor

problems during the searching process, since when the first node, with a given key,

is found the searching algorithm will stop and return the requested data. Of course

this problem is solvable. A new searching algorithm may be put in place to

accommodate for the existence of duplicate keys. However, the new searching

algorithm would be a bit more time-consuming, as it would need to keep on

searching the tree even after the first node, with a given key, was found.

Removing one or more nodes.

Deleting a node is important in many tree applications and involves three cases:

1. The node to be deleted has no children:

The node can just be deleted. The appropriate child field in the parent node must be

changed to point to NULL, instead of pointing to the node that needs to be deleted.

The node to be deleted has one child:

Just connect the parent of the node to be deleted directly to the child of the node to

be deleted. Change the appropriate reference in the parent (Left Child or

Right_Child) to point to the deleted node’s child.

The node to be deleted has two children:

Replace the node to be deleted with the node that has the largest value in its left-

hand subtree (inorder successor) or the node with the smallest value in its right-

hand subtree (inorder predecessor).

Example of adding and deleting nodes in a binary search-tree

The following table provides a detailed example of inserting and deleting operations in a

binary search tree:

 Inserting 0123:

® The tree is empty so 0123 is the
root node.

 Inserting 1123:

e 1123>0123 50 1123 goes to the
right. .

 Inserting 0045:

e 0045<0123 so 0045 goes to the
left.

 Inserting 1456:

® 1456>0123 so move right to
1235

® 1456>1123 so 1456 goes to the
right.

 Inserting 8765:

® 8765>0123 so move right to

1123.

¢ 18765>1123 so move right to
1456.

® 8765>1456 so 8765 goes to the
right.

 Inserting 0013:

e 0013<0123 so move left to
0045.

e 0013<0045 so 0013 goes to the
left.

Inserting 0234:

0234>0123 so move right to

1123.

0234<1123 so 0234 goes to the

right.

Inserting 0785:

0785>0123 so move right to

1123.

0785<1123 so move left to

0234.

0234<0785 so 0785 goes to the

right.

 Inserting 0026:

0026<0123 so move left to

0045.

0026<0045 so move left to

0013.

0026>0013 so 0026 goes to the

right.

» Inserting 0047:

0047<0123 so move left to

0045.

0047>0045 so 0047 goes to the

right.

Deleting 8765:

8765>0123 so move right.

8765>1123 so move right to

1456.

8765>1456 so move right.

The key is found it is the child of

1456.

Delete 8765.

Deleting 0013:

0013<0123 so move left to

0045.

0013<0045 so move left.

The key is found; it is the child

of 0045 and has 0026 as its

child.

Delete 0013 and connect 0045

to 0026.

Deleting 0045:

0045<0123 so move left to

0045.

The key is found; it is the child

of 0123 and has two children.

The greater value of its left-hand

subtree is 0026. Delete 0045

and let 0026 to take its position.

Deleting 1123:

0123<1123 so move right to

1123.

The key is found; it is the child

of 0123 and has two children.

The greater value of its left-hand

subtree is 0785. Delete 1123

and let 0785 take its position.

Deleting 0123: This is the root.

Replace it with the greater value

of its left-hand subtree.

Delete 0123 and let 0047 to take
its place.

Balanced trees

An unbalanced tree is a tree whose left or right-hand subtree has a lot more nodes than the

other subtree. Binary search trees become unbalanced because of the order in which the

data items are inserted. In most cases, insertion of data items with random key values result

in, more or less, balanced trees. However, if the data items inserted present an ascending or

descending sequence of their key values, then the trees becomes unbalanced. For example,

if one enters the data items with key values 1, 2, 3, 4, 5 0r 5, 4, 3, 2, 1 then he/she will have

an unbalanced binary tree. But if one enters 3, 1, 5, 2, 4 then he/she will have a balanced

tee.

Figure 5.22: Two unbalanced and one balanced (on the right) tree with the same data items.

Inserting 1, 2, 3, 4, 5 0r 5, 4, 3, 2, 1 are two extreme cases that both result to trees with no

branches. These trees act like linked lists. One has to search (on average) through half the

items to find the data item that he/she is searching. So instead of O(logN), of a balanced

tree, one ends up with the O(N) of a linked list. Searching through 100000 items in an

unbalanced tree requires 50000 comparisons. In a balanced tree this would require only 17

comparisons.

Suppose one wanted to insert '"ABCDEFGHIJKLMOPQRSTUVWXYZ" in two different binary

search trees, Figures 5.23 and 5.24. To find J in the first binary search tree he/she would

need to follow the path ¥, G, S, B, P, 0, L, I, K, J (9 comparisons). To find J in the second

tree he/she would need to follow the path X, B, F, K, I, J (5 comparisons).

Figure 5.23: Unbalanced tree®

s
1

/ o e P z P
A

P

o
N e

2
L 5

A o = i o
{5 G 1 L Q (5]

o)

Figure 5.24: Better balanced tree

— e

* Tool used: http://www.algomation.com/algorithm/binaw—tree—insert-delete—display

Applications

5.1.18 Definition of the term dynamic data structure

Define the term dynamtc data structure.

341 skllls Students should be able to':

A dynamic data structure changes its “size at execution time as required by its elements.

Allocation and de-allocation of memory is controlled by the data structure.

5.1.19 Comparison of static and dynamic data structures

Exit skills. Students should be able to':

Compare the i of statlc and dynamxc data structures.

_DYNAMIC.

Memory is allocated to the data structure

dynamically i.e. at run-time. An example of

a dynamic data structure is a stack

lmplemented using linked lists.

Advantages

Makes the most efficient use of RAM

as it only uses as much memory as it

needs.

One does not need to know or

decide upon the size of the data

structure in advance.

Dlsadvantages 2 ,

Given that the memory allocation is

dynamic, it is likely that the structure

will 'overflow' should it exceed its

allowed limit or 'underflow' should it

become empty.

In most cases algorithms with

dynamic data are slower, during

execution, than algorithms with

static data structures.

Random access is not allowed and

elements should be visited

sequentially.

STATI C

4} Memory is allocated at complle time. The

size is predefined and can never change

| during run-time. An example of a static

. data structure is a stack implemented using |

[RarrayS Sue
W Advantages i

o The memory aliocatlon is flxed and

as such there will occur no problems |

when adding or removing data

items.

Easier to program as there is no

need to check upon the data

structure size.

The space reserved in RAM will

always be available, in order to be

used by the data structure.

~ Disadvantages

Can be very inefficient as the

memory for the data structure is

predefined.

Even when the array has no data

elements in it, it still takes up the

RAM space that was allocated at

compile time.

Sometimes it is difficult to predict

the required array size.

In a sorted array, inserting a new

element in the correct position or

_deleting an existing one, requires

} e As such, there is no way to shifting of other elements.

| implement binary search. |

| e More complicated to program as the

1 software needs to keep track of its }

| size and data item locations at all ?

0 times. e iy

Table 5.10: Comparison of dynamic and static data structures

o ; . TS

 e . ; e

i) i Worst | Worst

 | Deletion Access |

Deletion Search Inserj

o | o@ | om o Oln).

| Ologin) | Ollogla) O O O O | o)
Laliee

| Double-

{ | | |

Linked | O OM | 0@) f
Leilisty Wt r e |

% Queue | O(n) Tem o(1)

[singly- | |

| Linked = O(n) O(n)

R o0 o 0@ | o | o)
Table 5.11: Efflc:ency of various data structures

5 1 20 Sultable structures

An Abstract Data Type (ADT) is just an abstract conceptual tool. All data structures can be

used to implement ADTs. A (static) linked list can be implemented using an array and an

array-type structure can be implemented using a linked list. Building a linked list using an

array is the option for primitive level languages and assembly languages that require fixed

size data structures and do not support dynamic memory allocation. ADTs are conceptual

models that abstract their fundamental data structures (the data structures that are used to

implement them) and are used with some specific purpose in mind.

Stacks and queues are examples of ADTs that may be implemented either by using arrays or

linked lists as their fundamental data structures. The important thing for a queue is to have

an enqueue () and a dequeue () method. This can be achieved regardless of the use of an

array, a linked list or a double-ended linked list. For a dynamic implementation of a stack the

push () method would be implemented using the Linked List. insertFirst(data)

call, while the pop() method would be implemented using the node =

Linked List.deleteFirst() call. The user of the stack just uses the methods, without

bothering with the details of the implementation (abstraction for the user), while the

programmer, who has actually implemented the stack methods, knows the underlying

programing mechanisms.

Binary trees can be represented using arrays. In the array approach, the nodes are stored in

an array and are not linked by references. The index of the node in the array matches the

h&

cosition in the tree. The node at index 0 is the root node, the node at index 1 is the root’s

‘=%-hand child, and so on. This method is not very efficient. Empty nodes and deleted nodes

‘=zve holes in the array, occupying RAM, and when the deletion of a node involves moving

subtrees, a lot of elements of the array must change position, resulting in a very time

consuming operation.

Data

structure

BENEFITS DRAWBACKS

Fast insertion L Slow search

Array Fast access of an element with a Slow deletion

. B knownlindeX Fixed size

2 Slow deleti
Ordered More efficient search than unsorted o ; eletl.on

s - Slow insertion

Wy L ; Fixed size

Models physical stacks
Stack 3 ; Slow access to othe ent: St provides Last-In, First-Out (LIFO). 5 ootieyclements

Models physical queues
Queue P Slow access to other elements

Provides First-In, First-Out (FIFO).

Linked list
Fast insertion

Fast deletion
Slow search

Binary search

tree

| Fastdeletion

Fast search

Fast insertion

5E

End of chapter example questions with answers

Example 1

Question

The following table shows basketball players and scores, from a game.

1. Construct a binary tree that will store the data of the table, given above, in the order

of scores.

2. Construct the diagram of a linked list that will store the table data in ascending

order.

3. Compare the use of the binary tree with a linked list.

4. State what will happen if we enter the scores data, in a binary search tree, in the

following order: John, Ronald, James, Mark, Jeff.

Answer

1. The resulting binary search tree will be:

S g
& =
T ©

o

2 £ 2 £ = S = o
& ?—_' S t
=
& ® % ® = = e =

(James 7

Mark | 8
b Jeffrfir 15

[Jehni F 4

_Ronald 5

Ronald

Le
ft

Po

in
te

r

Le
ft

Po

in
te

r

Ri
gh

t
Po

in
te

r

 |
Ri

gh
t

Po
in

te
r

2. The resulting linked list will be:

=Gl

3. Differences between the two data structures

a. Binary search can be applied in binary search trees while linear search

can be applied in linked lists. So it is faster to search a balanced binary

search tree. 3

b. A binary search tree uses two pointers for each node while a single

linked list only one. So, a linked list needs less storage

4. The binary search tree will become unbalanced and the search for an element

will be the same as in the linked list.

Example 2

Question

State three disadvantages of a recursive algorithm.

Answer

e ltis more difficult to write.

e Itis more difficult to maintain.

e An overflow error may occur if the stack runs out of space.

Example 3

Question

Explain how an element stored in a linked list could be found.

Answer

Start from the beginning (head) of the list.

Follow the pointer to the first node.
1

2

3. Compare the data in this node with the data to be found.

4. |f the data is found, stop.

5. If the data is not found, follow the pointer of this node to the next node.

6. Repeat from step 3 until the data is found or the end of the list is reached.

Example 4

Question

How is a queue best characterized?

Answer

First-In First-Out

Example 5

Question

Given an empty queue Queue, what does it look like after the following instructions?

Queue. enqueue (6)

Queue . enqueue (8)

Queue.dequeue ()

Queue. enqueue (3)

Queue.dequeue ()

Answer

3

Example 6

Question

What is the reason for using a "circular queue”?

Answer

Reuse empty space.

Example 7

Question

Suppose there is a circular array-based queue implementation is capable of holding 10
elements. Show the array after the following code is executed:

loop m from 1 to 7

enqueue (m)

end loop

loop m from 1 to 7

enqueue (dequeue ())

end loop

Answer

Example 8

Question

Suppose there is a circular array-based queue implementation capable of holding 10

elements. Show the array after the following code is executed:

loop m from 1 to 3

enqueue (m)

end loop

loop m from 1 to 2

enqueue (dequeue ())

end loop

loop m from 1 to 2

engueue (dequeue ())

end loop

Answer

front = 4

rear = 6

 2 8 L |

Circular Queue contents 2, 3, 1

Example 9

Question

Is it possible to implement a queue using two stacks?

Answer

Yes. Two stacks are needed: an input and an output stack. All elements, at any time, must be

either in the input or the output stack. When enqueuing, the elements are pushed in the

input stack. When dequeuing, all the elements are popped from the input stack and pushed

onto the output stack. The top element is then popped from the output stack to get the

dequeued element. To add (enqueue) more elements one must pop the remaining elements

from the output stack, push them to the input stack and add (push) the new element(s).

Example 10

Question

Which type of traversal always gives the sorted sequence of the elements in a binary search
tree?

Answer

Inorder traversal

Example 11

Question

What is the maximum number of children that the largest element of a binary search tree
must have?

Answer

Example 12

Question

What is the maximum number of children that the smallest element of a binary search tree
must have?

Answer

Example 13°

Question

Draw a binary search tree such that:

e each node stores a single number and

e apreorder traversal yields 6, 3, 4,13, 10, 9, 11, 14 and

® apostorder traversal yields 4, 3, 9, 11, 10, 14,13, 6.

® Tool used: http://btv.melezinek.cz/binary-search-tree.html

Answer

Example 14°

Question

Draw a binary tree such that:

each node stores a single number and

an inorder traversal yields 30, 20, 4, 15, 9 and

a preorder traversal yields 20, 30, 15, 4, 9.

Answer

Example 15

Question

What value does method a return when called with a value of 4?

a (number)

© Tool used: http://btv.melezinek.cz/binary-search-tree.html

if (number <= 1) then

return 1

else

return a * a(number - 1)

end if

Answer

24 (i.e.: 4%3%2%1 = 24)

Example 16

Question

Which of the following data structures is not a dynamic data structure?

Array.

Binary tree.

Linked list.

Stack. A

Answer

Array

Example 17

Question

Describe why the use of recursion is memory-intensive.

Answer

When a recursive method calls itself, all previous method calls are still open. The call stack
(or execution stack) is composed of many stack frames (or activation records). Each stack
frame relates to a method call. All stack frames of the previous method calls still occupy
space in the execution stack.

Example 18

Question

Identify the type of linked list that:

1. starts with a pointer to the first node and
2. contains a pointer from each node to the next node and
3. in which the pointer in the last node points to the first node.

Answer

Circular, singly-linked list.

Example 19

Question

Do binary search trees always have the same shape for a particular set of data?

Answer

No, it depends on the order in which the values were inserted.

Example 20

Question

A piece of software finds the probable origin of a last name. When a user enters his/her last

name he/she can find its origin. The following table shows some examples:

Lastname

Loy . Wene
Peters | Athens

| Woodcock | Hertford

| Angel |

1. Construct the binary tree that stores the data from the table above in alphabetical

order by last name.

2. Construct a linked list to represent the same data in alphabetical order by last name.

Answer
Farmery

Le
ft

Po
in
te
r

Ri
gh
t

Po
in
te
r

York
Angel Peters

London Athens

Le
ft

Po

in
te

r

Ri
gh

t
Po

in
te

r

Le
ft

Po

in
te

r

Ri
gh

t
Po

in
te

r

Carpenter Woodcock

Ri
gh

t
Po

in
te

r

K1t e Hertford Le
ft

Po

in
te

r

Ri
gh

t
Po

in
te

r

Le
ft

Po

in
te

r

Angel 8l haticle Woodcock

Po
in
te
r

Po
in
te
r

tondon SRS a1V Athens e lTg et

Example 21

Question

An application records the personal best times (in minutes) of competitors in a tournament.
The program stores the data as they arrive in a sorted linked list according to the best times.
Part of the data structure is given below:

(i Waodcock

Po
in
te
r

Po
in
te
r

NU
LL

Carpenter had a best time of 12 minutes. Explain how this new node should be added t§ the
above linked list.

Answer

A new node is created with the data of the competitor:

(&= et

TEMP

Po
in

te
r

Then, the pointers are adjusted:

o=t

NU
LL

Carpenter

The resulting linked list is the following:

Woodcock TS

Po
in
te
r

Po
in
te
r

Po
in
te
r

NU
LL

Example 22

Question

State three applications of queues in computer science.

Answer

1. Simulation of processes.

2. Transfer of data between 1/O devices (e.g.: keystrokes of keyboard).

3. Job queue that contains jobs to run.

1523

Example 23

Question

State three applications of stacks in computer science.

Answer

1. In evaluating expressions.

To store return addresses.

3. To copy the parameters of a method onto a parameter stack before performing a

method call.

Example 24

Question

Calculate the value of the following postfix expression:

234 +t85 -

Answer

2%(3+4)-5=9

Chapter References

10.

kil

12,

£

14.

15.

16.

17.

International Baccalaureate Organization. (2012). IBDP Computer Science Guide.

Tower of Hanoi. (2015, November 17). In Wikipedia, Free Encyclopedia. Retrieved

14:03, November 17, 2014, from https://en.wikipedia.org/wiki/Tower_of_Hanoi

Sedgewick, R., & K. Wayne. (2016). Stacks and Queues, Retrieved 10 July 2016, from

http://introcs.cs.princeton.edu/java/43stack/

Sedgewick, R., & K. Wayne. (2016). Binary search trees, Retrieved 10 July 2016, from

http://algs4.cs.princeton.edu/32bst/

Shaffer, C. (2009). Practical Introduction to Data Structures and Algorithms, Java

Edition, Prentice Hall.

Lafore, R. (2002). Data Structures and Algorithms in Java, Second Edition, SAMS.

Jinks, P. (2012). Infix, Postfix and Prefix, Retrieved 1 August 2016, from

http://www.cs.man.ac.uk/”pjj/cleZ/fix.html

Parlante N. (2000). Pointers and Memory, Retrieved 5 July 2016, from

http://cslibrary.stanford.edu/lOZ/PointersAndMemory.pdf

Rowell, E. (2016). Big-o, Retrieved 10 July 2016, from http://bigocheatsheet.com/

Kothapalli, K. (2016). Expression trees, Retrieved 15 July 2016, from

http://cstar.iiit.ac.in/'“kkishore/DSVL/exp6/exptree.swf

Parlante N. (2001). Linked List Basics, Retrieved 15 July 2016, from

http://cslibrary.stanford.edu/103/LinkedListBasics.pdf

Parlante N. (2001). Binary trees, Retrieved 15 July 2016, from

http://cslibrary.stanford.edu/llO/BinaryTrees.htmI

Meech, D. (2016). Algomation, Retrieved 1 August 2016, from

http://www.aIgomation.com/algorithm/binary—tree-insert—delete—display

Galles, D. (2016). Data Structure Visualizations, Retrieved 15 August 2016, from

https://www.cs.usfcaAedu/"gal|es/visuaIization/AIgorithms.htmI

Melezinek, J. (2016). Binary Tree Visualizer, Retrieved 15 July 2016, from

http://btv.melezinek.cz/binary-search—tree.htm!

Dimitriou K. Hatzitaskos M. (2015). Core Computer Science for the IB Diploma

Program. Athens: Express Publishing. More information at:

https://www.expresspublishing.co.uk/gr/en/content/core-computer—scien
ce—ib—

diploma-program

Halim, S., F. Halim, et al. (2016). Visualgo, Retrieved 1 August 2016, from

http://visualgo.net/

Chapter 2

TOPIC 6 — Resource management

Topic 6 — Resource management

6.1 Resource management

System resources

6.1.1 Identification of critical resources

Exit skills. Students should be able to':

System resources include computer hardware, software, trained personnel and supporting

infrastructure. A critical factor when dealing with computer systems is the management o®

resources. Most resources present limited availability and should be managed with caution

In most cases the Operating System (OS) is responsible for the successful management of

hardware and software resources. Different computer systems have dissimila

specifications, capabilities and purposes to fulfill. Some critical hardware resources include

Primary memory

All processed data and instructions and all resulting data have to be stored in the primany

memory. Primary memory is directly connected to the processor and feeds the processar

with the required data by the fetch, decode, execute cycle data and instructions (Machins

Instruction Cycle). Sometimes the primary memory is also referred as Immediate Access

Store. Primary memory should be considered as an addressable matrix of cells with a unigus

address for each and every cell.

RAM and Cache memory

All data and instructions held in RAM may be altered at any time. There are two types o

chips used for RAM: static RAM and dynamic RAM. Static RAM is a type of semiconduciar

memory that holds data for as long as there is power supply to the memory circuits. Da=

stored in a dynamic RAM semiconductor gradually leaks away and needs to be refreshez

periodically. DDR-SDRAM (Double Data Rate - Synchronous Dynamic RAM) is a typica:

example of semiconductor technology used to build RAM chips in modern PCs. Static RAM =

more expensive, needs more transistors per byte but is faster than DRAM. Both SRAM anz

DRAM are volatile and used concurrently nowadays. DRAM is used in large quantities =

 ! International Baccalaureate Organization. (2012). IBDP Computer Science Guide.

primary memory while SRAM is used in small quantities to speed up the overall performance

by the caching technique, which balances the speed of DRAM with that of the much faster

processor. The much faster SRAM is placed between the processor and the DRAM and

directly feeds the processor. Data is moved from DRAM to SRAM and then to the processor

and vice versa. This process has maximum benefits and performance when frequently-used

instructions and data are stored in SRAM. The task of storing the correct data in SRAM is not

always an easy task. Level 1 cache memory is usually built onto the processor while level 2

cache memory is on a separate chip located between the processor and the larger DRAM.

ROM

Read Only Memory (ROM) is non-volatile and slower than RAM. ROM is used to hold critical

instructions used to start up a PC. A common use of ROM is to hold the Basic Input Output

System (BIOS) which makes it possible for a PC to boot and sometimes to hold the entire OS

for old small home computers (e.g.: Personal CP/M ROM-based version of CP/M 2.2 for

small home computers developed by Digital Research Inc. and MSX Small ROM-based

version of MS-DOS for Z80 home computers developed by Microsqft Corp.). ROM is also

used in embedded microprocessors, microcontrollers and control systems.

Secondary storage

Secondary storage, auxiliary storage and backing store are terms that refer to hardware

that provide data integrity, low cost, mass storage capacity and permanent storage. There

are two broad types of secondary storage devices: the first uses direct access while the

second uses sequential access.

Direct access storage techniques

The devices that fall into this category have the ability to access, retrieve and store any

particular data without having to read through all previous data. Floppy disks, CD-ROMs,

Hard disks, DVDs, USB sticks etc. belong to this category.

Sequential access storage techniques?

The devices that fall in this category have to read sequentially through all previous data

before locating the requested data. Magnetic tapes, which belong to this category, are not

only used in old science fiction movies, and are certainly not a dead technology. It is a major

storage medium and recently IBM Research and Fuji Film have produced a magnetic tape

with a record density of 123 billion bits of uncompressed data per square inch. This

technology allows secure storage for 30 years, built-in data encryption, low cost and less

energy consumption. Magnetic tapes are ideal for backup purposes.

Processor speed

A processor repeats the fetch, decode, execute cycle continuously as long as the computer is

turned on. MIPS (Million Instructions Per Second) is used to measure the performance of a

processor. MIPS is only an approximation of a processor’s performance since it does not take

into account the fact that sometimes a single instruction may operate on many operand

2 |BM sets new tape storage record. (13, April, 2015). In New Atlas. Retrieved 19:05, June 13, 2016,

from http://www.gizmag.com/ibm—tape-storage—record/36931/

fetches and stores, some instructions have a higher effectiveness than others, and soms

processors have the ability to execute several instructions simultaneously.

Processor Clock Frequency (Master Clock MCLK)

= Average number of clock Cycles Per complete Instruction (CPI) » 1000000

cycles/second million instructions

G Jewmne s |
S

7

The clock rate refers to the frequency at which the processor is running and is commonly
used as a rough indicator of the processor’s performance. The unit used is hertz and in the

case of multicore processors the clock rate is the same for all cores. The clock rate of
modern processors is measured in gigahertz (GHz). It is very important to mention that the

clock rate should not be used as a perfectly reliable measure of the performance of different
processor families. :

Figure 6.1: Installation of a modern processor in a CPU socket on the motherboard

Bandwidth

Memory bandwidth is the rate at which data can travel from SRAM and DRAM to the
processor and vice versa and is essential to the performance of a CPU. It is expressed in

millions of bits per second or in Mb per second (Mb/s). The peak theoretical bandwidth,
which is typically one word per bus cycle, is not the same as the sustained memory

bandwidth, which is less and is affected by various design features.

Screen resolution

21l digital television sets, computer monitors, tablet touch-screens and mobile phone

screens have a maximum number of distinct pixels that can be used to display video,

pictures, text etc. This is mentioned as Maximum resolution = Width x Height, where Width is

the number of distinct pixels in the horizontal dimension and Height is the number of

distinct pixels in the vertical dimension. Most devices can support a number of different

resolutions. A rule of thumb is that higher resolutions need more memory and more

processing power.

1920 pixels 3840 pixels

10
80

pi
xe
ls

21
60

pi
xe
ls

Ultra HD

(UHD/4K)

Full HD
(FHD)

7680 pixels

43
20

pi
xe
ls

Full Ultra HD
(FUHD/8K)

Figure 6.2: TV display with resolution comparisons

Disk storage

Disk storage is a general category of metal or plastic storage plates on which data can be

recorded. The rotating disk(s) are mounted on a central spindle. Common disk storage

devices are the hard disk drive (HDD), the floppy disk drive (FDD) and various optical disc

drives. Nowadays HDD, solid state drives (SSD) and solid state hybrid drives (SSHD) are the

main disk storage systems used in most computers. SSDs are very expensive, very fast, more

durable and consume less energy.

HDDs are very cheap, present slower

boot times, can cover all storage

requirements and are cost-effective.

SSHD share the benefits but also the

disadvantages of HDDs and SSDs and

they probably provide the best

affordable combination of perform-

ance characteristics.

Sound processor Sound cards facilitate the input,

process and output of audio signals.

In most cases they are integrated

Figure 6.3: Hard disk

onto the motherboard, while some

advanced models are sold as separate

cards that use an expansion slot of

the motherboard. Professional sound

cards act like audio interfaces and are

hosted in external rack-mountable

units and connect through USB,

FireWire, or an optical cable. Sound

processors have the ability to convert

analog sound to digital files, digital

files to analog sound and process Figure 6.4: Sound card

multiple audio channels.

Graphics processor

General-purpose processors are not efficient at running demanding computer-generat=z
imagery algorithms. This is the primary reason for the evolution of GPUs (Graphics
Processing Units). Modern GPUs are massively parallel processors, very efficient ==
manipulating and processing graphics and

images. Their technical characteristics make

them ideal for running algorithms that require

processing of large blocks of graphics data and

computer generated imagery. Their rapid

evolution has been driven by the video game

entertainment industry, which is a fast growing

sector with great potential. Faster GPUs are sold

as separate cards that use an expansion slot of

the motherboard, while some low-end models

are embedded on the motherboard or are

integrated with the main processor circuit.

Figure 6.5: Graphics card

Network connectivity

Some computers have various network connectivity capabilities. A laptop which is equipped

with both a wired Network Interface Card (NIC) and a wireless NIC will outperform a tablet

which is only equipped with a wireless NIC. In this case, the laptop presents a better network

connectivity solution. On the other hand, a lot of modern tablets are 4G enabled meaning

that they have SIM (Subscriber Identification Module) card slots. This greatly enhances their

ability to work and stream various media on the move.

6.1.2 Availity of resources

ills. Students should be able to*:

Evaluate the resources available in a variety of computer systems.

Together with supercomputers, mainframes, or “big iron” are the flagships of computing.

They are used by large organizations for critical applications, to handle large-bandwidth

communication, bulk data processing such as census, industry, defense, consumer statistics,

enterprise resource planning and large-scale transaction processing. IBM is the leading

company in the sector of mainframe production and in 2015 announced the production of

7132, Mainframes are the largest computer systems available and are typically housed in

isolated, air-conditioned rooms. Mainframes are equipped with extremely great processing

power, vast amounts of RAM, arrays of disks and backup tapes, and serve hundreds of user

terminals. They are able to handle high volumes of input and output and run a lot of

different applications concurrently.

Figure 6.6: Mainframe

3 The digital revolution demands a better server. In IBM. Retrieved 20:05, June 14, 2016, from

http://www-03.ibm.com/systems/z/hardware/z13.html

Supercomputers

They are very fast and expensive, and

focus on mathematical calculations,

weather forecasting, climate research,

molecular modelling, scientific and

engineering applications. The perfor-

mance of a supercomputer is meas-

ured in floating-point operations per

second (FLOPS). New supercomputers

exceed 10 PFLOPS drawing on the

power of more than 30000 processors.

The first supercomputers were comp-

act designs that used the local

parallelism approach, while the latest

designs are considered as massively Eiglrel6 7: Asupercomputer,

parallel systems equipped with multiple arrays of computers and processors.

Servers

A server is software, hardware, or both and provides various services to clients. The client-

server model is fundamental in computer networking and modern servers serve database,

file, email, game, application etc. requests from various clients. Servers need multiple

network connections for advanced performance, a lot of RAM to support multiple requests.

fault tolerance and ease of repair without the need of shut down, advanced backup

facilities, superior security characteristics and various automation capabilities.

PCs

Microcomputers and home computers were the first terms used to describe what we now

call Personal Computers (PC). Years ago the computer hierarchy had three classes:

mainframes, minicomputers and microcomputers. The term PC is widely used to describe 2

device capable of supporting the computational needs of one user at a time. Nowadays PCs

are inexpensive solutions that can run various software applications. Popular 0Ss for PCs

are MS Windows, MacOS and LINUX.

Laptops

The rapid change in working patterns and the increased need for mobility have favored the

popularity of mobile devices. Modern laptops are not a compromise in comparison to a PC.

Moreover, they have long-lasting batteries that can be used to support hours of computing.

Laptops, mobile workstations, desktop replacements, sublaptops, notebooks and

subnotebook are terms used to describe mobile PCs with different weights and dimensions,

as well as graphic-displays, processors, RAM, secondary storage and battery capabilities. It

is important to mention that most laptops include input devices like a camera and a

microphone and output devices like speakers. Touch-screens are now widely used as input

devices and facilitate tasks such as drawing and editing.

Tablets

A tablet is a mobile computer equipped with a touch-screen display which is used as both an

input and an output device. Tablet users can take advantage of the touchscreen to enter text

using the virtual keyboard or the built-in handwriting-recognition facility. The use of various

gestures completely replaces the need for a mouse, while finger and stylus pens are widely

used in all applications. i0S, Android and Windows are the major OS for tablets. Hybrid

tablets have a detachable keyboard and closely resemble laptops. Tablets are equipped with

sensors like fingerprint, three-axis gyro, GPS and accelerometers, front and rear cameras,

Bluetooth for connecting peripherals, Wi-Fi for networking and powerful batteries.

Specifications for high-end tablets include 2732x2048 pixels display, 12.9” screen, 128 GB

internal storage, 3 GB RAM, slot for 16 to 128 GB microSD (Secure Digital) memory card,

octa-core processor, 12.0 MP camera and 24-bit/192kHz sound. Various developers can

develop apps for tablets and distribute them online through application stores like Apple’s

App Store and Google’s Android Play/Store.

PDAs

Personal digital assistants (PDA), were used until 2010 as electronic agendas, calendars and

personal information systems. Nowadays smartphones offer all the capabilities once

provided by PDAs. Common OS for PDAS were Palm OS, BlackBerry OS and Windows CE.

Cell phones

A smartphone or smart phone is a mobile phone (portable

telephone) whose hardware components and software are

managed by a mobile operating system. Nowadays smartphones

combine features of PCs, PDAs, cameras, media players and GPS

navigation units. All smartphones can access the Internet, are

equipped with touchscreens that enable the user to interact

directly with what is displayed, can run third-party applications

and have photographic capabilities that approach those of mid-

level point-and-shoot cameras. They also support high-speed

mobile broadband through 4G LTE, Wi-Fi connection and

Bluetooth connection. They also feature RFID solutions, motion

sensors, a fingerprint sensor, accelerometer, gyro sensor,

proximity sensor, compass, barometer and heart rate monitor,

as well as mobile payment transactions and geotagging ' Eure&-8:Asmartphone

mechanisms. Modern smartphones use i0S, Windows and Android OSs. Various developers

can develop apps for smartphones and distribute them online through application stores like

Apple’s App Store and Google’s Android Play/Store. Specifications for high-end smartphones

include 1440x2560 pixel display, 64 GB internal storage, 4 GB RAM, slot for 16 to 128 GB

microSD (Secure Digital) memory card, octa-core processor and 24-bit/192kHz audio.

Digital cameras

A digital camera encodes images and videos

digitally and stores them in the attached

memory card for later reproduction. High-end

products have a 30.4 Megapixels sensor and are

equipped with an LCD viewfinder, as well as a

GPS sensor. They support various image formats,

such as JPEG and RAW, as well as video formats,

such as MP4. They can record 4K video and

connect to a computer system through a USB

interface or Wi-Fi connection. They may also

include HDMI output, analog stereo audio

output and analog video output (NTSC/PAL). All the signal processing and control functions
of a digital camera are performed by a dedicated specialized processor.

Figure 6.9: A digital camera

6.1.3 Limitation of resources

Exit skills. Students should be able to’:

Sometimes when a computer system is active the request for services exceeds the
availability of resources. Memory is a typical example of system resources. Every time one
opens an application the OS is reserving a particular amount of memory that the program
needs to operate. If a PC is equipped with 8 GB of RAM, the available memory to run various
applications is around 6 GB because the OS and various programs that load during the
startup process utilize a total of 2 GB. Although the OS will do its best to satisfy ones
requests, the launching of more and more applications will lead to an "Out of Memory™
message or a very slow computer.

In computer-generated imagery (CGl), rendering is the process of generating a 2D or 3D
graphic and exporting it to an image file. It also refers to the process of adding effects during
the video editing process, in order to generate a final product. The rendering process
involves complex mathematics and the solution of the rendering equation. This integral
equation must be solved by rendering software to produce realistic graphics. Although the
advances in personal computer resources allow an image to take less time to render than
before, state-of-the-art image quality needs specialized solutions, such as render farms.
These high performance computer systems are used by professionals to render computer
generated imagery.

A single core single processor system may not be able to perform demanding tasks or run
complex mathematical models efficiently. A multicore or a multiprocessor system may be
more efficient. A single processor system may have an IC (Integrated Circuit) with multiple
cores. In a multiprocessor system two or more ICs are mounted on the motherboard. Each

IC could have more than one core. A multiprocessor system is more expensive, needs

complex configuration and usually runs multiple programs faster, whereas a multicore

system usually runs a single program faster and is considered as the best choice for

everyday users. This, oversimplified, statement assumes that the comparison takes place

between ICs with the same characteristics and clock speeds. It is important to keep in mind

that in a multicore system, the main cache memory is shared by all the cores.

A computer system may have one or more standalone GPUs. A single GPU is what most

users opt for. It is an economical and powerful option that can serve as many as 4 different

monitors, play HD video, and provide gaming capabilities. If someone wants to play an

action game in a 4K resolution then using a single GPU may not allow the game to run

smoothly. However, multiple GPUs can generate disturbing noise and high temperatures,

especially under load. In most cases, two or three GPUs of the same type do not result in a

double or triple increase in the performance respectively.

6.1.4 Problems with insufficient resources

Exit skills. Students should be able to

| Describe the possible problems resulting from the limitations in the resources of a

 computer system.

Thirty years ago, few computers could process more than one program at a time. This single

program operation was the most common and the loading and running of each program

was supervised by a simple OS like MS-DOS. Computer system resources were scarce and it

took a long time to complete tasks that needed more than a single program to run in order

to be completed.

As computer systems evolved, a slightly more sophisticated and complex type of computer

operation appeared called batch processing. In batch processing some programs are

batched together and then executed as a group, without the need of any intervention from

the user. Only one program is actually running at a time, while the others are waiting for

their turn. When it completes, the next program in the queue runs, and so on, until all the

programs in the batch are run.

As computer systems evolved even more, and more than one programs could be loaded in

main memory at the same time, ready to execute, a new type of operation emerged, called

multiprogramming. In multiprogramming two or more programs may be loaded in the main

memory. However, only one program will actually be executed by the CPU at any one point

in time. All the other programs will be waiting for their turn. The idea behind

multiprogramming is to maximize the use of CPU time (i.e. CPU idle time should be

minimized). For example, if the currently running program is performing input/output tasks

(eg. waiting for input from the user or drawing an image on the screen) the CPU will be idle,

since it will not be needed. A multiprogramming OS will give control to one of the other

programs residing in the main memory and needs to execute, thus reducing CPU idle time.

Even with multiprogramming, if there a number of programs loaded in the main memory

and all are CPU intensive, without any idle time for I/O operations, the last program will

have to wait for all the other programs to finish, before executing. Another problem that

needs to be dealt with when there are multiple programs residing in main memory is

memory fragmentation as programs are moved from and to the memory. Unix, developed

by Bell Laboratories of AT&T, was one of the first OSs that supported multiprogramming. In

a multiprogramming time-sharing environment, a lot of different users share a computer

system simultaneously. This situation can cause numerous security problems, such as

stealing/copying another’s user programs/data or using system resources without proper

accounting. In any case, the degree of security in a multiprogramming system is less

compared to the security in a single-user dedicated system.

Further system development and evolutions introduced a new type of operation callea

multitasking. Multitasking is similar to multiprogramming with the subtle difference that

tasks or processes (instead of whole programs) are performed simultaneously and share 2

common resource, for example one CPU. Each task finishes; before another takes up the

CPU, as was the case in multiprogramming. However, tasks are a lot “smaller” than

programs and as such are completed very quickly. Both multiprogramming and multitasking

operating systems are Central Processing Unit time sharing systems. In older systems

multiprogramming allowed .one program as a whole to run until it was completed, while in

newer systems multitasking best manages the utilization of CPU resources with the use of

program fragments called processes. Since tasks are completed in a timely fashion, the

illusion of parallelism is achieved. That is, all programs running on a computer appear to be

operating at the same time to the user. What is happening however, is that small tasks, from

each program, are completed very quickly by the CPU, making the programs appear as =

they are all operating at the same time.

Multiprocessing refers to the hardware and means that a computer system has more than

one CPU cores. This might mean multiple CPU dies or even multiple cores in one or mor=

CPU dies. Since multiprocessing refers to hardware, whereas multiprogramming anz

multitasking refer to software, a system can be both multiprocessing, as well a=

multiprogramming or multitasking.

Multithreading is the ability of a program or an operating system to execute different paris

of a program, called threads, simultaneously. The program has to be designed by th=

programmer in such a way that all the threads can be executed at the same time withous

interfering with each other. It is important to mention that several threads of a single

process can share the CPU, in a single CPU system, or run in parallel in a multiprocessing or

multicore system. Multithreading is widely used in applications that encompass a GUI. For

example, in such an application, if a task requested by the user needed a long time =

complete (because it was a complex mathematical computation or a network call, etc.), the

GUI would be unresponsive (“freeze”) until the task was completed. Multithreading, on the

other hand, would allow the GUI of the application to be responsive and the user to have =

better experience.

Another advanced mode of operation is multi-access, where a lot of users can interact with

2 one computer system through their terminals. The computer system may execute a

number of programs and the connected users can interact with these programs. This mode

of operation, of a computer system, allows the simultaneous connection of a number of

terminals. Such a system must embrace the following functional characteristics: (a) multiline

communication capabilities that will support simultaneous dialogues with the remote

zerminals; (b) concurrent execution of various programs with the ability to instantly switch

from executing the program of one client to executing that of another; (c) ability to quickly

£ind and make data stored on the hard disks available; (d) ability to protect all data from

unauthorized access. Unix OS supports multi-access and provides the above mentioned

characteristics.

Role of the operating system

6.1.5 Role of the Operating System {0S}

Exit skills. Students should be able to':
LB aaassRR R el D O D

Explain the role of the operating system R e e LT el Lo g s T !

and hardware interfaces.

Operating Systems (0Ss) can be classified as single

user, multi-user, multiprocessing, multitasking and

multi-threading. Most OS are now written in C or

C++ while older OS were written in low level

languages. A few critical operations that are very

important for the performance of an OS are still

written in assembly. All 0Ss are collections of

software and belong to the system software. An OS

is a system, meaning that the collection of software

that form an OS collaborate towards a common goal.

Any computer system is a collection of hardware and

software resources which provide input, process and

output services. The OS is the core software that

coordinates all these resources, on top of which all

other software applications reside. The OS controls

the execution of all other software. For example, it

will locate where an application is saved on the HD,

calculate the amount of RAM needed for the

application to run, allocate the correct amount of

Gt

Figure 6.10: Different levels of a computer

RAM for the application, copy the application to the allocated RAM, etc.

Managing memory and processes

Usually, a computer’s RAM is small compared to its secondary storage. M=

management is the act of managing computer memory and every instruction tma

executed in the arithmetic and logic unit (ALU) was previously loaded from the RAM anz.

the hard drive directly. Thus, the RAM is a scarce resource that should be pre:

efficiently and carefully managed by the OS in order to achieve the best perfo

possible. Only vital data should be kept in the RAM; the rest should be kept in sec

memory.

Programs that quit should return the memory that they had been allocated while ru

The OS should guarantee that this will happen, because otherwise those resources wors ©

available to any other programs. This situation is rare and is called a memory leak.

resource leak. The OS should dynamically allocate portions of memory to applications

their request and also free them for reuse when no longer needed by the application. T

crucial since, in modern computer systems, a lot of processes are running at any one pa

time.

During the operation of any computer system, the OS should track the location o¢

programs within its RAM and convert the logical into actual physical addresses, wh=rs

those addresses are needed by a process. A logical address is a reference to a storec

and is used by the program that generated this reference, while a physical address =

actual address of one memory cell. Address binding is the process of mapping a ‘oz

address to a physical address. A program may be loaded in different physical addr=sss

while running, and the use of address binding helps to keep track of where the pro

located in RAM. Since the logical address is known, the physical address of a process ca=

be located. Using these techniques the OS keeps track of programs in memory.

Swapping is the general term of a mechanism in which a process or blocks of program

can be swapped temporarily out of RAM and into a hard disk, and then, later, broughz

into RAM to continue their execution.

Paging is the underlying mechanism of virtual memory implementation, which allows

modern OS to utilize the, much greater in size, secondary storage as if it was RAM. Trh= &

copies as much data as possible into RAM, and leaves the rest on the disk. When the 2

requests data from the disk, it exchanges a quota of data (called a page) in RAM w=s &

quota of data on the disk. This is extremely helpful when data to be loaded in RAM is gz

in size than the available RAM. The secondary storage used in this case is usually a hara

drive capable of providing direct access to these memory pages. Excessive page swaos

causes thrashing that results to poor system performance.

Multitasking systems use slicing to effectively manage all running programs. A slice o=

time-slice is the time allocated to each user in a multi-access system or to a program =

multitasking system. The OS uses an interrupt mechanism which suspends a process tha &

executed by the ALU and invokes a mechanism to identify the next process to be execu==

The interrupt handler is scheduled to allow the OS to switch between processes when ===

time-slices expire. The mechanism used to select the next process is called a scheduler

s run once, during every time-slice, to choose the next process to run. The collaboration

oetween the interrupt and the scheduler allows for the processor’s time to be shared

oetween a number of different processes and is a vital component of multitasking systems.

n a modern multitasking OS, the operating system can store and restore the state of a

orocess or thread, so that execution can be resumed from the same point at a later time.

The scheduler performs selections that satisfy the scheduling policy's priority constraint.

When a high priority takes over from the lower priority task currently running, it is known as

preemptive scheduling. When the scheduler selects a ceased lower priority task to resume,

=he task continues from the stored state.

2t any specific time, processes can be separated into two groups: those that are waiting for

nput or output and those that need to use the CPU. The processes that are waiting for input

or output do not need to use the CPU, allowing other processes to do so. When the

requested data becomes available, and thus the input or output has completed, an interrupt

s generated and the paused processes return to their executing phases and may use the

€EPU.

Managing peripherals

input and output devices vary in their characteristics, come from different vendors and

oresent different technical challenges. Their speed of communication also varies, even when

they belong to the same industry standard. For example, USB 1.0, released in 1996,

supported data rates of 1.5 Mbit/s to 12 Mbit/s and USB 1.1, released in 1998, fixed

problems identified in 1.0. USB 2.0, released in 2000, supported data rates of 280 Mbit/s,

while USB 3.0, released in 2008, supported data rates of 4 Gbit/s. Finally, USB 3.1, released

in 2013, supports data rates up to 10 Gbit/s. The OS uses a special program called a device

driver to handle all internal and external hardware, input and output peripherals and

storage devices. Each device connected to a computer system utilizes a device driver in

order to communicate with the OS. This piece of software acts like a bridge that facilitates

the communication between the particular piece of hardware and the operating system. A

device driver is coded by the product manufacturer and guides the OS as to how to use the

particular device. Manufacturers usually provide free up-to-date device drivers and most

device drivers are operating-system-specific. The use of device drivers is another example of

abstraction since the OS does not need to know the technical details about every piece of

hardware that needs to exchange data.

Managing hardware interfaces

The operating system hides the complexity of hardware resources from users while it also

manages the interaction of processors, memory, data storage and 1/0 devices. It acts like an

interface that handles "interrupts" generated by the 1/O controllers and shares /O between

programs using the CPU. This is also is another example of abstraction. The OS efficiently

manages low level hardware in a way that application software can take advantage of

installed hardware. For example, when typing a document, the word processor application

does not bother with the drivers of the keyboard or the video adapter used. That is an

example of abstraction. The OS multiplexes the hardware components for all application

software and hides all unnecessary details from the user and the application software.

Marager

Fle Adion View Help

@dimi0iEm @
v & KostasDell

> & Audio inputs and outputs
> 3 Batteries i
>) Bluetooth
~ B3 Computer

I ACPIx64-based PC |
Intel(R) Serial 10 DMA Controlier

v Diskdrives i
i JetFlash Transcend 12568 USB Device | DiverVerson: 10.0:10586.0 !
a Samsung SSD 850 EVO 50068 | Digtal Sgner crosclt Windows |

> I Display adapters § 5 3§ Firmware |
> b Human Interface Devices i To viow defods aboutthe diver fles. | | > =3 IDE ATAVATAP controflers {
> 3 Imaging devices Toupdao the diversoitwereforthisg.

Hicmsoft Corporation
> K3 Keyboards.

Fthe device fals after updating the Heversion: 10.0.10586.0 $h2_release 151029- > @ Miceand other pointing devices back tothe previously indaled dmf 5 : S = > B Monitors { 5 | Copight @ Microsoht Comoration. Al ighis resarved
> [Nebwork adapters i Disabies the selected davice.) Digtal Signer- Microsoft Windows > [Portable Devices
> 55 Print queues
> T Procewsors i | > B Software devices ! e T
> & Sound, video and game controllers | oK L;

k162272470 Semvie ControtManager 5 = Opensavedlag.. | Device Manager-Ssm | @ formaton 162212200 Senvice Control Marager 5 None 1P crte Customview. | v B Windows Logs B nformation OT-Jun-1622722 P UserPop. 20001 7o0s) hEs e | 6] Applicaion informtion Tdom- 162272200 by 201) |] Security Jinformation. TT-Jun-16 10157 PM, Sesvice Control Manager 7045 None l Clearlog.. { {1 etup | @ioformation TT-Jun-16 1016 PM Service Controt Manager ™5 None {]F Fiter Cument Log... | Epen 1 @ofonnation 16 10755 M. UsePop 20001 (0s) {1 properties i £ romardedbvents (1 tormation O7-Jun- 1510155 PM. UserPrp 200 Goos) | | B Apptcton and Services 9 | 3ot omation G 511371 e Gt ansger 705 None B | “-‘é“;h 1} Diformation OT-un-16 1238509 Kemal-General 16 None I sove i Events .. [A O-hun16 123724 P Kemel-Genersl 16 None o AmechaTeskTo s Log.. | Herdvarebventy
x View > | @ menepionr

@ nvek | Mo [l e , | cror i e o o A pro o GO o i CL510 = 5 | e | S ;
| Subseriptons 1 anflmsum;

= e TATORINYTED 51510 o e Loabin Using U9 g ot ot Unsiie S0 : T Attch Tk To This Event.. | (Unavaiable). This securty permission can be modified using the Comoonent Services dminirative ool s & Cony 5 | 1§ LogNsme: Sptem
3 SaveSelected Event.. Source: DisrbutedCOM logged Oramtsaserzem B raten Evene o015 Tk Cotegory: None . 3 i otem Enox Kepeords: Clasic

i Usen SYSTEM. Computer: KostasDell
i OpCode: Info.

Figure 6.12: Event viewer of Windows 10.

6.1.6 - 6.1.7 0S resource management techniques
Exit skills. Students should be able to:

The techniques of multitasking, virtual memory and paging have been discussed in the
previous section.

Scheduling

Most OSs have a special application called “Task Scheduler” that is used to create and

manage common tasks that the computer should carry out at specific times. These tasks

include virus scans, backups, defragmentation etc.

D Tekscheduler S
e Adion View Help

Tiggers ~
Uihenthe ks erested or mocified
Wihenthe taskis crested o mocifed

Wi the tesiis rested or mocified
Ao o of wy e
Aoy o of sy user § Iport Tk
ihen compte i dle | {8 Diplay Al Runing Tosks

» CresteTe

Vihen computer i de £ Enable At Tk History.
DPCODRapl.. Ready ATIZ3 A crery Seturdey of very week starting 02 Ape-16 e
O PCORetLa... Ready O event-Log: Applicaion,Source: PC-Doctor Launche, Event I: 1 =
e S e S e e e View » @ A

B Hep

 Autror, Moot Corporation i
enabled onty when the cache flex » End

& Disbie
Bt

5 Propeier
R velete

When rurming the task, use the following user account: g Hep
im

& Aun oniy when uses i logged on
R whether user s fogged on o ot
Do notstore psvord. The task willorly have acces o local resources

R with highest prvieges

 Hidden Configurefor. 3

Figure 6.13. The Task Scheduler of Windows 10

The process scheduler is part of the operating system and decides on the next tasks to be

admitted into the CPU and thus the next process to run. Operating systems may feature up

to three separate scheduler types (short-term, medium-term and long-term). The scheduling

criteria that affect the selection of the best scheduling algorithm for a particular situation

include CPU utilization, throughput, turnaround time, waiting time and response time. The

most common CPU scheduling algorithms are:

First-Come First-Serve Scheduling, FCFS

Shortest-Job-First Scheduling, SJF

Priority Scheduling

Round Robin Scheduling

Multilevel Queue Scheduling

Multilevel Feedback-Queue Scheduling U
U

ER
I

OB

I
s

Policies and account management

In many cases more than one user has access to a personal computer. Moreover, in a

corporate computer network, there could be thousands of people who have access to the

network's data. In all cases, an operating system is responsible for setting up accounts for

each user who will utilize the computer or network resources. A user account defines the

privileges and access rights of a particular user. A user name and a password is used to gain

legitimate access to a computer or a network and to prevent unauthorized access by people

who do not have the permission to use the services and the facilities.

& suton
5 X

3 Accounts
find a setting 2

x Your email and accounts

Require sign-in|

fyouvebeenaway. whl Please reenter your password
When PC wakes up frd Work access : We need to verify the password for your Microsoft account.

Family & other users
Hadsaebyy

Password
Syncyour settings kdim@haefgr

Char

account pd S -
Password.

Forgot my password

PIN

Create a PiN to use in p|
| P you sign in

Picture passwor

StnintoWindons

o -

Figure 6.14: User accounts settings of Windows 10

Interrupts

An interrupt is a signal from a device or from a program within the computer that causes the
OS to stop the current task and decide what to do next. Various interrupts are generated
and have different priorities. When a printer runs out of paper a “printer unavailable”
hardware interrupt will be triggered to inform users that the printer is not available for
printing. The multitasking principle, described in this chapter, is based on software
interrupts. In general a hardware interrupt occurs when an 1/0 operation has finished
performing a function, while a software interrupt occurs when a program requests various
services from the 0S.

i Task Manager

File Options View

Processes Performance App history Startup Users Details Services

6% 62% 1% 0%
Name CPU Memory Disk Network |

! Microsoft account 3.1% 568 MB 0 MB/s 0 Mbps

[8] Desktop Window Manager 1.1% 67.9 MB 0 MB/s 0 Mbps

[System and compressed memory 0.9% 0.1 MB 0.1 MB/s 0 Mbps

> g Task Manager 0.5% 19.5MB 0 MB/s 0 Mbps

[5] store 04% 404MB OMB/s OMbps
[®7 System interrupts 3 0.1% 0MB 0 MB/s 0 Mbps

afl WMI Provider Host 0% 244 MB 0 MB/s 0 Mbps

Figure 6.15: Various system interupts presented in the Task Manager (Windows 10)

Polling

Polling is the periodic checking of devices, by a central device to sample their status (i.e. see

what state they are in and identify whether they are still connected or want to exchange

data). The CPU periodically checks certain registers, actuators or sensors to see if some

request has been made. If, for example, a device is ready to transmit data, then polling will

identify this situation.

| Polling and interrupts: Polling is when one checks his/her smartphone periodically, to
1

. see if any notification has come up, while interrupt is when a notification arrives to

. ones smartphone and the smartphone vibrates to inform him/her.

6.1.8 Dedicated OS for a device

Exit skills. Students should be able to': -

There are two general approaches when developing a dedicated OS for a device:

e The first approach is to take an existing OS and adapt it for the particular device. The

advantage of this approach is that the end user deals with a familiar interface. The

disadvantage is that the final product will not be optimized for this particular

purpose. For example, if one plans to develop an OS for a mobile device, using an

existing OS that was developed for desktop computers, as its base, this may lead to

various obstacles since the mobile device may not have all the resources and

capabilities of a desktop computer.

e The second is to design an OS that will fit the particular needs of the device exactly.

This.approach would lead to an OS optimized for this particular device and purpose.

For example, when developing an OS for an embedded system, characteristics such

as small size (in bytes), quick responsiveness to external interrupts, real-time

scheduling policy and fast, lightweight, processes are very important and should be

taken into consideration. When developing an OS for a cell phone, considerations

about the efficient use of the battery and RAM, as well as the small touchscreen size

and the overall small device size should be made.

Examples of dedicated OSs:

Android is a the name of the mobile Operating System currently developed and owned by

Google. It is based on the Linux kernel, and designed mainly for touchscreen mobile devices,

such as tablets and smartphones. Android is one of the best-selling OSs for handheld

devices, and has the largest installed base. It is written in C, C++ and Java, and offers users

access to Google’s own services like Google Search, Maps, Translate, YouTube and Gmail.

Figure 6.16: Android Nougat replica in front of Google office on June 30, 2016.

Symbian is a mobile OS designed for smartphones. It was written in C++ and original’y

developed as a closed-source OS for PDAs in 1998 by Symbian Ltd. Symbian was used &+

many mobile phone brands, like Samsung, Sony Ericsson, and Nokia, but is defunct as of Mzy

2014.

TinyOS is a free and open-source, embedded, component-based, OS and platform for low-

power wireless devices, such as those used in wireless sensor networks and home

automation. It is written in the nesC programming language.

Tizen is an OS based on the Linux kernel and the GNU C Library implementing the Linux A=

It is written in C, C++ and HTML, and is a project within the Linux Foundation. The Technic=

Steering Group that governs this project include Samsung and Intel. It works ==
smartphones, PCs, cameras, tablets, in-vehicle infotainment devices, smart Tu:z

smartwatches, Blu-ray players, printers, refrigerators, air conditioners, etc. Its purpose is ==

offer a consistent user experience across devices and promote smart home solutions.

Embedded Configurable Operating System (eCos) is a free and open-source, real-time, 0%
that was engineered to serve embedded systems and applications which need only ome
process with multiple threads. It is easily customizable to specific application specificazioms
of run-time performance and hardware requirements. It is written in C and C++.

L o

6.1.9 0S and complexity hiding

Exit skills. Students should be able to':

Outline how an operating system hides the complexity of the hardware from users

and applications.

As we have already seen earlier in this chapter the OS hides the complexity of the hardware

from the users. This is a typical example of abstraction. The use of device drivers and the

management of hardware resources are not the only examples of abstraction related to OS

function.

Drive letters

In the following picture, drive C is a SSHD and D is a USB device. So letters C and D

correspond to real devices. Desktop, documents, downloads, 101__05, BOOK etc. on the

other hand refer to folders (locations). The user uses the icons to select the desired folder

without bothering with the complexity that lies beneath this simple selection (Figure 6.17).

B3| s iThsPC

Computer View

c v 4 O3 ThisPC

s+ Quickaccess S v Folders (6)
123 Desktop i = i E :]

o - "R P E =
3 Downloads Desktop Documents Downloads Music Pictures Videos

fst] Pictures Devices and drives {2)

o

it ook S
| Python27 Windows DIMITRIOU

S to print @ ©

¢& OneDrive

Figure 6.17: File explorer of Windows 10.

Virtual memory

A user of Microsoft’s Windows 10 has the capability to alter the settings of virtual memory.

After that, the OS will handle the page file, when required, in the best possible manner, in

order to maximize the performance of the system. Once again the OS hides this complexity.

1> Control Panel > Syster and Security s System

| Virtszal Memory X

8 [Aomatically manage paging file size for all drives: .
Paging file size for each drive Ao | Diive [volumeLaber] Paging File Sim (ME) e { Choose how to sllocste processor resources. s

J Adjust for best performance of:

,(% @ Programs O Batkground services,

Selected drive: € Windows) | ot ety Space svailable: 260385 B ""’*S
A paging file i the hard disk that Windows di ® Custorn e it S s Iniial e (ME): | Total paging tie sie for il dives: e

Waderasen size (ME): | 1024 |
i

OSysemameaged e . &
OMopagingie B

e {
Total paging file size for all drives: |
Wi sllows: 16 ME |
Recomamendest: 1O MB |

o Cmelyallecmed H1ME Lt
ense Terny

Figure 6.18: Use of virtual memory in Windows 10

Input devices

Various input devices are controlled by the OS using their device drivers. The user simply

uses these devices and can change their settings without knowing any details about how

they operate at a hardware level.

v o3 Imaging devices
s Inteqrated Webcam

v Keyboards

Standard PS/2 Keyboard
v @ Wice znd cther pointing devices

@ Dt Youchpad
@ Wicrosoft Arc Mouse (Mouse and Keyboard Center)
@ whicrosoft PS72 Mouse

Figure 6.19: Screenshot showing various input devices in the device manager

The Java virtual machine

The Java architecture allows code to run on any machine on which the Java Virtual Machine
interpreter has been installed. In Java architecture, all details of making the code function on
a specific hardware platform are handled by the Java Virtual Machine (JVM). This is another
example of abstraction.

End of chapter example questions with answers

Example 25

Question

What are the two main categories of software?

Answer

Application and system software.

Example 26

Question

State some main tasks of the operating system.

Answer

recognizing input from the keyboard,

sending output to the display,

managing files and directories on the secondary memory,

controlling peripheral devices such as disk drives and printers,
warranting that different applications running at the same time do not interfere

with each other and

providing a platform on top of which application software can function.

Example 27

Question

State two types of operating system strategies?

Answer

Batch and timesharing.

Example 28

Question

‘What is a resource in a computer system?

Answer

Aresource is anything that can be allocated and managed by a computer system.

Example 29

Question

State some examples of resources.

Answer

CPUs, input/output devices and RAM.

Example 30

Question

Explain why the problem of resource allocation is complex?

Answer

Modern computers run several applications simultaneously. All these applications need to
compete for the limited computer resources available, thus producing a complex problem of
resource allocation.

Example 31

Question

Describe an example of abstraction relating to resource allocation.

Answer

When allocating resources, all details of how the hardware operates are hidden. The
programmer writes an application without bothering with all these details.

Example 32

Question

What is the difference between a program and a process?

Answer

Although the terms are used interchangeably a process is basically a program in execution.

Example 33

Question

What is the process life cycle?

Answer

When a process executes, it passes through start, ready state, waiting state, running state

and terminated.

Example 34

Question

Explain what is a running process, a ready process and a waiting process.

Answer .

The running state means that a process has all the resources it needs for execution and the

operating system has given it permission to use the processor and execute its instructions.

The ready state means a process has all the resources it needs, but is waiting to be assigned

10 a processor.

The waiting state means a process is waiting for a resource, such as input from the user or a

file to become available.

Example 35

Question

What is deadlock?

Answer

Deadlock is a situation that can arise when two processes hold resources and request other

resources, from each other, at the same time. Process A holds a resource that process B

wants, while process A requests a resource that process B holds. The result is that neither

can continue.

Example 36

Question

What is fragmentation?

Answer

Fragmentation is a phenomenon or state in which memory is used inefficiently and is broken

up in small pieces. This leads to files and programs being divided up and stored in various

areas throughout the memory, which results to slower computer systems, when these files

and programs need to be accessed. This happens because processes, which occupy different

amounts of memory, are constantly allocated and deallocated to and from the memory.

Example 37

Question

Explain how a PC can run processes which are larger than the available RAM?

Answer

The system can use secondary storage as if it was primary memory. This is known as virtual memory.

Example 38

Question

What is the difference between mainframe computers and supercomputers?

Answer

A supercomputer has as a dedicated purpose to run demanding programs (e.g. scientific research or engineering models). It holds great processing power in order to execute a program as quickly as possible. It always runs at maximum performance, solving a particular problem. Its performance is measured in Floating Point Operations per Second (FLOPS).

A mainframe typically runs multiple programs concurrently requested by many concurrent users. It processes huge amounts of external data and its performance is measured in Millions of Instructions per Second (MIPS).

Example 39

Question

What is the file manager of an 0S?

Answer

The file manager is responsible for the management and maintenance of the secondary memory (e.g.: USBs, SSHDs, hard disks). It provides:

e folders and directories to organize files,
¢ commands to create and delete folders and directories,
® commands to read and write to a file,
® commands to set protection to a file,
® commands to set and change the ownership of a file or folder,
® commands to delete a file.

Example 40

Question

Describe the difference between physical primary memory, virtual memory, and logical

memory.

Answer

Physical primary memory is the memory available by a computer to execute processes.

Virtual memory is a technique through which applications that require space larger than the

available RAM can be executed by using disk memory as if it was primary memory. Logical

memory is an abstraction of the computer’s different types of memory that facilitates

programming.

Example 41

Question

Why is RAM not suitable for permanent program storage or backup purposes?

Answer

RAM is a volatile memory, while disk drives can store data permanently.

Example 42

Question

State one advantage of multi-core processing over multi-processor systems.

Answer

Communication between processors on the same chip is faster than processors on separate

chips.

Example 43

Question

Why is a high level language suitable to implement an operating system?

Answer

The code can be written faster and is easier to understand and maintain.

Chapter References

A%

2.

10.

1%

12

International Baccalaureate Organization. (2012). IBDP Computer Science Guide.
IBM sets new tape storage record. (13, April, 2015). In New Atlas. Retrieved 19:05 June 13, 2016, from http://www.gizmag.com/ibm—tape—storage»record/36931/
The digital revolution demands a better server. |n IBM. Retrieved 20:05, June 14 2016, from http://www—03.ibm.com/systems/z/hardware/zl3.html
Arnheim, R. (1969). Visual Thinking. University of California Press, USA.
Bishop, P. (1987). Computer science. Nelson. Australia.
Bradley, R. (1999). Understanding computer science for advanced level. Nelson
Thores, UK.

Brookshear, J. (2012). Computer science an overview. Addison-Wesley. USA.
Dale, N. and J. Lewis. (2013). Computer science illuminated. Jones & Barlett
Learning, UK.

Sanders, D. (1988). Computers today. McGraw-Hill, Singapore.
Silver, G. & Myrna Silver. (1993). Computers and information processing. HarperCollins, USA.

Willis, N. & John Kerridge. (1983). Introduction to computer architecture. Pitman Publishing, UK.

Wise, H. (1981). Computer Architecture. Blackie, UK.

,

”

»

Chapter 3
TOPIC 7 — Control

Topic 7 — Controlt

7.1 Control

Centralized control systems

7.1.1 A range of control systems

51 skllls Students should be able to"

Discuss a range of control systems

A control system? is one or more devices that guide other devices or systems. This allows for
the completion of various tasks in an automatic manner, without any human intervention.
Control systems are set up once and can then perform the actions that they have been
programmed to do in an automatic manner, relieving humans from repetitive and mundane
tasks, as well as increasing productivity and efficiency. Control systems may include sensors
to gain feedback from the environment and motors to control any actuators in an
appropriate manner.

An example of a control system is

contained in the automatic doors that

can be found in various locations, such as

supermarkets. Instead of humans

manually having to open and close these

doors, a motion sensor is located at the

top of the automatic doors, which allows

the control system to become aware of

any motion. The sensor may use infrared

: or microwave signals that bounce off of
Image 7.1: Automatic doors objects to determine motion. After

receiving feedback from the
environment, the sensor forwards its signal to a microprocessor and allows the control
system to operate its actuators to open the doors only when motion is detected.
Furthermore, more advanced automatic doors include photocell sensors that can tell if

LI

lnternatlonal Baccalaureate Organization. (2012). IBDP Computer Science Guide.
% Control System. (12, May 2016). In Wikipedia, The Free Encyclopedia. Retrieved 19:05, May 13, 2016,
from https://en.wikipedia.org/wiki/Control _system

1)

someone is at the door, so that the doors do not close on them. This results in a control
system that is very convenient, as well as efficient, when one considers that doors cannot

now be left open accidentally, which may be costly when a heating or air-conditioning
system is operating. Furthermore, automatic doors allow access to both the elderly and the
disabled, since both might find it difficult to open or close a manual door.

Control systems are mostly input, process, output systems. That means that an input is

provided to the system, which is processed by some algorithm, and an action is performed.

The results of the action can then be measured by the control system (through the use of
sensors) and feedback can be provided as input. The control system can then act upon the

new input and the cycle continues as seen in Figure 7.1.

i

T rer S e ——
" Feedback

Input —

Figure 7.1: Control System

There are some circumstances however where an action might need to take place while the

control system is performing some other action. For example, when a second person

approaches an automatic door while it is closing, a signal must be sent to the control system

to re-open the doors. In this situation the signal sent to the control system is known as an

interrupt. An interrupt is a signal sent to the control system indicating that the system needs

to attend to the specific signal immediately.

A number of control systems are considered below. All of them use computer systems in
order to operate and so depict the many possibilities for control systems with developments

in computer systems.

e Heating system: In any such

control system, be it in a car, a

house or any other place, an

initial temperature is given as

input by the user (eg. 24°C). That

input signifies the ideal value of

the output and the goal of the

control system. That is, the

control system will aim to reach

the value provided by the user.

Sensors allow the control system

to measure the temperature of the environment and determine any actions that =

might need to perform, in order to reach the desired temperature. For examp's.

given an actual temperature of 18°C (as input from the sensors) and a desira=

temperature of 24°C (as input from the user), the control system would turn on e

heater until the input from the temperature sensors was equal to the desired us=r

temperature. At that point, the heater would turn off and would turn on again onn

Image 7.2: Smart heating system

when the actual temperature falls below the desired temperature. Having such a

control system allows for the conservation of energy and is more efficient than

turning a heating system on and off manually. This is because the automatic system

would reach the desired temperature once and then turn on to compensate for

even a small drop in the desired temperature. On the other hand, in a manual

system, since there would not usually be a user holding a thermometer and turning

the system on and off, every time the temperature fell or rose above the desired

temperature, the energy wasted would be greater. Furthermore, newer “smart”®

heating systems also have the potential to connect to the Internet, allowing the user

to operate them from afar. For example, one could turn on the heating system of

his/her house as one leaves work, so that the temperature is ideal when the user

arrives home.

Taxi meters: Initially, taxi meters were

mechanical, bulky and made a

characteristic ticking sound. Through- s

out the years, and through the use of _ : PRI A BT

computer-operated control systems,

taximeters have improved, preventing

fraud as well as providing a number of

helpful features. For example, receipts

are automatically issued when a fare is

completed. Seat sensors detect the

presence of passengers in order to

prevent passenger journeys that do

not operate the taximeter. Credit

cards are supported, as well as radio

communication and GPS systems, so

to assist drivers, provide security, and

better calculate distance. Taxi meters

have become more efficient, less

error-prone, and automatic, relieving Image 7.3: Old and new taxi meters

the driver from hassles that could

distract him/her from driving.

Elevators: Primitive elevators date back to ancient times and were notoriously

dangerous and mostly used to move objects, instead of people. As engineering

improved, so did elevator technology.

3 smart thermostat. (19, April 2016). In Wikipedia, The Free Encyclopedia. Retrieved 19:25, May 13,

2016, https://en.wikipedia.org/wiki/Smart_thermostat

Developments in computer systems

also played a significant role and

many modern elevators are

controlled by computer operated

control systems. An elevator control

system takes in a number of sensor

readings as well as the desired

destination, in order to turn a winch

motor with the correct number of

revolutions so that the elevator car

reaches its destination. The system

needs to know the initial and the

Image 7.4: Elevator
desired destinations, as well as the

location of each floor. The system

reads the desired destination from the user and uses sensors to detect the current

location, as well as the location of each floor. In many systems, a load (weight)

sensor may also exist that tells the control system how full the car is, so that the

computer system in control may use this information accordingly (ex. not stop to

take more passengers without unloading some current passengers). Finally,

elevators also include automatic doors that open and close only when the elevator

car is at specific floors. They also use motion sensors, as discussed before, to

prevent doors from closing on people entering or exiting the car. Many elevators

include a stop button, that stops the elevator car from moving in emergency

situations (for example, when a dress is caught between the elevator doors). When

pressed, this button sends an interrupt signal to the processor of the control system,

requesting its immediate attention, and stopping the car. As such, even though

elevators are control systems that are being used every day, efficiently and securely,

a number of inputs from sensors and complex algorithms are constantly executed by

control systems to make this possible.

Washing machines: The first washing

machines date back to the mid 18"

century, when manually rotating

drum washers were first introduced.

Washing machines with electro-

mechanical timers appeared in the

mid 20" century, making automatic

washing possible. In the late 20%

century, washing machines with

control systems driven by computer

systems were first introduced. In

Image 7.5: Washing machine

modern washing machines, sensors are used to determine and control the load size,

water level, temperature, as well as the user interface. All these sensors allow for a

finely-tuned washing cycle that better suits the needs of the clothes, as well as take

into account the environment by consuming less electricity and water. Furthermore,

modern washing machines are safer, since the door is controlled by a computer

system that locks it during operation, avoiding accidents. If the door is opened

before the washing machine has finished, or if the stop button is pressed, an

interrupt signal is sent to the processor of the control system, requesting its

immediate attention, and stopping the washing machine.

Process control: Process control

refers to the control of one or more

variables (such as temperature) in a

system. It strives to maintain the

output of a specific process within a

desired range. Open and closed loop

(feedback) controllers exist. An

example of an open loop controller

is a tank with a manual valve that

controls the heat dissipated by a coil

used to heat the liquid in the tank. In

this scenario, there is no feedback as

Image 7.6: Tank with temperature gauge

to the temperature of the liquid at any one point in time. Only if the relationship

between the heat dissipated by the coil and the temperature increase of the liquid is

known, can one be certain of the liquid’s temperature. On the other hand, in a

closed loop (feedback) controller, the actual temperature of the liquid is detected,

using temperature sensors, and the coil temperature is adjusted to achieve the

desired liquid temperature. In this example, the valve can either be an on/off valve

or a variable one. With an on/off valve the valve is turned on until the desired liquid

temperature was reached, then turned off, and on again after the temperature

dropped below the desired temperature. With a variable valve, the heat through the

coil is proportional to the difference between the current and the desired liquid

temperatures. The coil initially has a higher temperature, that slowly lowers, as the

liquid temperature reached the desired temperature. Developments in computer

systems allow for the automatic adjustments of the valve in order to achieve the

desired temperature, with minimal or no human interaction. If an error happened

with the valve so that it did not work as expected (for example, it did not turn off

and the desired liquid temperature was exceeded by an undesirable amount), an

interrupt could be sent to the processor, indicating that the processor would need to

bring the system to a hold immediately.

Device drivers: Device drivers are computer programs used to control a computer

device of any kind, from keyboards and printers to graphics and sound cards. These

computer programs allow operating systems (OS) and other programs to access the

devices with a layer of abstraction (i.e. without needing to know how the actual

devices are used). The computer bus usually connects the drivers with the devices,

allowing the drivers to send commands and receive data. Since drivers are

developed specifically for each device, they are hardware-dependent, as well as

operating-system specific, so that they are as efficient as possible.

Domestic robots: Domestic robots using

computer guided control systems are already

appearing in households. Vacuum, pool and

gutter cleaning robots are examples of

autonomous domestic robots that one might

come in contact with in everyday houses. A

number of sensors are packed within these

robots to provide “intelligent” behavior. For

example, vacuum cleaning robots use a suite

of sensors to map and find their way around

rooms that may include clutter and

furniture. Using various cameras they can

create house maps, using landmarks, and

know their current position as well as

previous locations. Furthermore, they can

return to their charging base whenever

necessary, and complete the cleaning

afterwards. Sensors can also detect the Image 7.7: Cleaning robot

material on which the vacuum is currently on

and perform appropriate kinds of cleaning. All these possibilities would not be

available without closed-loop computer-controlled systems.

GPS systems: Every day millions of

people use GPS systems to find their

way around cities, mountains or

even the sea. Whether used to find

a new café or guide a missile, GPS

systems are required to work

efficiently, precisely and with near

100% availability (no down time).

The GPS system is a large, complex,

computer controlled system that
includes both hardware and Image 7.8: GPS satellite system

software elements and needs

constant maintenance and support to work in such an effective manner as it does. It

uses around 30 satellites in orbit around the Earth, as well as a number of extra

satellites that are “fail-safes” (if one of the satellites fails, one of the extra satellites

will take its place until the first one is fixed). These solar-powered satellites circle the

Earth twice per day. A GPS receiver allows a user to know exactly where he/she is on

Earth. It includes a sensor that locates four or more of the GPS satellites, figures out

its distance to each one, calculates the time difference between the satelites and

uses a mathematical principle called trilateration to deduce its location.

Furthermore, modern GPS systems also receive input from their users, pinpointing

their desired destinations, as well as map data that may be updated through

software updates.

e Traffic lights: Traffic lights play a key role in road safety. They manage traffic,
prevent accidents and allow pedestrians to cross the roads without jeopardizing
their lives. Traffic lights are usually control systems operated by computer systems
and can be either “fixed time” or “dynamic control”.

o Fixed time: As the name suggests,

fixed time traffic lights are open

loop control systems, in that they

do not receive any feedback from

the environment in order to alter

their performance. They are

configured to change color after a

given period of time and they do

so repeatedly. Fixed time traffic

lights can be implemented with an

electro-mechanical signal control-

ler and as such does not neces-
sarily need a computer system.

o Dynamic control: Using a closed

loop control system to provide

feedback on the amount of traffic

passing by, dynamic control traffic

lights can adapt their settings
appropriately, following some algorithm. These kinds of traffic lights are
operated through computer systems and would not be available otherwise.
They can use one of the two different types of sensors to detect traffic
conditions:

Image 7.9: Traffic light with sensor

either embedded into the surface of the road or mounted on the traffic light
itself (or some other high position). The sensors that are embedded into the
surface of the road have the ability to sense when a car passes over it.
Mounted sensors are less expensive and can provide the same feedback,
including real-time photos or video.

7.1.2 The uses of microprocessors and sensor input in control systems

Exit skills. Students should be able to*:

| These should be ri elated to the examples suggested above.

Today, most modern control systems use microprocessors in order to efficiently and
effectively read sensor input, process it according to an algorithm, and finally perform some
action(s).

A microprocessor, as its name suggests, is a “small” processor, that contains most, or all, of a
central processing unit (CPU) functions on a single chip or integrated circuit (IC). Like a CPU,
a microprocessor performs arithmetic and logic operations, as well as any other data

operations necessary, through the use of registers. This is described in detail in Topic 2 —

Computer Organization in the Core Computer Science for the IB Diploma Program book”.

Therefore, it is a programmable, input-process-output device that also includes some

internal memory.

Various types of microprocessors exist, all of which have been developed with some specific

purpose in mind:

e General purpose: Capable of running a wide range of different programs and usually

integrated into a larger system. The CPU found in a desktop computer is a general

purpose microprocessor. Desktop computers also include various peripheral devices,

as well as external memory, all of which the microprocessor needs to interact with.

e Embedded controller or microcontroller: Microcontrollers are usually stand-alone

chips that may include the main elements of a larger system, such as RAM and ROM,

although smaller in capacity. These controllers are designed to perform some

precise task(s) and do not need, or cannot include, a whole computer system.

Microcontrollers may be found in most of the control systems described in section

7.1.1. Automatic doors, heating systems, taxi meters, elevators, washing machines,

domestic robots, GPS systems and traffic lights, all use microcontrollers to function

in an efficient and timely manner. Microcontrollers, in general, need less power to

function and are smaller in size, compared to desktop computers. They can be

integrated into smaller, lower powered electronic devices.

e Graphics processing unit (GPU): Computer graphics have become so detailed and

realistic in recent decades that an additional, special kind of microprocessor, is

included in most computer systems to handle them. This type of microprocessor is

known as the GPU and includes hardware to allow for faster handling of graphics

related mathematics (such as matrix multiplication and vector arithmetic). GPUs are

responsible for calculating and rendering polygons and pixels on the screen.

Microprocessors improve control systems in a number of ways. First of all, they can

process input data much faster than a human ever could and as such they can react to

changes in the input quickly. Control systems that depend on microprocessors are

automated and as such are error-free compared to manual or mechanical systems.

Furthermore, they can operate throughout the year with little to no off-time (down

time) and in conditions that are harsh or dangerous for humans.

Of course, since embedded microprocessors are pre-programmed systems that follow

some specific algorithms, they would probably not be able to operate in the most

effective way or at all (in an unexpected event). Moreover, as microprocessors need

power to operate, the system would not be able to function if there was a power

shortage.

* Dimitriou K. Hatzitaskos M. (2015). Core Computer Science for the IB Diploma Program. Athens:

Express Publishing. More information at: https://www.expresspublishing.co.uk/gr/en/content/core-

computer-science-ib-diploma-program

In order for microprocessors to perform any processing, they need to receive input. For

that to be accomplished sensor input is needed. A sensor converts continuous physical

(analogue) quantities (such as speed, temperature, humidity, pressure, etc.) into

discrete digital signals using an analogue-to-digital converter (ADC). These signals can

then be read as input by microprocessors. The input is processed, according to some

algorithm(s), and output is returned.

Although a wide variety of sensors exist’, all of which share a number of common

properties determining their quality:

® Accuracy: Determines whether the measurement of the physical quantity and

therefore the final delivered digital signal is accurate (for example, a

temperature of 18°C should not be measured as 19°C).

® Range: Determines the acceptable range of the physical quantity within which

the sensor may acquire readings (for example, a temperature sensor might be

able to accurately operate between -30°C to 60°C, bqt not above or below those

temperatures).

® Resolution: Determines the smallest increment that the sensor may detect (for

example, one temperature sensor might be able to determine increments of 1°C

accurately, measuring whether the temperature is 17°C or 18°C, while another

might be able to determine increments of 0.1°C accurately, measuring whether

the temperature is 17.0°C or 17.1°C.

Sensors should also have two more characteristics, without which their readings would be

useless. Firstly, sensors should be insensitive to any other physical conditions present that
could influence the reading. For example, when measuring a temperature, the measurement

should not be affected by wind. Secondly, the sensors should not influence the measured
property in any way. In our temperature-measuring example, the sensor should not
dissipate heat into the environment and influence the temperature around the sensor.

7.1.3 Different input devices for the collection of data in specified situations

Exit skills. Students should be able to

Scenarlos will be based on famnhar situations to students.

 As described in the previous section, sensors are usually an integral part of control systems
and act as input devices. A growing list of available sensors exists® that can measure
anything from density to heat and motion to magnetic fluctuations. Sensors sense a physical
property and then transform it into an electrical signal.

 ® List of sensors. (19, April 2016). In Wikipedia, The Free Encyclopedia. Retrieved 19:30, May 13, 2016,
https://en.wikipedia.org/wiki/List_of_sensors

Useful Information: An Analogue to Digital Converter or ADC is used by every system

that uses sensors to convert continuous analogue data to discrete digital signals

handled by a microprocessor. ADCs cannot read and convert all the data that is

acquired by the sensors, but rather convert analogue data from sensors every few

milliseconds (depending on the sensor). This way, the data converted by the ADCs and

handled by the microprocessor is actually a sample (a part) of the actual physical

quantity being measured. Depending on how frequently the sampling is performed by

the ADCs, a lot of information might be lost.

The main sensor categories are discussed below. This list is non-exhaustive and more

categories are available®. Even in the categories presented, a large number of different

sensors usually exist.

Sensor types may be:

e Sound: Sound sensors, as the name suggests, detect sound waves and are widely

used in microphones.

e Motion: Motion sensors detect moving objects. They are widely used in

security/alarm systems, as well as automated lighting control, so that the lights are

only on when necessary to conserve energy.

e Vibration: Vibration sensors detect vibrations and are placed on surfaces that can

vibrate. They are widely used in security/alarm systems (placed on windows), as well

as acoustic musical instruments (instead of microphones).

e Optical/lmage: A wide variety of optical sensors exist, depending on the physical

quantity measured. Two widely-used optical sensors are the following:

o Active pixel sensor (APS): Used in almost all digital cameras, they contain

an array of pixel sensors that can imprint light.

o Infrared (IR): Used to sense invisible radiant energy with longer wavelengths

than those of visible light. Widely used in security/alarm systems to detect

motion at night, where visibility is low or non-existent.

e Pressure: Pressure sensors detect pressure. They are used in a variety of settings,

including touch-screen devices, as well as the automotive industry (they regulate the

engine power according to the pressure on the pedals) and others.

e Temperature: Temperature sensors detect temperature. They are widely used

within thermostats to control the temperature of a given setting.

e Proximity: Proximity sensors can detect the presence of nearby objects without any

physical contact. They are widely used in cars to help drivers reverse or park.

7.1.4 The relationship between a sensor, the processor and an output transducer
Exit skills. Students should be able to':

Describe the relationship between a sensor, the process and an output transducer.

Technical hardware details are not expected.

In the previous chapter, we learnt how a sensor senses continuous, physical (analogue)

quantities (such as speed, temperature, humidity, pressure, etc.) as analogue signals. It then

transforms these analogue signals into discrete, digital ones using an analogue-to-digital

converter (ADC). These signals can then be read as input by processors. The input is

processed according to some algorithm(s), and output is delivered.

A processor performs arithmetical and logical operations and is the core element of any

computer system. It receives input, in electrical form, from a number of sensors (from

sensors on a tracking device, such as a mouse, to motion sensors above automatic doors)

and performs some sort of output (from moving a mouse cursor to opening doors).

In the process of sensing physical quantities, using sensors, and transforming them into

analogue signals, a conversion takes place. The device that converts one form of energy to

another is called a transducer. Transducers, in computer systems, are responsible for

converting physical quantities (such as speed, temperature, humidity, pressure, etc.) into

electrical signals, as well as vice versa. The conversion process from one form of energy to

another is called transduction.

Sensors can be categorized as transducers, as they sense a physical quantity and transform it

into another form of energy (typically an electric signal). However, other devices (apart from

sensors) can be categorized as transducers. The most common of these are called actuators

and are used during the output. Actuators are the devices responsible for moving some kind

of mechanism. They are transducers in that they receive some form of energy (usually

electric current) and convert it into motion. Control systems use actuators to perform some

actions in an environment (for example, a mechanical motor in an automatic door is an

actuator that receives electric current and converts that form of energy into kinetic energy

so that the motor moves and the doors open).

Input Signal ' Transducer § G {

(Sensor) | ‘ pr=s! B LI
Physical | ‘ (ex. motion)
quantity

Fransducer Output

ADC: Electronic DAC: Electronic

signal signal

Figure 7.2: Input, process, output and transducers

Figure 7.2 depicts how a control system that uses a processor works as an input, process,

and output device. An input signal is recorded by a sensor, which transforms the physical

quantity into an electrical signal. Since it converts one form of energy to another, the sensor

is a transducer. The electrical signal is further converted into an electronic signal, using an

analogue-to-digital converter (ADC), so that it may be processed by the processor. After the

processor runs any necessary algorithm(s) on the input data it outputs an electronic signal.

That output is converted into an electrical signal, using a digital-to-analogue converter

(DAC), so that it may be used as input to an actuator. The actuator will convert the electrical

signal into motion. Since the actuator converts one form of energy to another, it is a

transducer.

7.1.5 The role of feedback in ontrol system
Exit skills. Students should be able to"

| Describe the role of feedback in a control system.

| LINK Connecting computational thinking and program design.

Feedback was discussed in section 7.1.1 and described in Figure 7.1. Feedback refers to the

process where information about the result of an output, from a control system, is used as

part of the new input to the control system in order to determine the best course of action

for the next output. Feedback is a loop as shown in Figure 7.1.

Feedback is essential to control systems that need to react to their environment and its

changes. For example, as discussed in section 7.1.1, there can be two kinds of traffic lights,

fixed time and dynamic control. Fixed time traffic lights do not take the environment into

account and just change color after a pre-programmed amount of time. On the other hand,

dynamic control traffic lights use sensors to take the environment into account every time

the lights change color. Imagine the following scenario: A dynamic control traffic light uses a

sensor to identify when no cars are near and changes the car lights from green to red, so

that the pedestrians can pass. This action is the output. The traffic light then receives

feedback from this action (a line of cars starts forming) and uses that feedback as input in

order to turn the car lights green again when a long line has been formed. The input first

affected the output (no cars, so the car lights turned red), the output affected the input (a

line formed), and the new input affected the output (the car lights turned green). After a

while, the output would affect the input again. The feedback keeps the system in a stable,

working state avoiding long queues on the road and helping pedestrians cross safely.

Another example of how important feedback is in a control system, and how it keeps the

system stable, was described in section 7.1.1, during the discussion about process control.

7.1.6 Social impacts and ethical considerations associated with the use of

embedded systems
Exit skills. Students should be able to:

i S/E For example, tagging prisoners, surveillance, CCTV, improved safety systems.

e Electronic tagging (tagging prisoners)® ’: Offenders that have been found guilty of

minor offences, inmates that are entitled to leave time (vacation time away from the

correctional center), or individuals under house arrest may be “tagged” with the use

of electronic monitoring devices.

Overcrowding of correctional facilities impacts their ability to provide effective

rehabilitation. Minor offences can be efficiently dealt with using prisoner tagging.

Each individual wears a bracelet or anklet that uses GPS to allow correctional |

officers to monitor their location at all times. Tampering with the device or trying to

remove it raises an alarm.

Electronic tagging has been shown to effectively deter crime, as well as save habitual

offenders from a continued life of crime. Monitored offenders were less likely to

abscond or commit new offences than those not monitored. Electronic tagging

benefits society immensely by reducing crime rates, reducing the money spent on

crime. There are a number of “hidden” costs surrounding any crime; for example,

the time spent by police officers to solve it, instead of working to prevent possible

future crimes. One should also consider court rooms and lawyer’s time, as well as

the occupation of prison cells and the need for the creation of further correctional

facilities if the number of offenders increases.

Electronic tagging could also improve the rehabilitation and reintegration of

offenders, by allowing them to leave the correctional facilities sooner (or not enter

at all), maintain gainful employment, as well as contact with their families.

However, there is plenty of criticism concerning prisoners’ electronic tagging. First of

all, one could argue that it is a very lenient form of punishment. Furthermore, it

does not physically restrain offenders and allows them to perform further illegal

actions, if they want to. Having a large number of offenders outside the correctional

facilities with electronic tags needs a large task force of individuals that can monitor

them and intervene whenever necessary. If the offender performs an illegal action

and raises an alarm (but the task force does not have enough officers to intervene

because they are all occupied with other tasks), the idea behind the electronic

tagging is rendered useless.

Another argument against the

tagging of offenders is that wear-

ing an electronic tag may add

psychological pressure to the

wearer, especially to the younger

offenders.

Apart from offenders, electronic

tagging could be used to monitor

the whereabouts of people with

health problems such as dementia Image 7.10: A CCTV camera

(ex. Alzheimer’s disease). Finally,

® Electronic tagging. (26, February 2016). In Wikipedia, The Free Encyclopedia. Retrieved 19:30, May
16, 2016, https://en.wikipedia.org/wiki/Electronic_tagging
7 prisoner e-tagging a 'resounding success'. (23, May 2012). In iTWeb. Retrieved 19:08, May 28, 2016,
http://www.itweb.co.za/index.php?option=com_content&view=article&id=55068

electronic tags could also be placed on immigrants, preventing them from staying in
a country illegally.

Surveillance, CCTV (Closed Circuit Television): Over the past years a large number of
cameras have been installed on highways and cities in various countries around the
world. CCTV cameras can often be spotted on top of or near traffic lights and
intersections, in parks, outside shops or any other position. People are now so
accustomed to them that they do not even notice their existence. Recent advances
in computer graphics and artificial intelligence have enabled CCTV systems to use
algorithms for facial recognition, as well as license plate recognition, to locate or
follow a target.

CCTV supporters claim that by using this surveillance technique, street and shop
crimes are reduced, drivers follow the rules of the road, and in general individuals
are not tempted to perform illegal acts.

However, there are a number of questions to be answered:
o0 How many CCTV cameras should operate in an area before surveillance

becomes excessive, to the point of loss of privacy?
o Can the information from surveillance techniques ever be misused or fall in

the wrong hands?

o Do surveillance techniques actually reduce crimes or do they just alter it (for
example, move it to some other non-surveilled area, or within households,
where CCTV cannot be installed yet)?

o Should workplaces install CCTV cameras or other electronic means to
monitor their workers?

o Should schools install CCTV cameras or other electronic means to monitor
both students and teachers?

© Are citizen rights more important than prevention of potential wrongdoing?

Surveillance has a myriad of social impacts and ethical considerations that must be
taken into account. Most forms of electronic surveillance systems are embedded
control systems.

Improved safety systems: After any system, from an elevator to a car, has been
developed and deployed into the wider world, it is subject to everyday use. This use
may not always be as intended. For example, too many people may enter an
elevator, increasing its weight, beyond what can be handled by the elevator’s motor.
Another example could be a car driven into a wall. Safety systems are put in place so
as to avoid such unfortunate events. However, since everyday life is full of
unexpected events that cannot be predicted, safety systems improve in order to
anticipate them as much as possible. Sometimes these events are properly dealt
with. For example, when too many people enter an elevator, a warning light comes
on and the elevator does not move until enough people have left. Another example
could be the airbags deployed during a car crash to protect the passengers.

In general, safety systems are put

into place to protect anything that

might be harmed when something

does not go as planned. Safety

systems are upgraded and improved

when they are used but fail for some

reason. For example, front airbags

were developed to avoid injuries

during car crashes. However, in a

number of accidents, cars had been

struck from the sides. The

passengers were injured, since the

front airbags did not protect them.

Side airbags were created to

minimize harm in these accidents.

The airbag, as a safety system, was P s

improved. Car brakes are a similar Image 7.11: Airbag safety system

case of the new safety system being

improved from the failure of the previous safety system. Forcefully using the car

brakes resulted in the locking of the wheels which generated the car skidding, which

led to a larger distance covered before the car stopped, compared to when the

wheels did not lock. Following these observations, the Anti-lock Braking System

(ABS) was developed, to improve the car braking safety system, by preventing the

wheels from locking and skidding. This way the stopping distances decreased.

Distributed systems

7.1.7 Comparison of centrally controlled system.

Exit skills. Students should be able to™:

Compatre centrally controlled systems with distributed systems.

Technical hardware details are not expected.

In its simplest form, a centrally controlled system is a system with a dedicated computer

system that is responsible for all the necessary calculations, as well as anything else that

needs to be performed so that the control system can function. On the other hand,

distributed systems have multiple computers, with each one performing part of the

necessary calculations, as well as anything else needed for the control system to function.

There are arguments to be made for both systems.

e Centralized systems: All computer resources reside in a single computer system.

Client devices need to be able to connect efficiently and effectively to that single

computer system.

The benefits are (usually) lower operational costs (as each client needs minima
hardware), greater security (as all data is centrally stored), less administrative
overhead and backup complexity (since all resources are in a single location), as wel'
as greater overall control.,

One of the disadvantages is that clients need to connect to the central system o
perform any necessary actions, making the connection a probable point of failure. =
the single computer system or the connection to it fails, the whole system is not able
to function effectively.

® Distributed systems: Computer resources are distributed across various systems ana
each system is self-sustaining for the most part. A central system may exist tha:
coordinates the rest of the systems in some way, but each system has all the
necessary resources to perform any necessary action on its own, without needing to
communicate with the central system every time. Even if there is no connection o
the central system, there would be no catastrophic failure and the distributed
system, as a whole, would still function correctly. Distributed systems are easily
expandable since self-sustained systems may be added or removed at any point in
time without affecting the overall system.
The disadvantage to this approach is (usually) its cost. It requires additiona!
hardware to be present at each system, so that it can operate on its own, as well as
special software that allows each system to do so. Backup of the system requires
more bandwidth or resources at each site, adding to the cost and the complexity of
the system. Security can also be an issue, since it is more difficult to control ang
secure a number of systems than a single one.

Cost is a variable factor when comparing centralized to distributed systems. In general, distributed systems require additional hardware that increases the cost of the whole system. However, centralized systems require a single computer system that is very powerful in order to efficiently and effectively coordinate the system as a whole. As such, the cost of 2 very powerful computer system and its maintenance may be higher than the cost of the additional hardware needed in distributed systems, or vice versa.

Here is an example of traffic signal control systems®, which may be either centrally- controlled or distributed:

e Centrally controlled systems: Every light on each intersection depends on the
availability of an effective communications network. Every light needs to be able to
communicate with the central computer in a real-time fashion and will not be able
to operate, at least as effectively, if the communication is lost. If the central
computer stops operating, all the intersections are affected and stop operating
effectively. Fault-tolerant systems exist, with two identical central computers, so
that if one fails the other can take over. Also, a central computer has a maximum
load limit, meaning that it cannot be responsible for real-time coordination of an
unlimited number of traffic lights at intersections. A central control system is not e L e

® Traffic Signal Control Systems. (2011). In United States Department of Transportation, Research and Innovative Technology Administration. Retrieved 18:50, May 20, 2016,
http://ntl.bts.gov/lib/jpodocs/edldocs1/13480/ch3.pdf

easily expandable and requires a significant amount of investment in order to do so.

However, centralized real-time adaptive control algorithms may easily be installed

and real-time surveillance of the system allows for better control of the system.

Distributed systems: A powerful and robust control system at the intersection is

responsible for the traffic lights. It does not receive or transmit mandatory real-time

control commands over the communications network. It can even operate when the

central computer (that is responsible for the grid of traffic signal control systems) is

not available. Connection to the central computer is limited and only necessary for

synchronization purposes. Expansion of the system is easy, just by adding new traffic

lights and their infrastructure, and does not affect the rest of the system.

Centralized real-time adaptive control algorithms and surveillance are not available,

but may be substituted by local adaptive control algorithms runnig at each

intersection.

tem

Exit skills. Students should be able to™:

[Explain the role of autonomous agents acting within a larger system.

l Technical hardware details are not expected.

Agents can be anything that can perceive its environment, through sensors, and act upon it,

through effectors. Examples of agents may be humans (that have eyes, ears and other

sensors) to robotic agents (that have cameras, sonars and other sensors) and software

agents (that have sensors in the form of bits and can sense their digital environment through

those sensors).

Autonomous agents are entities operating on

behalf of an owner (usually a user or another

program) with a degree of autonomy and

with minimal to no interference from the

owner. These agents follow algorithms

supplied by the owner to achieve some

desired goal(s). Examples of autonomous

agents include autonomous robots, software

agents that search the world wide web,

software computer viruses, etc. Autonomous

agents perform actions that depend on their

own “experiences” through their sensors.
Image 7.12: Autonomous agent (car)

They can apply different sets of pre-programmed actions in different situations and even

build their own set of actions through learning algorithms. Autonomous agents display

artificial intelligence in that they need to “reason” according to their acquired knowledge.

The representation of knowledge is a key-concept for those agents.

The environment within which agents operate plays a significant role in the desz
implementation and effectiveness of the agents. Most of the times, agents do not hawe complete control over their environments. They can perceive and influence some of === environment, and the environment may then influence the agents in return. The complex=
of the agent’s decision-making is affected by the properties of the environment?:

e An environment may be accessible or inaccessible, and may or may not be able ==
obtain complete and accurate information of the environment. Most real worie
environments fall under the inaccessible category, where the environment is too bE
for an agent to be able to sense it as a whole and senses only a subset.

® An environment may be deterministic or non-deterministic, according to whethar
an agent’s action will have a pre-defined, guaranteed, effect without any possibit=y
of uncertainty or not. In a deterministic environment, the next state of ===
environment is determined by its current state and the agent’s action. Most re=
world environments fall under the non-deterministic category, in that they are oz
complex, are affected by various elements, and probably ever-changing.

® An environment may be episodic or non-episodic, according to whether an agent =
actions are divided into “episodes” or not. If they are divided into “episodes”, the
next episodes do not depend on the previous episodes and an action’s output wt
not depend on what actions the agent took before. Most real world environmenz=
fall under the non-episodic category, in that the agent’s earlier actions affect tme
future actions.

® An environment may be static or dynamic, and may or may not change while the
agent is deliberating an action. Most real world environments fall under the dynamc
category, in that an environment is independent of the agent and does not wait far
an agent’s action before it changes.

® An environment may be discrete or continuous, depending on the number o
distinct and clearly defined states that it may or may not be in. Most real wori=
environments fall under the continuous category.

Useful Information: The book “Artificial Intelligence: A Modern Approach”®® by Stuart Russell and Peter Norvig is a great read and resource that goes well beyond the I8 syllabus. Chapter 2, which deals with Intelligent Agents can be read at link: - g http://www.cs.berkeley.edu/”russell/aima1e/chapter02.pdf

Having understood the meaning of autonomous agents and their environment, a number oF examples follow illustrating the role of autonomous agents within a larger system.

e

° Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern Approach, Upper Saddle River (New Jersey, 1995)

112

Autonomous agents in space missions'’: Autonomous agents may be of help in both

unmanned and manned missions. One type of unmanned mission that needs to take

place every day, all day (24/7) is the control and coordination of satellites orbiting

Earth. Before the use of

autonomous agents, 2-3 persons

were needed per satellite. With

the increase in the number of

satellites this led to a large

number of staff responsible for

their control, which resulted

(amongst other things) in a large

financial burden.

Another type of unmanned

missions with difficult and/or Image 7.13: Autonomous space agent

restricted time frame commu- 1

nication with the device(s) launched in space, are the deep space missions. Sending

a message from Earth to a planet far away, such as Mars or Jupiter, takes minutes or

even hours, and may only be available for only a few hours per day. The bandwidth

of the connection is also limited. As such, these devices cannot be controlled in a

real-time manner. However, they need to be able to act in a real-time manner, as

well as be able to face any situations when communication with Earth is unavailable.

Autonomous agents allow deep space mission devices to perform real-time tasks

when connection to Earth is limited or non-

existent, preventing pitfalls and unwanted

situations.

In manned missions, the crew spends a long

period of time, each day, in monitoring and

maintaining. Monitoring is a repetitive and

mundane task. Furthermore, most mistakes in

manned missions are made by humans that may

let something go unnoticed due to negligence or

tiredness. Autonomous agents can be

responsible for monitoring both everyday tasks,

as well as human actions while performing some

maintenance tasks.

Of course, it is impossible to take into account all

the possible events that could occur. As such,

autonomous agents that do not request human

intervention in unfamiliar circumstances could Image 7.14: Probable future
: S autonomous agent picker robot

lead to errors and to the detriment of a mission.

% Stefan Biittcher. Autonomous Agents in Space Missions. Course project for C5886 — Multi-Agent

Systems for Real-World Applications, University of Waterloo, Spring 2004. Retrieved 19:25, May 31,

2016, http://stefan.buettcher.org/cs/cs886/project.pdf

© Autonomous agents in warehouses™!: Autonomous agent robots named “Kiva” (or
Amazon robots or bots) are already operating in Amazon'’s warehouses. These
robots carry shelves of products to human workers, who in turn pick the items that
need to be shipped. This automation allows for the shipping of a far larger number
of items to costumers than just using human workers. Apart from these bots,
Amazon created the Amazon Picking Challenge (APC), in which researchers
competed for building a new bot that would be able to perform the item picking
process, instead of human workers. The challenge was hard and most teams failed
completely, while the ones that managed to perform better still performed a lot
worse than humans. However, the challenge showed that these difficulties might
soon be overcome. In all likelihood, bots controlled by autonomous agents will soon
be used in warehouses around the world.

® Autonomous agents in cars'® > *. The idea of fully autonomous cars has been a
worldwide endeavor for many years. The DARPA (Defense Advanced Research
Projects Agency) Grand Challenge was the first ever competition to formalize this
aim, offering prize money to the team able to build a driverless car that could avoid
obstacles and reach a certain goal. Since that time, a number of autonomous vehicle
prototypes and tests have been conducted, in both urban and rural settings, with
increasing success. Autonomous agents are the “brain” of every such autonomous
vehicle. Agents use sensors to read information about the car’s internal and external
states, process the information, and act on it. Agents need to act correctly in an
inaccessible, non-deterministic, non-episodic, dynamic and continuous environment
that is extremely complex.

® Autonomous agents in video games™: As video games have improved in quality
throughout the years and the industry has grown to be one of the most important in
the entertainment business, games have pushed the barriers further in various fields
of computer science (including graphics and f T
artificial intelligence), in order to get better,
more realistic appearances and behaviors.
This need for complex and sophisticated
environments cannot depend on pre-
programmed elements that loop or always
repeat the same patterns of behavior.
Agents need to be installed reacting in a .
manner that will not repeat over time. Image 7.15: Autonomous agents in games

e O R E
- Amazon, robots and the near-future rise of the automated warehouse. (26, January 2016). In TechRepublic. Retrieved, 18:00, May 31, 20186, http://www.techrepublic.com/article/amazon—robots- and-the-near-future-rise-of-the-a utomated-warehouse/
** DARPA Grand Challenge. (25, April 2016). In Wikipedia, The Free Encyclopedia. Retrieved 19:52, May 31, 2016, https://en.wikipedia.org/wiki/DARPA_Grand_Chal!enge
2 Autonomous car. (26, May 2016). In Wikipedia, The Free Encyclopedia. Retrieved 19:55, May 31, 2016, https://en.wikipedia.org/wiki/Autonomous_car

Google Self-Driving Car project, https://www.google.com/selfdrivingcar/
** Thannia Blanchet. Autonomous Agents in Videogames. Retrieved 19:25, May 31, 2016, http://www.cs.unm.edu/"‘pdevineni/papers/Blanchet.pdf

End of chapter example questions with answers

Exercise 1: A control system is used to control an elevator car to allow people to go to their
desired floor in a building.

1 Identify various types of sensors in this system.

Identify other pieces of hardware, other than sensors, that are part of the
control system.

Outline the sequence of steps that will take place within the computer control
system, when a person presses the button to call the elevator.
Define the term interrupt, as well as a situation in which it may occur in this
system.

Answer to Exercise 1:

Three sensors that will be present in this system are: proximity, motion and
pressure. :

Other pieces of hardware may include a microprocessor, actuators, transducers,
as well as analogue-to-digital and digital-to-analogue converters.

When a person presses the button, the pressure sensor is activated.
The signal is sent to the microprocessor that determines when the
elevator car should arrive at the floor where the person resides.
A signal is sent to the actuators/transducers to move the car to the floor
on which the person pressed the button.

After arriving on the floor, another signal is sent to the actuators of the
automatic door to open the car doors.

After a fixed time and if there is no other input in the motion sensor of
the automatic doors, the doors close.

Assignal is sent to the actuators to move the car to the desired floor.
After arriving on the floor, another signal is sent to the actuators of the
automatic door to open the car doors so that the person steps out.

This sequence of steps is a simplified version of what might happen in
real life, since a microcontroller must take into account a number of
other factors. For example, other people may need to be served at the
same time or an indication that the maximum elevator car weight was
reached.

A signal sent to the processor (by either software or hardware) requesting the
processor’s immediate attention to a specific event is an interrupt. An example
of where this might be used in the elevator control system is the following. After
the elevator reaches a desired floor and opens its automatic doors to unload
and load people, the doors start closing. At that point a person that wants to
enter the elevator puts his/her foot between the two closing doors. A (light or
pressure) sensor would sense that the doors did not close and that there is an

object between them and would send an interrupt to the processor to open the

doors.

Exercise 2: Discuss how computer control systems have been used throughout industries to

replace human workers in various accounts.

Answer to Exercise 2: Computer control systems can work 7 days a week, 24 hours a day
(24/7), all year round. They also work tirelessly and accurately, performing monotonous
tasks without any complaints. They can also be used in dangerous environments, such as

radioactive, or where there are a lot of fumes, fires, etc., or in environments that cannot be

(easily) reached by humans, such as deep sea, space, etc. The initial cost of a computer
control system is usually considerable, but once set up, the system will be more economical

in the long run. Also, it will reduce labor cost, may increase the quality of work, as well as

performance and productivity. Finally, since there will be fewer workers involved, safety will
increase. However, such systems may lead to an increase of unemployment and workers
made obsolete will need to retrain in order to find a different kind of job.

Exercise 3: Describe how a GPS device can locate its position.

Answer to Exercise 3: Read section 7.1.1.

Exercise 4: Describe how control traffic lights can function dynamically.

Answer to Exercise 4: Read section 7.1.1.

Exercise 5: An intersection of a main road and a secondary road is regulated by a set of

traffic lights. The secondary road is a one way street. Pedestrian lights are also present
allowing people to cross the secondary road.

e By the press of a button, the pedestrian lights, as well as the traffic lights on the
main road change to green (Go), while the traffic lights on the secondary road turn
red (Stop), allowing people to cross the road.

e If no pedestrians want to cross and there is a vehicle on the secondary road, the
pedestrian lights and the traffic lights on the main road turn red (Stop) and green

(Go) on the secondary road.

e Otherwise, on all other accounts, every two minutes the traffic lights on the main

road, as well as the pedestrian lights, change from green (Go) to red (Stop), while
the traffic lights on the secondary road change from red (Stop) to green (Go), and
vice versa.

Traffic lights

Main road

®

Button Pedestrian lights

Secondary road

1. Suggest how the sensors and the microprocessor controlling the traffic lights

may “sense” a vehicle approaching on the secondary road and perform all the

necessary steps.

2. Define the term interrupt, as well as a situation in which it may occur in this

system.

The intersection is located in a small town, far from any major cities. As such, its

communications network is not very good and is constantly unavailable.

3. The traffic lights installed in the intersection can either belong to a centrally

controlled system or a distributed one. Discuss the advantages and

disadvantages of both.

Answer to Exercise 5:

a. Either a touch/weight sensor in the road or a camera on top of the

traffic lights may be installed to detect an approaching or waiting vehicle

on the secondary road.

.~ b. An analogue-to-digital converter is used to convert the analogue signal

from the touch/weight sensor to its digital counterpart. The same

applies to the camera.

c. The digital signal (either the weight or an image) is processed by the

microprocessor.

d. Finally, a signal is sent to the traffic lights so that the pedestrian and the

main road traffic lights turn red (Stop), while the traffic lights on the

secondary road turn green (Go).

2. A signal sent to the processor (by either software or hardware), requesting the

processor’s immediate attention to a specific event, is an interrupt. An example

of where this might be used in the traffic lights control system is the following:

A vehicle approaches from the secondary road and the sensors send a signal to

the microprocessor. At the same time, a pedestrian that wants to cross the

secondary road presses the pedestrian lights button. An interrupt signal is sent
to the microprocessor requesting the processor’s immediate attention, changing
the traffic lights on the secondary road to red (Stop), while the pedestrian lights
turn green (Go).

3. Since the intersection is located in a small town, far from any major cities, and as
such, its communications network is not very good and is constantly unavailable,
running the town’s traffic lights on a distributed system may lead to poor traffic
light performance due to connection failures. Even if a powerful central
computer is installed, if the connection to the traffic lights is not reliable, the
traffic lights would not function properly. For further advantages and
disadvantages read section 7.1.7.

Exercise 6: Discuss the ethical and social implications of forcing people to carry GPS devices.
Provide specific examples.

Answer to Exercise 6: Read section 7.1.6.

Exercise 7: Discuss the ethical and social implications of countries and/or individuals
installing CCTV cameras throughout cities and/or around their homes.

Answer to Exercise 7: Read section 7.1.6.

Exercise 8: A number of control systems may be used around the house such as:

® smart heating systems that turn on/off automatically as needed
® automatic doors/windows that open/close or even lock as needed
e lighting that turns on/off/dim or even changes colors as needed
e air conditioning that turns on/off as needed
® automatic cleaning that turns on/off as needed

1. Discuss how a user may access these systems.
Discuss two advantages of incorporating such technology inside the house.

Answer to Exercise 8:

1. The control systems described, as well as any other control system centered around
the house could be accessed and controlled in one of the following ways:
® Via aremote control:

o May be misplaced within the house.

o Needs batteries or to be charged to function.
o Portable enough to access the systems from anywhere in the house.

e Via a fixed remote control:

o Installed on a wall in the house.

o The user knows where the control is, as he/she cannot move it.

o Does not need batteries to operate.

e Via computer/smartphone:

o May be misplaced or lost.

Needs to be charged to function.

Requires internet/Wi-Fi connection to function.

Control systems may be accessed from far away.

Extremely portable.

2. The advantages of incorporating such technology inside the house include the

following:

a. Cost reduction: By scheduling exactly when these control systems function,

one can control expenses, reduce costs and save energy.

Improved comfort: By scheduling exactly when these control systems

function, one can cater for his/her specific needs. For example, he/she can

turn the heater on just before leaving work and arrive to a warm house.

Chapter References

10.

alil,

125

13.

14.

157

el

International Baccalaureate Organization. (2012). IBDP Computer Science Guide.
Control System. (12, May 2016). In Wikipedia, The Free Encyclopedia. Retrieved
19:05, May 13, 2016, from https://en.wikipedia.org/wiki/Control_system
Smart thermostat. (19, April 2016). In Wikipedia, The Free Encyclopedia. Retrieved
19:25, May 13, 2016, https://en.wikipedia.org/wiki/Smart_thermostat
Dimitriou K. Hatzitaskos M. (2015). Core Computer Science for the IB Diploma
Program. Athens: Express Publishing. More information at:
https://www.expresspublishing.co.uk/gr/en/content/core—computer—science-ib—
diploma-program

List of sensors. (19, April 2016). In Wikipedia, The Free Encyclopedia. Retrieved
19:30, May 13, 2016, https://en.wikipedia.org/wiki/List_of_sensors
Electronic tagging. (26, February 2016). In Wikipedia, The Free Encyclopedia.
Retrieved 19:30, May 16, 2016, https://en.wikipedia.org/wiki/Electronic_tagging
Prisoner e-tagging a 'resounding success'. (23, May 2012). In iTWeb. Retrieved
19:08, May 28, 2016,

http://www.itweb.co.za/index.php?option=com_content&view:article&id:S5068
Traffic Signal Control Systems. (2011). In United States Department of
Transportation, Research and Innovative Technology Administration. Retrieved
18:50, May 20, 2016, http://ntl.bts.gov/lib/jpodocs/ed]docsl/l3480/ch3.pdf
Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern Approach, Upper

Saddle River (New Jersey, 1995)

Stefan Blittcher. Autonomous Agents in Space Missions. Course project for CS886 —
Multi-Agent Systems for Real-World Applications, University of Waterloo, Spring
2004. Retrieved 19:25, May 31, 2016,

http://stefan.buettcher.org/cs/csSSG/project.pdf

Amazon, robots and the near-future rise of the automated warehouse. (26, January
2016). In TechRepublic. Retrieved, 18:00, May 31, 2016,
http://www.techrepublic.com/article/amazon—robots-and-the-near~future—rise-of—

the-automated-warehouse/

DARPA Grand Challenge. (25, April 2016). In Wikipedia, The Free Encyclopedia.
Retrieved 19:52, May 31, 2016,

https://en.wikipedia.org/wiki/DARPA_Grand_ChaIIenge
Autonomous car. (26, May 2016). In Wikipedia, The Free Encyclopedia. Retrieved
19:55, May 31, 2016, https://en.wikipedia.org/wiki/Autonomous_car
Google Self-Driving Car project, https://www.google.com/selfdrivingcar/
Thannia Blanchet. Autonomous Agents in Videogames. Retrieved 19:25, May 31,
2016, http://www.cs.unm.edu/’“pdevineni/papers/Blanchet.pdf

3 Topic D - Object-oriented programming?

Chapter 4

TOPIC D - Object-oriented programming

Tool used
All Java programs were written and tested in Bluel, which can be downloaded from the
following link:

http://www.bluel.org/

The Bluel development environment was created by the University of Kent and is ideally
suited for students.

Useful Information: Although it is assumed that all students who choose to take Topic
D — Object Oriented Programming have mastered (up to a point) coding in Java, there
is no easy or slow introduction in the syllabus content.

As such, it is up to the students or the teachers to find books, online material or
presentations on programming with Java. This is not always easy to do and although
there is a plethora of tutorials on the Internet, some may be very advanced, some
may not be complete and some may not even be accurate. As such, a list of helpful
resources are given below. These free resources are most helpful and should be at
least considered by any student learning Java. They are presented in the order in
which they should be studied. They also include exercises.

1. Introduction to Java Programming:

http://www.ntu.edu.sg/home/ehchua/progra mming/java/Jla_Introduction.h
tml

2. Java Programming Tutorial:

http://www.ntu.edu.sg/home/ehchua/programming/java/JZ__Basics.html
3. Java Exercises:

https://www3.ntu.edu.sg/home/ehchua/programming/java/JZa_BasicsExerci
ses.html

4. Java —Tutorial:

http://www.tutorialspoint.com/java/index.htm

v
1
1
1
1
1
1
1
1
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
1
I
1
1
1
i
1
1
1
i
1
1
1
i

D.4 Advanced program development

D.4.1 The term “recursion”

Exit skills. Students should be able to’:

R term recursion.

Recursion was identified and explained in sections 5.1.1 to 5.1.3, “Thinking recursively”.
Situations where recursion is useful were presented and recursive algorithms were traced.

Recursion is a specific approach to problem solving in computer science. In this approach,
the solution to a problem depends on solutions to smaller instances of the same problem.?

In programming, recursion happens when a procedure (method) calls itself until some
terminating condition is met. This is accomplished without any specific repetition construct,
such as a while or a for loop. Recursion follows one of the basic problem solving
techniques, which is to break the problem at hand into smaller subtasks (divide and
conquer). Most algorithms that may be presented in a recursive manner may also be
presented in an iterative manner and vice versa.

D.4.2 Application of recursive algorithms
Exit skills. Students should be able to®

| Understand that recursion can be applied to a small subset of programming problems
| to produce elegant solutions.
Understand that recursive algorithms are rarely used in el (o [ol- 1
INK Think abstractly, think recursively.

In some cases, recursive algorithms can produce “simpler” and “cleaner” code compared to
their iterative counterparts if used wisely. This code is easier to understand and maintain
and, as such, useful to have, when possible. Sometimes “simpler” and “cleaner” code is
preferred even if it is not the most efficient. Below, a number of algorithmic examples are
compared, solved in both iterative and recursive versions:

® Factorial: A factorial function is defined mathematically as follows:
_ { 1,ifn=0
= rm=-1Lifn>0

41 = 4*3%2*1*1 = 24, The following two code snippets find the factorial of a positive
integer number n. The left-hand is an iterative version, while the right-hand is a
recursive version.

e e

% Recursion (computer science). (27, May 2016). In Wikipedia, The Free Encyclopedia. Retrieved 13:39,
June 3; 2016, https://en.wikipedia.org/wiki/Recursion_(computer_science)

e e Recursive version

public int fact(int n) { | public int fact(int n) {

int answer = 1; if (n == 0) return 1;

for (int i = 2; i <= n; i++) ! return n * fact(n - 1);

{ }
answer = answer * i;

}

return answer;

Both of these versions are “simple”, “clean” and can be understood easily enough.

The iterative version is a little longer and uses a while loop, while the recursive

version includes a base case (when n is equal to 0) and calls itself n times. Each time

the recursive version calls itself, it causes some memory to be allocated.

Figure D.1 presents how memory is allocated every time a recursive function calls

itself, assuming that the factorial of number 4 is to be found (so fact (4) is called).

After fact (4) needs toreturn 4 * fact(3).To do that, fact(3) is called, while

fact (4) is still running (it has not returned yet, since it has called fact(3)).

fact (3) needs to return 3 * fact(2) and so fact(2) is called (with fact (4)

and fact (3) still running). fact (2) needs to return 2 * fact(1). So, fact (1)

is called that needs to return 1 * fact(0). n == 0 is the base case and so

fact (0) simply returns 1. The base case is the case that stops the recursion from

Memory used

 >

25 Eaei (1)

Aot (3

4*fact (3)

Figure D.1: Memory allocation in recursive function

running infinitely. It does not call another fact method. At this point, fact (4),
fact(3), fact(2), fact(l) and fact(0) are all taking up space in the
memory. Finally, fact (0) first returns, so fact (1) may then return, so fact (2)
may return, so fact(4) may return at the end with the final result. The recursive
version of the factorial algorithm to compute the factorial of n generates n-1
recursive calls, rendering this algorithm inefficient compared to its iterative
implementation.

As it is becoming apparent, calling methods recursively uses up memory quickly and
can result in the system stack running out of memory (as explained in sections 5.1.6-
5.1.7). In this example, this could happen if a large number were given to the
recursive version of the factorial algorithm. Recursion is a powerful concept and tool
that allows for elegant, simple solutions to problems, but may result in inefficient
algorithms if not used wisely.

® Fibonacci: A Fibonacci function is defined mathematically as follows:

0,ifn =0
F, = Lifn=1

Foa+ Fpsifn>1

Every number after 2 is the sum of the preceding two numbers. So, the first
Fibonacci numbers are the following: 1, 1, 2, 3, 5,8,13,21..

The base cases of a recursive algorithm would be F, and Fi.

public int fib(int n) { public int £ib(int n) { int fib = 0;
int temp = 1; i if (n < 2) return n;

for (int i = 0; i < n; i++) { return fib(n-1) + f£ib(n-2); £ib = fib + temp; }
temp = fib;

}
return fib;

}

Comparing the iterative to the recursive version for the Fibonacci numbers, one can
appreciate the simplicity and cleanness of the recursive code. The recursive codeis a
lot more intuitive and can be easily understood. It resembles the mathematical
definition closely and it is also shorter than its iterative version. As such, the
recursive version of the algorithm that computes Fibonacci numbers is much more
elegant. Unfortunately, the time difference required for the computation of a

1 Useful Information: It might be useful to return to section 5.1.3, where a recursive]
algorithm was traced to express a solution to a problem.

)
5

1

Fibonacci number between these two versions is enormous, with the iterative

version being a lot faster.

Euclidean greatest common divisor (GCD): A Euclidean GCD function is defined

mathematically as follows:

xifx =y

Forx,y > 0,gcd(x,y) = y9cd(x,y — x),if x <y

ged(x—y,y),ifx>y

It is probably the oldest recorded recursive algorithm in history (around 300 B.C.). To

find the greatest common divisor of two numbers, x andy:

o Subtract the smaller of the two numbers from the larger one repeatedly,

until the resulting difference d is smaller than the smaller of the two initial

numbers, x and y.

Repeat the same steps with d and the smallest of the two numbers from the

previous step.

Continue until the two numbers are equal. That number is the GCD of the

two initial number.

For example, if initial x is 420 and y is 96 then the algorithm would work as follows:

Step 1: 420—96 = 324,

324 -96 =228,

228 —96 =132,

132 - 96 = 36.

Therefore d = 36.

96 —36 =60,

60— 36 = 24.

Therefore d = 24.

36 —24 =12,

Therefore d = 12.

24 —-12 =12.

Therefore d = 12 and both the smallest of the two numbers of this

step (24 and 12) and d are 12.

As such, 12 is the GCD of 420 and 96.

Iterative version BCT VRV o] o

public int ged(int m, int n) { | public int gcd(int m, int n) {

}

while (m != n) {

if (m > n) {

}

}

}

| if (m == n) {
| return n;

m=m - n; | } else if (m < n) {
else { return ged(m, n-m) ;
n=n-m; } else { //m > n.

return ged(m-n, n);

return m; !

Both of these versions are simple, clean and can be understood easily enough.
However, the recursive version follows the mathematical definition and as such it is
probably easier to think of and implement in the first place. On the other hand, the
recursive version does call itself multiple times, taking up more memory space.

Towers of Hanoi: The Towers of Hanoi is a

puzzle in which the elegance of recursion shines

through, compared to an iterative method.

This classic game consists of three vertical pegs

attached to a board, as depicted in Image D.1.

The pegs are usually labelled in some way. (ex.

A, B, and C). A number of n disks that have a

hole in their centers, so that they can slide onto

the pegs, are mounted on peg A, from largest (at

the bottom) to smallest (at the top). The
objective of the game is to move all disks from
peg A to peg C, one at a time, without having a

larger disk on top of a smaller one at any point in
time. Image D.1 presents the initial configuration

of the game with 7 disks on peg A, a middle state

in which the disks are placed in various pegs, and

the final configuration of the game, the winning
state, with 7 disks on peg C. Image D.1: The Towers of Hanoi

This seemingly complicated problem becomes
easy when seen through the lens of a recursive
approach. There are only three steps that need to be performed in order to solve it:

Step 1: Move the smaller n-1 disks from peg A to peg B.
Step 2: Move the remaining disk from peg A to peg C.

Step 3: Move the smaller n-1 disks from peg B to peg C.

The solutions to the Towers of Hanoi problem for one (n=1), two (n=2) and three
disks (n=3), using the above algorithm, are outlined below:

o For one disk, where n=1:

1. Move the one disk from peg Ato pegC [Step 2]

(steps 2 and 4 do nothing since n-1, for n=1, is equal to 0).

o Fortwo disks, where n=2:

1. Move the top disk from peg A to peg B. [Step 1]

2. Move the remaining disk from peg Ato peg C. [Step 2]

3. Move the top disk from peg B to peg C [Step 3]

o For three disks, where n=3:

1. Move the top disk from peg A to peg G

Move the second disk from peg A to peg B. [Step 1]

Move the top disk from peg C to peg B

Move the remaining disk from peg Ato peg C. =% [Step 2]

Move the top disk from peg B to peg A

Move the second disk from peg B to peg C.

Move the top disk from peg A to peg C.

[Step 3]

Si
p
o
o

B
EO

D

Step 1 of the algorithm is made up from moves 1 to 3, step 2 from move 4

and step 3 from moves S5to7.

In order to implement the solution to the Towers of Hanoi problem using recursion,

a method would be needed that would move n disks from one peg to another. That

method could be called moveDisks and would include the following parameters:

moveDisks (int n, char from, char to, char excl)

o nwould represent the number of disks to be moved.

o f£romwould represent the peg from which the disks would move

o to would represent the peg to which the disks would move

o excl would represent the peg that would not be used for the move

When n would be equal to 1, then the single disk would be moved to its designated

peg and moveDisks would stop. This would be the base case of the recursion.

The three steps described above that would solve the Towers of Hanoi problem, in a

recursive manner, are rewritten using the moveDisks method described above, as

follows:

Step 1: Move the smaller n-1 disks using moveDisks (n-1, A, B, C)-.

Step 2: Move the remaining disk using moveDisks (1, &, C, B).

Step 3: Move the smaller n-1 disks using moveDisks(n-1, B, C, A).

Taking into account these three steps, the Towers of Hanoi problem could be

implemented in the following manner:

public static void moveDisks (int n,char from,char to,char excl)

{
if(n == 1) {

System.out.println(“Move disk from “ + from + “ to ™ + to); } else {

moveDisks (n-1, from, excl, to);
moveDisks (1, from, to, excl);
moveDisks (n-1, excl, to, from);

An example output of the above code for three disks that are to be moved from peg A to peg C would be the following:

1. Move disk from A to C.
2. Move disk from A to B. [Step 1]
3. Move disk from C to B.
4. Move disk from A to C. resww—p [Step 2]
5. Move disk from B to A,
6. Move disk from B to C. [Step 3]
7. Move disk from A to C.

An iterative version of the Towers of Hanoi algorithm is much more complicated than the elegant, simple and clear solution presented above. Usually, if statements, loops, arrays and/or queues are needed for such an implementation®.

Through the previous examples one can understand that recursion can be applied to a number of programming problems to produce simple and elegant solutions. However, because recursive algorithms are usually very inefficient, when compared to their iterative counterparts, it is important to note that recursive algorithms are rarely used in practice. In real life computer systems, that have a fixed amount of resources, the algorithms used should be as efficient as possible in order for the system as a whole to be as efficient as possible. In real life, the elegance, “cleanness” and “simplicity” of an algorithm usually come second to efficiency.

D.4.3 Construction of algorithms that use recursion
Exit skills. Students should be able Lok

This is limited to a method that returns no more than one result and contains either one or two recursive calls.
FIEINTe Connecting computational thinking and program design. L

5 %54

In section D.4.2 a number of recursive algorithms were described as well as traced. In this section, a simple recursive algorithm is constructed that can be used for the evaluation of exponents of a number (i.e. raising a base number to a power).

Raising a base number a to the power of n is defined mathematically as follows:
Cetsse e e S A

® Peter Smith. An iterative solution to Towers of Hanoi. Course Comp 151, California State University Northridge, September 2002. Retrieved 22:20, June 5, 2016,
http://www.csun.edu/'“psmith/lSlhandouts/hanoi3out.pdf

The base number a is multiplied n times by itself.

The following example depicts 3 raised to the powers of 0, 1, 2, 3 and 4 respectively:

o 3R
of 3:-3-13
e 3ERERilg
o 3¥=3%3%3=27
e 3%=3%3%3%3=81

A recursive relation may be deduced and defined as: a® = a*a™?!. The base case for this

recursive relation is when a®, which always equals to 1.

The example of 3 raised to the powers of 0, 1, 2, 3 and 4 respectively, described through the

lens of the deduced recursive relation a® = a*a™?, is presented below:

SRk
o3t =3 %30 i3% 1i=3
o 3?=3%3'=3%3%3°=3%3%1=9

o 33=3%32-3%3%3'-3%3%3+30-3%3%3%1=77
e 3%-3%33-3%3%32=3%3%3%30-3%3%3%3%30=3%3%3%3%7=8]

From the examples, the recursive relation deduced, as well as the base case, the recursive

algorithm could be written in Java in the following manner:

public static int power(int a, int n)

{
//Base case

if(n == 0) {

return 1;

} else {

//Recursive step

return a * power(a, n-1);

}
} E

In any recursive algorithm there is always a base case. Otherwise the algorithm would not

stop and would continue forever or until the resources of the computer system running the

algorithm would deplete. As such, there usually exists an if.else statement, that

determines whether the base case or the recursive step needs to run. It is very important

that the base case is always checked first (in this example, the if (n == 0) clause is run

before the else clause).

D.4.4 Trace of recursive algorithms
Exit skills. Students should be able to"

All steps and calls must be shown clearly.

LINK Connecting computational thinking and program design.

In section D.4.2 a number of recursive algorithms were described as well as traced. In this
section the simple recursive algorithm that was constructed in section D.4.3, which can be
used for the evaluation of exponents of a number (i.e. raising a base number to a power), is
traced for when base 3 is raised to the power of 2. The Java method power that was
implemented in section D.4.3 is used (i.e. power (3,
presented below:

2) is called). The trace table is

)
power (3, e

There are five steps in the above trace table. power (3, 2) is called, n is not equal to zero,
and 3 * power (3, 1) is returned. However, before it can return, power (3,
be called. So, power (3,

1) needs to
1) is called, n is not equal to zero, and 3 * power (3, 0) is

returned. However, again, before it can return, power (3,
power (3,

0) needs to be called.
0) is called and this time n is equal to zero, so 1 is returned. power (3, 1)

returns 3 * power (3, 0) = 3 * 1 = 3.Finally, power (3, 2) returns3 * power (3,
l) =3 * 3 =09,

power (3, 2) power (3, 1) power (3, 0)

e () ()

Figure D.2: Tracing the power (3, 2) method

It is very important to understand that a recursive method will keep on calling itself, and consuming more system memory, until the base case is reached. At that point the last method called will return, and only then will the second-to-last method return and so on until the initial method can return the final result. When the base case is reached and the methods called return, one by one, in the reverse order they were called, the memory allocated to those methods will be deallocated and freed.

D.4.5 Define the term object reference

Exit skills. Students should be able to:

| Define the term o
LT

bject reference, as typified by simple classes that are self-

TEN

Reference signifies a value that points to or refers to some data. That data is present either in the computer’s memory or its data storage, and may be accessed through the reference. For example, take the following simple program into consideration:

public class HelloWorld5Times {
public static void main (String[] args) {

int times = 5;

for(int i = 0; i < times; i++) {
System.out.println(“Hello World!”) ;

}
}

}

A variable named times exists that determines how many times the for loop is going to run and how many times the “Hello World!” message is going to appear as output. times is a name that refers to the number 5 in this example. Since times is an int, itis a primitive data type. That means that the variable references a memory location and in that location the value is stored. So, 5 is stored in the memory location that is referenced by
times.

In a similar manner, object reference signifies a value that refers to some memory location that holds another memory location where an object’s details are stored. For example, take into consideration the following simple object, which describes a (book or magazine) publisher:

public class Publisher
{
//Instance variables
private String name, address, website;
pPrivate int telephone;

//Constructor
public Publisher(string name, String address,

int telephone, String website)
{
setName (name) ;
setAddress (address) ;
setTelephone(telephone);

setWebsite (website) ;
}

Public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

public String getAddress () {
return address;

}

Public void setAddress (String address) {
this.address = address;

}

public String getWebsite() {

return website;

}

public void setWebsite (String website) {

this.website = website;

}

public int getTelephone() {

return telephone;

}

public void setTelephone (int telephone) {
this.telephone = telephone;

}

}

The Publisher object includes four private properties/instance variables (three of type

String and one of type int). These instance variables cannot be accessed directly but can
be accessed indirectly through the use of the get/set methods. Every Publisher is defined
as having a name, address, telephone number and a website. The constructor method
Publisher (String name, String address, int telephone, String website)

therefore takes in four parameters. These parameters populate the instance variables of the
current object using the set methods. These set methods (ex. setName (String name))

make use of the this keyword. The this keyword works as a reference to the current
object instantiation and therefore the current object’s instantiation variables. For example,

if there are two Publisher objects pl and p2, pl has its own instance variables,

unaffected by p2’s instance variables.

The Publisher object is used by the following simple program to create a Publisher and
output its details. p is a variable that refers to the publisher object created. Every object of

this type includes some instance variables that may be accessed using the
object.propertyName rule if they are public. For example, the publisher’s name of the
publisher object referenced by p could have been accessed through p.name if the

property name was public. However, most object properties, as is the case in our example,

are private. As such, they can only be accessed through the get/set methods. This
approach is safer as it allows various checks to be completed before a property is read or
set. For example, when setting a telephone number there may be some rules that need to
be followed, such as that telephone numbers cannot be negative numbers. These rules may
be placed inside the setter method of the telephone variable (i.e. setTelephone (int
telephone)). Accessing or setting a variable directly may lead to undesired results.

public class ObjectReferenceExample {
public static void main (String[] args) {

Publisher p = new Publisher (“Express Publishing”,

“Gardenias 25, Aharnes, Menidi”,
00302102120800,

“https://www.expresspublishing.co.uk”) ;

System.out.println(“Publisher ™ + p.getName () + “ with

address “ + p.getAddress() + %, telephone number Sk

p.getTelephone() + “ and website ™ + p.getWebsite()) ;

It is important to understand that a reference is distinct from the data itself. It is only a

name used to refer to the data.

D.4.6 Construct algorithms that use reference mechanisms

Exit skills. Students should be able to*

| Construct algorithms that use reference Gl

Expanding on the Publisher example described in the previous section, D.4.5, a new

ObjectReferenceExample class is defined below, which creates two Publisher

variables p1 and p2 that refer to two different Publisher objects. Each Publisher object

has its own instance properties.

public class ObjectReferenceExample {

public static void main (String[] args) {

Publisher pl = new Publisher(“Express Publishing”,

“Gardenias 25, Aharnes, Menidi”,

00302102120800,

“https://www.expresspublishing.co.uk”) ;

Publisher p2 = new Publisher (“Random Publishing”,

“Random St. 42, Random Location”,

0015100000000,

“https://www.randomPublishing.com”) ;

System.out.println(“Publisher “ + pl.getName() + “ with

address “ + pl.getAddress() + “, telephone number “ +

pl.getTelephone() + ™ and website “ + pl.getWebsite()):

System.out.println(“Publisher “ + p2.getName () + ™ with

address “ + p2.getAddress() + %, telephone number “ +

p2.getTelephone() + © and website “ + p2.getWebsite()):

}

The output of the above program would be:

Publisher Express Publishing with address Gardenias 25, Aharnes,

Menidi, telephone number 00302102120800 and website

https://www.expresspublishing.co.uk

Publisher Random Publishing with address Random St. 42, Random

Location, telephone number 0015100000000 and website

https://www.randomPublishing.com

Searching and sorting algorithms

This section presents algorithms that may use reference mechanisms, such as linear search,

binary search, bubble sort and selection sort. An array named students of Student

objects is taken into consideration. The Student with grade 85 is found, with the use of

the searching algorithms, while the array is sorted in descending grade order, with the use

of the sorting algorithms. Each Student object has two instance variables (name, which is a

String that holds the name of the student, and grade, which is an int that represents the

student’s grade). For simplicity, it is assumed that no two Student objects may have the

same grade in this particular students array. The Student object is defined as follows:

public class Student

{
//Instance variables

private String name;

private int grade;

//Constructor

public Student(String name, int grade)

{
setName (name) ;
setGrade (grade) ;

}

public String getName() {

return name;

}

public void setName (String name) {

this.name = name;

}

public int getGrade() {

return grade;

}

public void setGrade (int grade) {

this.grade = grade;

}

e Linear search: Searches every element of the student array. If the search key

matches an element, its index is returned. Otherwise -1 is returned. Since linear

search is used to find the student with score 85, the search key in this example is the

grade of the student.

public int sequentialSearch(Student student, int[] students)

{
boolean found = false;
int place = 0;

while (place < students.length && !found)

{
if (student.getGrade() == students[place].getGrade()) {

found = true;

} else {

place = place + 1;

}
}

if (found) {

return place;

} else {

return -1;

}

A similar algorithm was presented in Topic 4.2.1 — Searching, sorting and other

algorithms on arrays in the Core Computer Science for the IB Diploma Program

book”®. However, whilst in that version of the searching algorithm only integers (or

other primitive data types) were compared, in the algorithm presented above

objects are compared. Objects cannot be compared in the same manner as primitive

data types. That is, one cannot test for equality between two objects by simply using

the equality operator (==). So, in order to determine if the student in the array is the

one that is being searched for (i.e. has a score of 85), the grade instance variable of

the student object is compared to the grade of the student at the place

position in the array. The equality operation is displayed in red letters.

e Binary search: Searches a sorted version of the students array for the student with

score 85. For binary search to work, the array under examination needs to be

sorted. In this example, the array is sorted in descending grade order (i.e. the

student with the best grade is first, whilst the student with the worst grade is last).

The binary search algorithm checks the middle element in the array. If that element

matches the search key, it is returned and the algorithm stops. Otherwise, the

algorithm determines if the element to be found could be located “to the right” or

“to the left” of the middle element and proceeds to repeat the aforementioned

algorithm for that portion of the array, disregarding the rest of the elements.

public int binarySearch (Student student, int[] students)

{
boolean found = false;

int low = 0;

int high = nums.length -1;

int middle = 0;

while (high >= low && !found) {

middle = (low + high) / 2;

if (student.getGrade() > students[middle].getGrade()) {

high = middle - 1;

} else if (student.getGrade() < students[middle].getGrade()) {

low = middle + 1;

} else {

* Dimitriou K. Hatzitaskos M. (2015). Core Computer Science for the IB Diploma Program. Athens:

Express Publishing. More information at: https://www.expresspublishing.co.uk/gr/en/content/core-

computer-science-ib-diploma-program

}
}

if

found = true;

(found) {

return middle;

} else {

return -1;

}
}

Again, a similar algorithm was presented in Topic 4.2.1 — Searching, sorting and

other algorithms on arrays in the Core Computer Science for the IB Diploma

Program book®. Since objects cannot be compared in the same manner as primitive

data types, the grade instance variable of the student object is compared to the

grade of the student at the middle position in the array. This comparison is

displayed in red letters.

Bubble sort: Compares every element of the student array to its next. If they are

not in the correct order, they are swapped. This process is called “a pass”. The

algorithm continues until an entire pass is completed without any swaps taking

place. As such, all elements are in the correct order.

public void bubbleSort(int[] students)

{
Student temp;

boolean done;

do {

done = true ;

for (int current=0; current<students.length-1; current=current+l) ({

}

if(students[current].getGrade()<students[current+1].getGrade()) {
temp = students|[current];

students[current] = students[current+l];
students[current+l] = temp;

done = false;

}

} while ('done);

}

Selection sort: Finds the student with the best grade and swaps him/her with the

student at the first position of the array. The student with the second best grade is

then found and is swapped with the student at the second position of the array, and

so on, until there are no more students to be sorted.

public void selectionSort(int[] students)

{
int first, least;

Student temp;

Ees

for(first = 0; first < size; first = first + 1) {

least = first;

for (int current=first+l; current<students.length; current++) {
if (students[current] .getGrade () >students[least] .grade) {

least = current;

}
}
temp = students[least];

students[least] = students[first];

students[first] = temp;

D.4.7 Identify the features of the Abstract Data Type (ADT) list
Exit skills. Students should be able to*:

Understand the nature of an ADT — where no implementation details are known but
the actions/methods are standard.

Abstract Data Types (ADTs) include the phrase data type that has been encountered before.

For example, Java build-in primitive data types, such as int, have already been discussed.

The int data type includes whole-number values between -2,147,483,648 and

2,147,483,647, as well as arithmetic operators +, -, *, /, etc. These arithmetic operators are

an essential part of the int data type, as they describe what operations can be performed

on it.

Through the use of object-orientated programming one may create classes that represent

custom data types. For example, a class that represents time, which includes fields for hours,

minutes and seconds, can be considered a custom data type. This class may be added or

subtracted just like the int data type. However, instead of using operators such as + and -,

one would use methods like add () and subtract ().

Data types may be considered as any class that consists of data (fields/properties) and

operations on that data (methods/functions).

Useful Information: It is important to understand how objects can be compared. One
cannot test for equality between two objects by simply using the equality operator
==). Take into consideration the following object:

public class Person

{
public int idNumber;
public String name;
public int age;

public Student(int idNumber, String name, int age)
{
this.idNumber = idNumber:
this.name = name;

this.age = age;

}

In the following program, two Person objects are created and compared as follows:

public class ObjectEqualityExample {
public static void main (String[] args) {

Person pl = new Person(318, “Kostas”, 18) ;
Person p2 = new Person(318, “Kostas”, 18):

if(pl == p2) {
System.out.println(“pl is the same as P2Z)

} else {

System.out.println(“pl is not the same as p27) ;
}

}

Both p1 and p2 refer to Person objects that have an idNumber variable instantiated
to 318, a name variable instantiated to “Kostas” and an age variable instantiated to
18. Although these objects are similar, and from the idNumber one could assume that
they are the same person, they are not the same. They are two different Person
objects. Comparing these two objects using the equality operator (==) returns false.
If the ObjectEqualityExample program above is run the output is:

Pl is not the same as p2

A simple way to compare two objects is to compare all their instance variables or
some specific one that identifies an object beyond any reasonable doubt. For example,
the idNumber of a Person object can be assumed to be unigue, and so if two
Person objects have the same idNumber they would be equal. As such, instead of
comparing pl to p2 by using the equality operator, one could test the equality of the
idNumber between the two objects as follows:

if(pl.idNumber == p2.idNumber) { .. }

Useful Information: Since one cannot test for equality between two objects by simply

using the equality operator (==), but Strings in Java are objects, it is interesting to

look at how one can go about comparing Strings.

The String Java class includes a number of methods that help a developer compare

the text of the String object to the text of another String object. The most helpful

method, in our case, for the comparison of two String objects is the .equals()

method.

For example:

String sl = “My name is Markos”;
String s2 = “My name is Markos”;

System.out.println(“sl is equal to s2:” + sl.equals(s2));

The output of this program snippet would be:

sl is equal to s2: true

Of course, since String objects are used widely and come bundled with Java, they are

sometimes treated in a special manner, which is beyond the scope of this book. Due to

that special treatment one may find that under some circumstances the equality

operator (==) may be used to effectively compare two String objects. However,

since this is not always the case, it is recommended that the .equals () method is

S
R
R

D
I

NS

e
BR
IV

S
R
R

S

S
SN

N

N
N

S
P

DN

i

EP
SR

S
e

always used to compare Strings, in order to avoid any unwanted results.

Abstraction, which was also presented in Topic 4 — Computational Thinking in the Core

Computer Science for the IB Diploma Program book®, relates to the essence of something,

without considering specific or unwanted implementation details. For example, the act of

double-clicking on an application icon and requesting its launch, is an abstraction. The same

action is taken for any application that a user may want to run, but the actual processing

that happens behind the scenes (from the input/output devices to memory allocation and

processing) is abstracted from the user. In a similar manner, in object-oriented

programming, an Abstract Data Type (ADT) is a class that may be used without knowing its

implementation details. The ADT describes the data (fields/properties) and operations that

can be performed on that data (methods/functions), but hides any details as to how the

data is stored and the operations performed. As such, any users that may use the ADT do

not know how exactly the ADT works. They are only aware of the data and operations, as

well as the expected results of the operations on data.

An important ADT that is extensively used in computer science is the ADT list. The ADT list

defines the interface, which means that it defines the methods that a list should encompass

to be called a list. A (linear) list is a group of elements arranged in a linear fashion, one after

the other. Fundamental operations on the elements of the list include the insertion, deletion

and observation of an element, as well as the size of the list. An ADT list may be

implemented in one of two ways; either statically or dynamically. For the static

implementation the one-dimensional array may be used, while for the dynamic

implementation the single linked list may be used. One-dimensional arrays are linear and

allow for the insertion, deletion and observation of their elements, as well as the array size.

As such, one-dimensional arrays are a specific implementation of the ADT list. Theoretically

an ADT list cannot be filled up. However, arrays, which have to be initialized using a specific

finite, number of elements, can and do indeed become full. There are a number of ways to

work around this issue. On the other hand, single-linked lists allow for the insertion, deletion

and observation of their elements, as well as the list size, and do not fill up. Sections D.4.9

and D.4.10 go into the specifics of static and dynamic ADT list implementations, respectively.

D.4.8 Describe the applications of lists

 Exit skills. Students should be able to’:
5

In a list (or a one-dimensional array) any element may be accessed if its index position is

known. However, in both stacks and queues, only one specific element may be read,

inserted or removed at any given time. Stacks and queues are ADTs that are designed

specifically in order to follow these restrictions.

Stacks

Stacks are Last-In-First-Out (LIFO) structures,

meaning that the last element that goes into

a stack is the first element to come out. For

example, in a stack of plates one may add

another plate on top of the stack, but he/she

may remove only the topmost plate, which

also happens to be the last plate added to the

stack. Another example might be a stack of

magazines in a waiting room. The people

waiting may only remove the magazine at the

top of the pile and read it. Anyone finishing

reading their magazine will return the

magazine to the stack and add it to the top of

the pile. As long as no one adds another

magazine to the stack, the returned magazine

will be the one at the top of the pile.

Figure D.3 visually presents how an empty

Image D.2: A stack of magazines stack may fill with elements. In this specific

example, a magazine is placed on top of the

stack every time. Adding elements on top of a

Magazine #1 Magazine #2 ' Magazine #3 Magazine)

Magazine #4

DAl R Magazinéu#a‘ l
Stack

WV ES - pal gtk Wt rd) Magazine #2

Magazine #1 (\=lehdlalRa Magazine #1 Magazine #1

Figure D.3: Pushing a magazine to the stack

stack is called pushing.

Figure D.4 visually presents how a stack with elements may become empty. In this specific

example, a magazine is removed from the top of the stack every time. Removing elements

from the top of a stack is called popping.

Magazine #4 W el R Magazine #2 Magazine #1

Magazine #4

‘ ‘Magazine“#?: ‘ Magazine #3
: Stack

W EEepdialch: 2 Magazine #2 Magazine #2

Magazine #1 Magazine #1 Magazine #1 Magazine #1

Figure D.4: Popping a magazine from the stack

ADT lists described in section D.4.7 can be used to to represent a stack. The fundamental

operations of an ADT list upon its elements include the insertion, deletion and observation

of an element, as well as the array size. A stack essentially needs the same operations, but

with some restrictions so that only the top element may be inserted, deleted or observed. If

the stack is empty, an error message should appear if the user tries to delete or observe the

top element of the stack. In order to provide this restriction, a pointer variable needs to be

in place that will always keep the index of the last element that was added to the stack, and

be updated accordingly. This pointer variable will restrict the stack operations to that

element.

The main methods of a stack that may be implemented using ADT lists are the following:

e push(): This method adds an element to the stack as the topmost element.

The element is added according to the list index signified by the pointer variable.

® pop(): This method removes the topmost element. That is, the last element that
was added to the stack.

The element of the list at the index signified by the pointer variable is removed and
the pointer variable updated to point to the second-to-last element of the stack,
which then becomes the last element (top-most element).

® peek(): This method returns the top-most element, that is, the last element that
was added to the stack, but does not remove it.
The element of the list at the index signified by the pointer variable is returned.

® isEmpty (): This method returns whether or not the stack is empty.
If the pointer variable is equal to -1 then this method returns true, otherwise false.

® size(): This method returns the size of the stack. That is, how many elements
there are in the stack.

This method returns the index of the pointer variable plus one.

Queues

Queues are lines, like the one that is shown in Image D.3. Queues are First-In-First-Out
(FIFO) structures, meaning that the first element that goes into a queue is the first element
to come out. For example, when waiting in a queue at the supermarket cashier, the first to
arrive at the cashier will be the first to be served and exit the supermarket. Customers that
join the queue must join at the end, while the customer that leaves the queue is at the front.

In computer science, both

stacks and queues are used in

People join at the People leave from
rear of the queue the front of the

various cases. For example,
an operating system uses

queues to keep track of

documents to be printed.

Mouse clicks or keyboard
strokes are also put in a

queue so that the computer
system is aware of which
clicks or keyboard strokes

happened and in what order.

Figure D.5 visually presents
how an empty queue may fill
with elements. In this specific

Image D.3: A queue (line) of people

example, a customer is inserted at the back of the queue every time. Adding elements to the back of the queue may
be called inserting, putting, adding or enqueuing.

Figure D.6 visually presents how a queue with elements may become empty. In this specific example, a customer is removed from the front of the queue every time. Removing elements from the front of a queue may be called deleting, getting or dequeuing.

L]

The front of a queue may also be the head of the queue, while the back may also be the tail.

(@I ol ag]<l g i ‘ Customer #2 ' Customer #3 el
 : i — = Back ; L ! Customer #4

S Customer #3
Queue Queue

Customer #2 (S olici g 94 @ ESTela ottt)

Customer #1 Customer #1 Customer #1

Front

Figure D.5: Inserting a customer into the queue

Back e

Customer #3 [eliSi TS 2
Queue Queue

Customer #2 W Customer #3 [NCUSIORmEr

Customer #1 Customer #2 ottt o NG INC E

Front
QU (o e Customer #2 W Customer #3 el telnt- ot

Figure D.6: Removing a customer from the queue

ADT lists (described in section D.4.7) can be used to to represent a queue. The fundamental

operations of an ADT list on its elements include the insertion, deletion and observation of

an element, as well as the array size. A queue essentially needs the same operations, but

with some restrictions so that an element may only be inserted at the tail of the queue,

while only the element at the head of the queue may be deleted or observed. If the queue is

empty, an error message should appear if the user tries to delete or observe the element at

the head of the queue. In order to provide this restriction, two pointer variables need to be

in place and updated accordingly, that will always keep the index of the head and the tail

elements of the queue.

The main methods of a queue that may be implemented using ADT lists are the following:

e insert(): This method adds an element to the queue as the last element.

The element is added according to the list index signified by the tail pointer variable.

e remove (): This method removes the first element. That is, the first element that

was added to the queue.

The element of the list at the index signified by the head pointer variable is removed
and the pointer variable updated to point to the second element of the queue,

which then becomes the first element.

® peek(): This method returns the first element, but does not remove it. That is, the

first element that was added to the queue.

The element of the list at the index signified by the head pointer variable is

returned.

® isEmpty (): This method returns whether or not the queue is empty.

® size(): This method returns the size of the queue. That is, how many elements

there are in the stack.

D.4.9 Construct algorithms using a static implementation of a list
Exit skills. Students should be able to':

Implement a list using singly linked types. Methods that should be known are add
{head and tail), insert (in order), delete, list, isEmpty, isFull.

As discussed in section D.4.7, an ADT list may be implemented statically using an array.
Static arrays need to have a specific maximum length that cannot be altered at run time.
Items are ordered within the array in such a way that its index represents the position of the
item in the list (remember, the first element of the list will have an index of 0). Two variables

are needed: one to keep the maximum number of elements that may be present in the array
(so, the array length) and one to keep the current number of elements in the array.

A list may be ordered or unordered. Ordered lists contain elements in ascending or

descending order, whereas unordered lists contain elements in no specific order. Adding an

element to an ordered list requires that the element be placed in the correct position so that

the order of the list is maintained. On the other hand, any element can be added to an

unordered list either from the head or the tail of the list.

The following code represents a static implementation of a list using a static array. The
variable MAX LIST holds the number of maximum elements that may be present in the
array, while the variable numItems holds the current number of elements in the array. The

array in this example is named items and holds integers (for the sake of simplicity). It could
have just as easily held some other primitive type or user-defined object.

public class ADTListStatic

{
private final int MAX LIST = 50;

private int numItems;

private int items[];

public static void main(String[] args) {

System.out.println("") ;
System.out.println("Unordered list");
System.out.println("") ;

ADTListStatic unorderedlist = new ADTListStatic() ;

//Adding elements to the head of the list.

unorderedlist.addHead (3) ;

unorderedlist.addHead (4) ;
unorderedlist.addHead (5) ;

unorderedlist.addHead (2) ;

unorderedlist.addHead (6) ;

unorderedlist.present() ;

//Removing element from the middle of the list.
unorderedlist.remove (4) ;

unorderedlist.present() ;

//Adding elements to the tail of the list.

unorderedlist.addTail (1) ;

unorderedlist.present() ;

System.out.println("") ;

System.out.println("Ordered list");

System.out.println("") ;

ADTListStatic orderedlist = new ADTListStatic();

//2dding elements to the list.
orderedlist.insert(3);

orderedlist.insert(4) ;

orderedlist.insert(5);

orderedlist.insert(2);

orderedlist.insert(6) ;

orderedlist.present() ;

//Removing element from the middle of the list.

orderedlist.remove (4) ;

orderedlist.present() ;

//Adding elements to the tail of the list.

orderedlist.insert (15);

orderedlist.present() ;

}

public ADTListStatic() {

items = new int[MAX LIST];

numIitems = 0;

}

public boolean isEmpty() {

return numItems == 0;

}

public boolean isFull() {

return numlItems == MAX LIST;

}

public int size() {

return numItems;

}

public int peek(int index) {

if (index >= 0 && index < numItems) {

return items[index];

}

System.out.println("out of range: 0 - " + (numItems-1));
return -1;

}

/*

* Method for adding an element to the head of an unordered list.
* Before adding the element, all the elements to the right
* of the head are shifted to the right to make way for the
* new element.

R
public void addHead (int item) {

if (isFull()) {

System.out.println("List is Eudiy =
} else {

int index = 0;

for (int pos = numItems; pos >= index; pos--) {
items[pos+l] = items[pos];

}
items[index] = item;
numItems++;

}
}

/*

* Method for adding an element to the tail of an unordered list.
* No shifting is necessary in this case.
*/

public void addTail (int item) {
if (isFull()) {

System.out.println("List is full.");
} else {

int index = numItems;
items[index] = item;

numItems++;

* Method for adding an element to a specific index.
* Before adding the element, all the elements to the right
* of the specific index are shifted to the right to make
* way for the new element.
7

public void add(int index, int item) {
if (isFull()) {

System.out.println("List is full.") ;
} else {

if (index >= 0 && index <= numItems) {
for (int pos = numItems; Pos >= index; pos--) {

items [pos+l] = items[pos] ;

}

items[index] = item;
numItems++;

} else {

System.out.println ("out of range: 0 - " + (numItems-1);
}

}
}

// Method for adding an element to an ordered list.

public void insert(int item) {

if (isFull()) {

System.out.println("List is full.");

} else {

if (isEmpty () {
add (0, item) ;

} else {

int index = 0;

for (int pos = 0; pos < numItems; pos++) {

index = pos;

index = pos;

break;

} else {
index = pos+l;

}
}

add (index, item) ;

}
}

}

* Method for removing an element from a specific index.

* The element is removed by shifting all the elements to

* the right of the specific index towards the left, to take up

* the space created by the removed element.

x7
public void remove (int index) {

if (index >=0 && index < numItems) {

for (int pos=index+l; pos<=size(); pos++) {

items[pos-1] = items[pos];

}
numItems--;

} else {

System.out.println("out of range: 0 - " + (numItems-1));

}

1

public void present() {

System.out.println("List elements:");

for (int pos = 0; pos < numItems; pos++) {

System.out.print (items[pos] + " ");

}

System.out.println() ;

The above static implementation of a list using a static array includes the following methods:

e ADTListStatic(): This method is the constructor. It initializes the array to be

used as the list with MAX LIST positions. It also initializes the variable numItems,

which counts the number of elements in the list, to zero.

e boolean isEmpty (): This method checks whether the list is empty by comparing g

numItems to zero.

e boolean isFull(): This method checks whether the list is full by comparing

numItems to MAX LIST.

e int size (): This method just returns numItems, which holds the number of items

in the list.

e int peek(int index): This method returns the element of the list at the

specified index. If the index provided is outside the bounds of the list then an error

message appears.

e void addHead (int item): This method first checks whether or not the list is full.

Then it shifts all the elements one position to the right and adds the element

provided to the beginning of the list.

e void addTail (int item): This method first checks whether or not the list is full.

It then adds the element provided to the end of the list.

e void insert(Node node) :This method adds the Node provided to the correct

position in the list in order to maintain list order (ascending or descending).

e void add(int index, int item) :This method is a private method that

adds an element to a specific index.

e void remove (int index): This method shifts all the elements to the right of the

specified index one position to the left, so as to take up the space of the element

that needs to be removed.

e void present(): This method just prints out the list, using a £for loop that runs

from zero to one less than numItems.

e void main(String[] args): This method is added for testing purposes. It

creates a new ADTListStatic object and adds numbers 3, 4, 5, 2, 6 to the head of

the list. It then presents the list, which will be the following:

62085843

It then removes the element at index 4 and once again presents the list (remember,

the first element of the list has an index of zero):

6 25 4

Finally the method adds number 1 to the tail of the list and presents the following

output:

6205 451

The main method then creates a new ADTListStatic object (listOrdered) and

adds numbers 3, 4, 5, 2, 6 using the insert method. This way the list remains

ordered. It then presents the list, which will be the following:

25 3FAE5H6

It then removes the element at index 4 and once again presents the ordered list

(remember, the first element of the list has an index of zero):

2345

Finally, the method adds number 15 to the ordered list and presents the following

output:

2 34515

Stacks using a static implementation of a list

Remember, stacks are Last-In-First-Out (LIFO) structures, meaning that the last element that

goes into a stack is the first element to come out. A stack needs the same operations as the

ADT list, but with some restrictions so that just the top element may be altered or examined.

For the sake of simplicity, a stack that may include integers will be presented in this section.

Of course, the algorithms could easily be altered for the stack to include some other

primitive data type or even user-defined objects.

The main methods of a stack that may be implemented using ADT lists are the following:

void push(int item), int pop(), int peek(), boolean isEmpty() and int

size().

The implementation of a stack using static arrays is quite simple:

public class ADTListStaticStack

{
private ADTListStatic list;

public ADTListStaticStack() {

list = new ADTListStatic();

}

public void push(int item) {

list.addHead (item) ;

}

public int pop() {

int item = peek() ;

list.remove (0) ;

return item;

}

public int peek() {
return list.peek(0) ;

}

public boolean isEmpty () {

return list.isEmpty();

}

public int size() {

return list.size();

)

}

Pushing an element to the stack involves just adding the element to the head of the list.
Popping the element from the stack involves peeking at the top element of the list, storing it
in a variable, removing the element from the list and returning the value in the variable. So,
popping an element is different from removing an element from the stack in that popping

- also returns the value of the element. Peeking at the element at the head of the stack
involves just peeking at the head of the list. Finding the size of the stack and whether or not
it’s empty involves simply calling the respective list methods and returning the results.

The following example could be used to test out the ADTListStaticStack:

public static void main (String[] args) {
ADTListStaticStack stack = new ADTListStaticStack() ;

stack.push (5) ;
stack.push (4) ;

stack.push(3) ;

stack.push(2) ;

stack.push(1) ;

System.out.println("Top element is: " + stack.peek()) ;
System.out.println ("Popping top element: " + stack.pop()) ;
System.out .println("Top element is now: " + stack.peek()) ;

A new stack is created and the numbers 5, 4, 3, 2, 1 are pushed giving the following stack:

Headl 2 3 4 5Tail

The top element is printed using the peek () method, then popped, using the pop ()
method, and then the new top element is printed again, giving the following output:

Top element is: 1
Popping top element: 1
Top element is now: 2

Queues using a static implementation of a list

Remember, queues are First-In-First-Out (FIFO) structures, meaning that the first element
that goes into a queue is the first element to come out. A queue needs the same operations
as the ADT list, but with some restrictions so that an element may only be inserted at the tail
of the queue, while only the element at the head of the queue may be deleted or observed.

For the sake of simplicity, a queue that may include integers will be presented in this
section. Of course, the algorithms could easily be altered for the queue to include some
other primitive data type, or even user-defined objects.

The main methods of a queue that may be implemented using ADT lists are the following:
void insert(int item), int remove (), int peek(), boolean isEmpty () and
int size().

The implementation of a queue using static arrays is quite simple:

public class ADTListStaticQueue

{
private ADTListStatic list;

public ADTListStaticQueue () {

list = new ADTListStatic();

%

public void insert(int item) {

list.addTail (item) ;

}

public int remove() {

int item = peek();

list.remove (0) ;

return item; #

}

public int peek() {
return list.peek(0) ;

}

public boolean isEmpty () {

return list.isEmpty ()’

}

public int size() {

return list.size():;

}
}

Inserting an element into the queue involves adding the element to the tail of the list.

Removing the first element of the queue involves peeking at the first element of the list,

storing it in a variable, removing the element from the list and returning the value in the

variable. Peeking at the first element of the queue involves just peeking at the first element

of the list. Finding the size of the queue and whether or not it's empty involves simply calling

the respective list methods and returning the results.

The following example could be used to test out the ADTListStaticQueue:

public static void main(Stringl] args) {

ADTListStaticQueue queue = new ADTListStaticQueue() ;

queue.insert(5);

queue.insert (4) ;

queue.insert(3);

queue.insert(2);

queue.insert(l);

System.out.println("First element is: " + queue.peek()) ;

System.out.println("Removing first element: " + queue.remove());

System.out.println("First element is now: " + queue.peek());

A new queue is created and the numbers 5, 4, 3, 2, 1 are inserted giving the following

queue:

Front5 4 3 2 1Back

The front element is printed using the peek () method, then removed, using the remove ()

method, and then the new front element is printed again, giving the following output:

First element is: 5

Removing first element: 5

First element is now: 4

D.4.10 Construct list algorithms using object references

Exit skills. Students should be able to™:

3’ Implement a list using singly-linked types. Methods that should be known are add
| (head and tail}, insert (in order), delete, list, isEmpty, isFull.

As discussed in section D.4.7, an ADT list may be implemented- dynamically using a linked

list. In section D.4.9 an ADT list was implemented using static arrays. Static arrays need to

have a specific maximum length that may not be altered at run time. That means that

although, in theory, due to array implementation restrictions, ADT lists do not have a

maximum number of elements that they can hold, they do have a maximum number of

elements that they can hold when implemented in a static manner, using static arrays.

Dynamic implementation of ADT lists overcomes these limitations.

A linked list is made up of two parts: the head (a.k.a. reference variable) and the nodes. The

head includes a variable that points to the first item of the list, as well as, sometimes,

another variable that holds the number of items currently in the list. The nodes are the

elements of the list. They include a data variable (that holds some kind of data, from

primitive types to user defined objects) and another variable that points and links to the

next node in the list.

#of items first item next item next item next

L T J ‘ - T - — ',; P > — '

head nodes

Figure D.7: An example of a linked list with three nodes

Figure D.7 displays an example of a linked list with three nodes that hold integers. The head

of the list holds the number of elements in the list (i.e. three), as well as a link to the first

node of the list. The first node of the list includes some data (i.e. 1), as well as a link to the

next (second) node of the list. The second node of the list includes some data (i.e. 2), as well

as a link to the next (third) node of the list. The third, and last, node of the list includes some

data (i.e. 3), but does not link to another node, since there is no other (fourth) node. As

such, the value of the link is null.

Figure D.8 displays an example of a linked list where the pointer of the head’s first variable is

null. In this case, the head does not point to t of the list, as there is no first

#of items first

head

Figure D.8: An example of an empty linked list

A linked list may be ordered or unordered. Ordered lists contain elements in ascending or

descending order, whereas unordered lists contain elements in no specific order. Adding an

element to an ordered list requires that the element be placed in the correct position so that

the order of the list is maintained. On the other hand, any element can be added to an

unordered list either from the head or the tail of the list.

The code below represents a dynamic implementation of a list using a linked list. Two classes

are needed:

e Node class: Represents a node of the linked list. It includes a data variable named

item (that holds an integer for the sake of simplicity) and another variable, next,

that points and links to the next node in the list.

e ADTListHead class: Represents the head of the linked list. It includes a variable,

numItems, that holds the number of elements in the list, as well as a variable,

first, that links to the first Node object of the list. If there is no first node, the list

is empty and the first variable is null.

public class Node {

private int item;

private Node next;

public Node (int item) {

this.item = item;

}

public void setItem(int item) {

this.item = item;

}

public int getItem() {

return item;

}

public void setNext (Node next) {

this.next = next;

}

Public Node getNext
return next;

}
}

0 {

public class ADTListHead {
Private Node first;
Private int numItems;

public ADTListHead (
first = null;
numItems = Q;

}

public Node find(in
if (index >= 0 s&

Node current =
for(int i=0; i<

current = cur

}
return current;

}

System.out.printl
return null;

}

//Methods for addin

) {

t index) {

index < numItems) {
first;

index; i++) {
rent.getNext () ;

n("out of range: 0 - " 4 (numItems—l));

g elements to an unordered list. public void addHead (Node node) {
node. setNext (firs
first = node;
numItems++;

}

public void addTail
if (size() == 0)

node.setNext(fi
first = node;

} else {

Node last = fin,
last.setNext (no

}
numItems++;

}

t) ;

(Node node) {

{
rst) ;

d(size()-1);
de) ;

// Methods for adding elements to an ordered list. public void insert (Node node) {
rst;

Node current = fi

node.setNext(first);
first = node;

} else {

current = current.getNext();

}

node . setNext (current.getNext ())/

current.setNext (node) ;

}

numItems++;

}

public int peek (int index) {

Node node = find(index);

return node.getItem();

}

public void remove (int index) {

Node nodeToRemove = find (index) ;

if (index == 0) {

first = nodeToRemove .getNext () ;

} else {

Node previousNode = find (index-1) ;

if (index == size()-1) {

previousNode.setNext(null);

} else {

previousNode.setNext(nodeToRemove.getN
ext());

}

numltems--;

}

public boolean isEmpty () {

return first == null;

}

public int size() {

return numItems;

}

public void present() {

System.out.println("List elements:") ;

Node current = first;

while (current != null) {

System.out.print(current.getItem()
 e R o

current = current.getNext():;

}

System.out.println();

}

public static void main(String[] args) {

System.out.println("") ;

System.out.println("Unordered list");

System.out.println("") ;

ADTListHead listUnordered = new ADTListHead() ;

//Adding elements to the head of the list.

listUnordered. addHead (new Node(3)) ;

listUnordered.addHead (new Node(4)) ;

listUnordered.addHead (new Node(5)) ;

listUnordered.addHead (new Node (2)) ;

listUnordered.addHead (new Node (6)) ;

listUnordered.present() ;

//Removing element from the middle of the list.

System.out.println("Remove element at index 4.");

listUnordered.remove (4) ;

listUnordered.present() ;

//Adding elements to the tail of the list.

System.out.println("At element 1 at the tail.");

listUnordered.addTail (new Node(l)) ;

listUnordered.present() ;

//Peek at the 2nd node's data.

int secondNodeData = listUnordered.peek (1) ;

System.out.println("Second node's data: " + secondNodeData) ;

System.out.println("") ;

System.out.println("Ordered list");

System.out.println("") ;

ADTListHead listOrdered = new ADTListHead() ;

//Adding elements to the list.

listOrdered. insert (new Node(3)) ;

listOrdered.insert (new Node (4)) ;

listOrdered.insert (new Node (5)) ;

listOrdered.insert (new Node (2)) ;

listOrdered.insert (new Node (6)) ;

listOrdered.present() ;

//Removing element from the middle of the list.

System.out.println("Remove element at index 4.");

listOrdered. remove (4) ;

listOrdered.present() ;

//Adding elements to the tail of the list.

System.out.println("Add element 15.");

listOrdered.insert (new Node (15)) ;
listOrdered.present() ;

The above dynamic implementation of a list using a linked list includes the following

methods:

« ADTListHead():This method is the constructor. It initializes the variable first to

null and also initializes the variable numItems, which counts the number of

elements in the list, to zero.

e boolean isEmpty(): This method checks whether the list is empty by checking

whether £irstisnull.

e int size():This method just returns numItems, which holds the number of items

in the list.

e int peek(int index) : This method returns the data of the node at the specified

index. If the index provided is outside the bounds of the list, then an error message

appears.

e void addHead (Node node): This method adds the Node provided to the

beginning of the list.

e void addTail (Node node): This method adds the Node provided to the end of

the list.

e void insert(Node node) .This method adds the Node provided to the correct

position in the list in order to maintain list order (ascending or descending).

e void remove(int index): This method removes the Node at the specified

index. For that to happen, the previous node in the list is found and its Next variable

is set to point to the Node that comes after the one to be removed, as shown in

Figure D.9. Two special cases exist:

1. If the node to be removed is the first node in the list, then the

£irst variable of the ADTListHead object is changed so that it

points to the second node in the list.

#of items first item next item next item next

#of items first item next item next item next

#of items first item next item next

fsissara il
-

Y —— : T . =

head
nodes

Figure D.9: Deleting a linked list node

2. If the node to be removed is the last node in the list, then the next

variable of the second to last node is set to nul1l.

void present (): This method just prints out the list. It uses a while loop until

the null item is found as the next node, meaning that there is no next node and as

such the end of the list has been reached.

void main(String[] args): This method is added for testing purposes. It
creates a new ADTListHead object (1istUnordered) and adds numbers 3, 4, 5525

6 to the head of the unordered list. It then presents the unordered list, which will be

the following:

652554 3

It then removes the element at index 4 and once again presents the unordered list

(remember, the first element of the list has an index of zero):

6 25 4

The method adds number 1 to the tail of the unordered list and presents the

following output:

625141

Finally, the method peeks at the second node’s data and prints it out, as follows:

Second node's data: 2

The main method then creates a new ADTListHead object (1istOrdered) and

adds numbers 3, 4, 5, 2, 6 using the insert method. This way the list remains

ordered. It then presents the list, which will be the following:

23456

It then removes the element at index 4 and once again presents the ordered list

(remember, the first element of the list has an index of zero):

2:3.4.5

Finally, the method adds number 15 to the ordered list and presents the following
output:

2:384:5:15

Stacks using a dynamic implementation of a list

Remember, stacks are Last-In-First-Out (LIFO) structures, meaning that the last element that
goes into a stack is the first element to come out. A stack needs the same operations as the
ADT list, but with some restrictions so that only the top element may be inserted, deleted or
observed.

For the sake of simplicity, a stack that may include integers will be presented in this section.
Of course, the algorithms could easily be altered for the stack to include some other

primitive data type or even user defined objects.

The main methods of a stack that may be implemented using ADT lists are the following:

void push(int item), int pop(), int peek(), boolean isEmpty () and int

size().

The implementation of a stack using linked lists is quite simple:

public class ADTListDynamicStack

d
private ADTListHead list;

public ADTListDynamicStack() {

list = new ADTListHead();

}

public void push(int item) {

list.addHead (new Node (item)) ;

}

public int pop() {
int item = peek();

list.remove (0) ;

return item;

}

public int peek() {

return list.peek(0);

}

public boolean isEmpty () {

return list.isEmpty();

}

public int size() {

return list.size();

}

}

It is easy to notice that the above implementation is very similar to the static version

discussed in section D.4.9. Nothing changes, apart from the fact that when pushing an item

to the stack, a new Node object must be created.

The following example could be used to test out the ADTListDynamicStack:

public static void main(String[] args) {
ADTListDynamicStack stack = new ADTListDynamicStack();

stack.push(5) ;

stack.push(4) ;
stack.push(3) ;

stack.push(2) ;

stack.push(1l) ;

System.out.println("Top element is: " + stack.peek());

System.out.println("Popping top element: " + stack.pop());

System.out.println("Top element is now: " + stack.peek());

A new stack is created and the numbers 5, 4, 3, 2, 1 are pushed, giving the following stack:

Headl 2 3 4 5Tail

The top element is printed using the peek () method, then popped, using the pop ()

method. Then the new top element is printed again, giving the following output:

Top element is: 1

Popping top element: 1

Top element is now: 2

Queues using a dynamic implementation of a list

Remember, queues are First-In-First-Out (FIFO) structures, meaning that the first element
that goes into a queue is the first element to come out. A queue needs the same operations

as the ADT list, but with some restrictions so that an element may only be inserted at the tail

of the queue, while only the element at the head of the queue may be deleted or observed.

For the sake of simplicity, a queue that may include integers will be presented in this

section. Of course, the algorithms could easily be altered for the queue to include some
other primitive data type or even user-defined objects.

The main methods of a queue that may be implemented using ADT lists are the following:
void insert(int item), int remove(), int peek (), boolean isEmpty() and

int size().

The implementation of a queue using linked lists is quite simple:

public class ADTListDynamicQueue

{
private ADTListHead list;

public ADTListDynamicQueue () {

list = new ADTListHead() ;

}

public void insert(int item) {
list.addTail (new Node (item)) ;

}

public int remove () {

int item = peek();

list.remove (0) ;

return item;

)

public int peek() {
return list.peek(0) ;

}

public boolean isEmpty() {
return list.isEmpty();

)

public int size() {

ot}

return list.size() ;

}

}

It is easy to notice that the above implementation is very similar to the static version

discussed in section D.4.9. Nothing changes apart from the fact that when inserting an item

to the queue a new Node object must be created.

The following example could be used to test out the ADTListStaticQueue:

public static void main(String[] args) ({

ADTListDynamicQueue queue = new ADTListDynamicQueue () ;

queue.insert(5) ;

queue.insert(4) ;

queue.insert(3) ;

queue.insert(2) ;

queue.insert(l) ;

System.out.println("First element is: " + queue.peek());

System.out.println("Removing first element: " + queue.remove()) ;

System.out.println("First element is now: " + queue.peek());

A new queue is created and the numbers 5, 4, 3, 2, 1 are inserted giving the following

queue:

Front5 4 3 2 1Back

The front element is printed using the peek () method, then removed, using the remove ()

method. Then the new front element is printed again, giving the following output:

First element is: 5

Removing first element: 5

First element is now: 4

D.4.11 Construct aigorithms using the standard library coliections included in

JETS

Exit skills. Students should be able to

mplement algorithms using the classes ArrayList and LinkedList. Students shouid have

| a broad understanding of the operation of these lists and their interface {methods)

| but not of the internal structure.

Common programming tasks that will most likely be needed by any kind of project are

usually packed in libraries. These libraries can be loaded by a programmer so that he/she

may take advantage of any programming tasks they include and avoid rewriting them for

his/her project. Libraries allow for various programming tasks to be written once and then

easily reused whenever necessary. Furthermore, bugs are avoided as known working

libraries that have been carefully tested may be used as “black boxes”. Most programming

languages include a standard library, which includes the programming tasks most widely
used. Java’s standard library collection included in JETS encompasses, amongst others,
ArrayList and LinkedList classes.

Classes (a.k.a. package members) from standard library collections may be imported using
the import statement at the top of the file in which the classes are to be used, as such:

import java.util -ArrayList;

After that, one can create ArrayList objects. The following example creates two
ArrayList objects, 1istl and 1ist2 respectively, that will hold Integer objects.

//Creates an ArraylList object.
Arraylist<Integer> listl = new ArrayList<Integer>() ;

//Creates an ArrayList object with an initial capacity //of 10 elements.
ArrayList<Integer> 1list2 = new ArrayList<Integer>(10) ;

Arraylists may include only objects as elements and so do not support primitive types. They
can, however, include any number of elements. Even if an initial capacity has been
determined, it can change during run time without the programmer noticing. So, compared
to static arrays, ArrayLists may include any number of elements.

Afull list of all the methods included in the ArrayList class can be found in the official Java
documentation®. However, the most common methods are described below:

® Adding elements to an ArrayList:

O boolean add(Element e): Adds element e to the end of the list.
Element e may be any kind of object, even user defined objects. It returns
true if the element is added successfully.

O void add(int index, Element e): Adds element e to the list at the
position specified by index. Shifts the element at the specified index and
all subsequent elements to the right.

® Removing elements from an ArrayList:
O void clear():Removes all the elements from the list.
O E remove(int index):Removes the element at the specified index. All

elements to the right of the index are shifted to the left, to take up the
space of the removed element. The element removed is returned from this
method. The return type, E, may be any kind of object, even user defined
objects.

O protected void removeRange (int start, int end) : Removes the
elements between the start (inclusive) and end (exclusive) indexes. Shifts to
the left any elements to the right of, and including, the end index.

® Retrieving elements from an ArrayList:

SRR s et
® Class ArrayList. In Java Documentation. Retrieved 19:00, July 8, 2016,
https://docs.oracle.com/javase/S/docs/api/java/util/ArrayList.html

© E get(int index): Returns the element at the specified index. The

return type, E, may be any kind of object, even user-defined objects.

o <TI>T[] toArray (T[] a):Populates a static array a with all the elements

in the list in proper sequence.

e Setting an element in an ArrayList:

0 E set(int index, E element): Replaces the element at the specified

index with the specified element E. The element previously occupying the

specific index is returned.

e Searching for an element in an ArrayList:

O boolean contains(Object o): Returns true if the specified object o is

found in the list.

o int indexOf (Object o): Returns the index of the first occurrence of the

specified object o in the list. If o is not in the list, then -1 is returned.

o int lastIndexOf (Object o): Returns the index of the last occurrence

of the specified object o in the list. If o is not in the list, then -1 is returned.

e |terating an ArrayList: :

0 Iterator iterator ():Returns an iterator over the elementsin the list.

O ListIterator listIterator(): Returns a list iterator over the

elements in the list.

e Checking whether an ArrayList is empty:

o boolean isEmpty ():Returns whether the list is empty or not.

e Getting the size of an ArrayList:

o int size():Returns the number of elements in the list.

’ Useful Information: Iterators are the easiest way one can cycle through the elements 1
1
i
1
1
1
1
1
i
1
i
1
1
1
1
i
I
!
i
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
i
1
1
1
i
1
1
1
1
1
I
1
1
i
1
1
1
i
1
i
1
1
1
1
1
1
I
I
I
1
I
1
1
1
1
1
I
1
1
1
1
1
1
1
1
1
i
1
1
1
I
1
i
1
1
1
1
1
1

!

of a collection, including ArrayList and LinkedList. There exist two types of

iterators:

e Iterator: allows programmers to cycle through a collection, as well as remove

any elements they may want.

o An iterator, initialized to the beginning of the collection, is obtained

by calling the collection’s i terator () method.

o Iterator methods:

®= boolean hasNext(): Returns true if there are more

elements in the collection.

= Object next():Returnsthe next element.

= void remove (): Removesthe current element.

e Listlterator: extends the Iterator to allow bidirectional traversal of a

collection, as well as additional modification to its structure and elements,

including addition of objects to the collection.

o A list iterator, initialized to the beginning of the collection, is

obtained by calling the collection’s 1istIterator() or

listIterator (int index) methods.

o List iterator methods:

= boolean hasNext(): Returns true if there are more

elements in the collection.

= boolean hasPrevious: Returns true if there is a previous

element.

= Object next():Returns the next element.

= Object previous ():Returns the previous element.

® int nextIndex(): Returns the index of the next element.

If there is not a next element, it returns the size of the list.

= int previousIndex (): Returns the index of the previous

element. If there is not a previous element, it returns -1.

= yoid remove ():Removes the current element.

= void set(Object o): Assigns o to the current element,

which is the element returned by a call to either next () or

previous ().

Both Iterator and ListIterator classes are part of the java.util standard

library collection. As such, in order to use ArrayList, Iterator and

ListIterator for our example, the following import statements need to be present

at the top of the file:

import java.util.Iterator;

import java.util.ListIterator;

import java.util.ArrayList;

1
1
1
i
1
i
1
I
1
1
I
t
1
I
I
i
1
1
i
I
t
1
1
1
1
i
I
1
I
1
i
1
1
1
1
1
1
1
1
I
i
1
1
I
I
i
I
I
1
i
i
1
1
T
i
I
i
i
1
i
1
I
1
I
I
1
i
1
i
I
1
I
I
1
1
1
1
!
1
i
i
1
i
1
i
t
I
1
I
i
i
1
i
1
t
1

Useful Information cont.: In order to avoid writing many import statements at the

top of each file, one may use the asterisk (*) symbol to import all package members

as follows:

import java.util.*;

All package members under the java.util, including Tterator, ListIterator

and ArrayList are imported using a single statement.

The following example illustrates how an Iterator may be used to cycle through all

the elements of a collection. Furthermore, it depicts how a ListIterator may be

used to modify an object of a collection, as well as how it can be used to cycle

through all the elements backwards.

import java.util.*;

public class IteratorExample {

public static void main(String[] args) {

ArrayList<Integer> list = new ArrayList<Integer>() ;

Integer one = new Integer(l) ;

Integer two = new Integer(2);

Integexr three = new Integer(3);
list.add(one) ;

list.add(two) ;

list.add(three) ;

//Iterator example.

Iterator<Integer> iterator = list.iterator();
while (iterator.hasNext()) {

System.out.print(iterator.next() + “),

}
System.out.println() ;

//List iterator example.
ListIterator<Integer> literator = list.listIterator();
while (literator.hasNext()) ({

Integer e = literator.next() ;

literator.set (e.intValue ()+10) ;

}

while (literator.hasPrevious()) {

System.out.print (literator.previous() + “ “);

}
System.out.println() ;

The output of the above program is the following:

123
g alz il

\

The LinkedList class from standard library collections may be imported using the import

statement at the top of the file in which the class is to be used, as such:

import java.util.LinkedList;

After that, one can create LinkedList objects. The following example creates a

LinkedList object, 1ist, that will hold Integer objects.

//Creates a LinkedList object.

LinkedList<Integer> list = new LinkedList<Integer>() ;

LinkedLists may include only objects as elements and do not support primitive types. They

can, however, include any number of elements. Compared to static arrays, LinkedLists may

include any number of elements, just like ArrayLists.

A full list of all the methods included in the LinkedList class can be found in the official

Java documentation®. However, the most common methods are described below:

e Adding elements to a LinkedList:

0 boolean add(Element e): Adds element e to the end of the list.

Element e may be any kind of object, even user defined objects.

0 void add(int index, Element e): Adds element e to the list at the

position specified by index. Shifts the element at the specified index and

all subsequent elements to the right.

o void push(Element e):Pushes (adds) element e to the beginning (head)

of the list.

e Removing elements from a LinkedList:

o wvoid clear():Removes all the elements from the list.

o E remove (int index):Removes the element at the specified index. All

elements to the right of the index are shifted to the left, to take up the

space of the removed element. The element removed is returned from this

method. The return type, E, may be any kind of object, even user defined

objects.

o E pop(): Pops (removes) the first (head) element from the list and returns

it.

e Retrieving elements from a LinkedList:

o E peek (): Returns the first (head) element of the list.

o E get(int index): Returns the element at the specified index. The

return type, E, may be any kind of object, even user defined objects.

o <T>T[] toArray (T[] a):Populates a static array a with all the elements

in the list in proper sequence.

e Setting an element in a LinkedList:

o E set(int index, E element): Replaces the element at the specified

index with the specified element E. The element previously occupying the

specific index is returned.

® Class LinkedList. In Java Documentation. Retrieved 19:00, July 8, 2016,

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

e Searching for an element in a LinkedList:

O boolean contains(Object o): Returns true if the specified object o is
found in the list.

O int indexOf (Object o):Returns the index of the first occurrence of the
specified object o in the list. If o is not in the list, then -1 is returned.

O int lastIndexOf (Object o): Returns the index of the last occurrence

of the specified object o in the list. If o is not in the list, then -1 is returned.
e lterating the LinkedList:

O Iterator descendingIterator(): Returns an iterator over the

elements in the list from last (tail) to first (head).

O ListIterator listIterator(): Returns a list iterator over the

elements in the list.

e Checking whether a LinkedList is empty:

O boolean isEmpty (): Returns whether the list is empty or not.

e Getting the size of a LinkedList:

o int size():Returnsthe number of elements in the list.

As it is easily apparent, both ArrayList and LinkedList classes have great similarities.
Both are used to implement list structures, and both may be used in real world applications
without the programmer having to think about what is happening in the internal structure of
the classes (“under-the-hood”). Furthermore, both have more or less the same methods.
Small differences exist, such as the fact that the E get (int index) method is faster in
the ArrayList class, whereas the void add(int index, Element e) is faster in the
LinkedList class. These small differences are negligible and beyond the scope of this
book.

Useful Information: Two small programs are included in Appendix A, that present how
stacks and queues may be implemented using the ArrayList class. These programs
also include a text user interface.

D.4.12 Trace algorithms using the implementations described in assessment
statements D.4.9-D.4.11

Exit skills. Students should be able to™:

| Trace algorithms. In examination questions, definitions of Arraylist and LinkedList
methods will be given when necessary.

The algorithms described and implemented in section D.4.9 used a static implementation of
a list. The following two main methods are traced, which are similar to those of section
D.4.9, and make use of ADTListStaticStack and ADTListStaticQueue objects
respectively.

public static void main(String[] args) {

ADTListStaticStack stack = new ADTListStaticStack() ;

for (int i=5; i>0; i--) {

stack.push(i) ;

}

System.out.println("Top element is: " + stack.peek()):

System.out.println("Popping top element: " + stack.pop());

System.out.println("Top element is now: " + stack.peek());

}

i>0 stack output

O
R
N

W
L
G

 _ Popping top element: 1
5 _Top element is now: o

Table D.2: Trace table for static stack example

public static void main(String[] args) ({

ADTListStaticQueue queue = new ADTListStaticQueue () ;

for (int i=5; i>0; i--) {

queue.insert (i) ;

}

System.out.println("First element is: " + queue.peek());

System.out.println("Removing first element: " + queue.remove());

System.out.println("First element is now: " + queue.peek());

}

15,4,3,2]

| First element is: 5

"mfRem né first element: 5

First element is now: 4

Table D.3: Trace table for static queue example

The algorithms described and implemented in section D.4.10 used object references for the

implementation of a list. The following two main methods are traced, which are similar to

those of section D.4.10, and make use of ADTListDynamicStack and

ADTListDynamicQueue objects respectively.

public static void main(String[] args) {

ADTListDynamicStack stack = new ADTListDynamicStack() ;

for(int i=5; i>0; i--) {

stack.push (i) ;

}

System.out.println("Top element is: " + stack.peek());

System.out.println("Popping top element: " + stack.pop());

System.out.println("Top element is now: " + stack.peek())

| Top element is: 1
: | Popping top element: 1

D e O I
~ Table D.4: Trace table for dynamic stack example

public static void main(String[] args) {

ADTListDynamicQueue queue = new ADTListDynamicQueue () ;

for(int i=5; i>0; i--) {

queue.insert (i) ;

}

System.out.println("First element is: " + queue.peek());

System.out.println ("Removing first element: " + queue.remove());

System.out.println("First element is now: " + queue.peek());

}

5

5 true 5]

4 true 5,4

3 true 5,4,3

2 true 5,4,3,2
1 | true 5,8,8,2,1 I e L LIS

T First element is: 5

 Removing first element: 5
| First element is no

 Table DE’TTra;:eitabI;Erdyniamlc queue example

Trace Tables D.2 and D.4 are exactly the same, as are Tables D.3 and D.5. Stacks and queues

can be implemented either statically or dynamically, without any apparent differences in the

trace tables. The main difference between static or dynamic implementations of lists, that

could play a role, is the fact that static implementations need to have the size of the list

defined before run time. As such, they can reach a limit where no other elements may be

inserted into the list. This is not the case with dynamic implementations of lists, since in that

case, the lists may expand at run time to take any number of elements.

Section D.4.11 dealt with algorithms that used the standard library collections included in

JETS. The following two main methods are traced, which are similar to those of section

D.4.11, and make use of ArrayList and LinkedList objects respectively.

public static void main(String[] args) {

ArrayList<Integer> list = new Arraylist<Integer>();

for(int i=1; i<4; i++) {

list.add (new Integer(i)) ;

X

//Iterator example.
Iterator<Integer> it = list.iterator() ;

while (it.hasNext()) {

System.out.print(it.next() + ™ “);

}
System.out.println() ;

//List iterator example.

ListIterator<Integer> lit = list.listIterator();
while (1it.hasNext()) {

Integer e = lit.next();

lit.set(e.intValue()+10) ;

} while (lit.hasPrevious()) {
System.out.print(lit.previous() + ™ “);

}
System.out.println() ;

~ Table D.6: Trace table for Arraylist example

public static void main(String[] args) {

LinkedList<Integer> list = new LinkedList<Integer>() ;

for(int i=1; i<4; i++) {

list.add(new Integer(i));

}

//Iterator example.
Iterator<Integer> it = list.iterator();

while (it.hasNext()) {

System.out.print(it.next() + " ");

}

System.out.println();

//List iterator example.

ListIterator<Integer> lit = list.listIterator();

while(lit.hasNext()) {

Integer e = lit.next();

1lit.set(e.intValue() + 10);

}

while (lit.hasPrevious()) {

System.out.print(lit.previous() + " ");

}
System.out.println();

S o Bt

BRSNS S A BRI G A P hasPrevious ()
(e} biet

ce table for LinkedList example

Trace Tables D.6 and D.7 are exactly the same. ArrayLists and LinkedLists can be used

interchangeably, without any apparent differences in the trace tables. Both may hold any

number of elements.

D.4.13 Explain the advantages of using library collections
Exit skills. Students should be able to*

Understand that libraries provide convenient and reliable implementations of

common programming tasks.

Anybody implementing a project of any kind does not want to “reinvent the wheel” and do

extra unnecessary work. This is the case in computer programming as well. For example, if

one has written a sorting algorithm for integer arrays for a previous project, one wants to

avoid having to rewrite it for another project that may need it. Ideally, pre-written code,

tried and tested under scrutiny, does not need to be rewritten but may be used as it is. This

code may be used as a “black box” in that the programmer does not need to know the

internal workings of it, but rather only the input required, as well as the output to be
delivered. For example, in a theoretical sorting algorithm for integer arrays, a programmer
may call the function sort with an integer array as an argument in this way:
sort (integerArray). The programmer only needs to be aware of the existence of the
sort function, its arguments, if any, as well as the fact that it is going to sort the elements
of integerArray array in ascending order.

Since searching and sorting, as well as a number of other programming tasks (ex. accessing a
file, sending data over a network, etc.) are common, most programming languages, Java
included, come with a number of “program sets” that allow for the easy completion of these
programming tasks. These “program sets” are also widely known as libraries or library
collections.

As was previously seen in section D.4.11, classes (a.k.a. package members) from standard
library collections may be imported using the import statement at the top of the file in
which the classes are to be used, as such:

import java.util. ArrayList;

This import statement allows a programmer to access all the functionalities provided by the
ArrayList. In a similar manner the following import statement at the top of a file allows
the sort (int[]) function described before to be used:

import java.util -Array.sort(int[] N

In order to avoid writing lots of import statements at the top of each file, one may use the
asterisk (*) symbol to import all package members as follows:

import java.util.*;

All package members under the java.util, including Iterator, ListIterator and
ArrayList are imported using a single statement.

Libraries provide convenient and reliable implementations of common programming tasks
since:

e Code in libraries can be written and tested independently of any specific
applications.

® Code in libraries may be used as a “black box” since it is known to be working. If a
bug is present in the application, it exists in the application and not in the library,
reducing testing and debugging time.

e Code in libraries may be used in a number of applications and programmers do not
need to “reinvent the wheel”.

e Code in libraries reduces the size of the application files. Programmers can call
library code and avoid writing it as application code, which would make the
application files long and cumbersome.

D 4.14 Outline the features of ADT’s stack, queue and binary iree
{701 81111 8 Students should be able to':

| Provide diagrams, apphcatlons and descnptrons of these ADTs. For example, they

| should know that a binary tree can be used to efficiently store and retrieve unique

| keys.

The features of ADT’s stack, queue and binary tree have been discussed in detail both in

Chapter 1 (Topic 5), as well as in the current chapter (Topic D). A list of these features is

briefly provided below:

e Features of Stack ADT:

o Stacks are made of a "chain" of data.

o Elements can be "pushed" onto the top of the stack.

o Elements can "popped" from the top of the stack.

o Elements follow the LIFO approach.

o Trying to access an element from an empty stack causes error and should be

avoided.

o Features of Queue ADT:

o Queues are made of a "chain" of data.

Elements can be "enqueued" at the back of the queue.

o Elements can be "dequeued" from the front of the queue.

o Elements follow the FIFO approach.

o Trying to access an element from an empty queue causes error and should

be avoided.

e Features of Binary Tree ADT:

o Trees are made of nodes which have two pointers. One pointing to the left

of the node to elements smaller than itself, and one pointing to the right of

the node to elements greater than itself.

Trees assemble themselves from the root node.

In case of a balanced tree, the root node contains the middle value of the

whole set.

They are naturally sorted.

Searching can be done in a binary manner. O

D.4.15 Explain the importance of style and naming conventions in code

Exit skills. Students sh uld be able to':

Understand L1 meamngful |dent|f1ers, T e I mdentatson LT adequate sty

all improve the readability of code for humans and save money, time and effort in

programming teams.

INT, AIM 5 The need to develop a common “language” to enable collaboration across

international frontiers when resolving problems.

Standards and conventions are established to make life easier. They allow people to function

and collaborate at an international level without difficulty. For example, the traffic light

convention dictates that a vehicle must stop if there is a red light, pass if there is a green

light and be cautious at an amber light. This international convention allows people to drive

in any part of the world without any problems. On the other hand, height measurements do

not follow a single international convention. Some people, in some countries, use the metric

system and measure height in meters and centimeters, while in other countries they

measure height in feet and inches. There are a number of situations that do not follow a

single international convention. This leads to difficulties in understanding and

communication between people using different conventions for the same thing. Of course, a

lot of these conventions go a long way back in human history, before globalization, and have

been embedded so deeply in local cultures that they are difficult to change. For example,

while in most of the world people drive on the right-hand side of the road, there are some

countries where people drive on the left-hand side. This difference leads to drivers having

difficulties switching between the two conventions, as well as increased economic costs for

the car industry as a whole, since two types of cars (i.e. some with the steering wheel on the

left-hand and some on the right-hand) need to be created for every car. As such,

international conventions are important and allow for a common “language” that enables

easier communication and collaboration between individuals across the globe.

Programming has its own conventions to allow people from around the world to easily

exchange code and be able to work around the same projects. The reduction of cost,

especially during the maintenance phase, is also a key reason for following coding

conventions. Since most of the cost of a piece of software is taken up with the maintenance

phase7 and because the maintenance is almost always performed by someone other than

the original author, code conventions are necessary to improve readability and allow for any

engineer to understand previously written code quickly and fully. Code that is “clean” and

follows the internationally established conventions is easier for another programmer to

understand and alter, and is therefore easier and less costly to maintain.

The most common coding conventions include the following:

e Language conventions: All programming languages (except from some educational

programming languages) use the English language, so as to remove a language

barrier.

e Comment conventions: Comments can either be “block” (a.k.a. prologue) or “line”

(a.k.a. inline) comments.

o Block comments in Java need to be delimited by /* and */ and may span

multiple lines.

Line comments in Java need to be delimited by //.

The best use of comments is subject to dispute, but overall they are used to

summarize code.

7 Robert L. Glass. Facts and Fallacies of Software Engineering, Addison Wesley (2003)

o Block comments can be used before every class or method to provide a

general description. Line comments can be used on top or next to a line of

code whose workings may not be apparent. An example is shown below:

/’*

The main method loops through numbers 1 to 10

and outputs whether the number is even or odd.

4
public static void main(String[] args) {

int a = 0;

//Loops through numbers 0 to 9.
for(int i=0; i<10; i++) {

//a is incremented in every loop.
a = a+l;

//Checks if a is even or odd and outputs
//the result.

if(a%2 == 0) {
System.out.println(a + “ is even.”);

} else {

System.out.println(a + “ is odd.”);

}
}

}

o Comments should be simple and to the point. The need for a lot of

comments may signify complex code that may need to be rewritten. The

code on its own, using sensible naming conventions, should not need

extensive commentary to be understood.

e Indent style conventions: Although in most programming languages it can be

omitted, indentation of programming blocks conveys the program’s structure and

makes the code easier to read. There are a number of indent style conventions

available®, but all use spaces to signify that code is contained inside some other

code, as can be seen by the following example:

public static void main(String[] args) {

int a = 0;

for (int i=0; i<10; i++) {

a = a+l;

System.out.println(a) ;

}
}

The code inside the main method is indented two white spaces to the right. The

code inside the for loop is indented two further spaces to the right, signifying that

it is both inside the main method and the for loop construct.

e Line length conventions: These refer to the maximum number of characters that

may appear on a single line. Although these conventions probably originated due to

& Indent style. (16, July 2016). In Wikipedia, The Free Encyclopedia. Retrieved 15:05, July 20, 2016,

from https://en.wikipedia.org/wiki/Indent_style

older technical limitations, such as various punch cards that could only consist of 80
characters in one line, they still play a role in modern programming. Screen sizes and

r resolutions have increased, allowing for a larger number of characters to be easily

presented in one line without having to wrap around to a second. Most

programming style guides define a desirable number for characters per line to be in
the range of 72 to 100°. Having to read code that spans more than one line is hard

and should be avoided when possible.

® Naming conventions: A set of rules for naming identifiers. Identifiers can be of any

type of entities, such as variables, method and classes. Giving sensible names that
follow specific conventions, to variables, methods and classes reduces the time and
effort needed to read and understand code. It can also provide additional
information for the identifier. For example, classes may always start with a capital

letter, whereas object instantiations of classes may always start with a lower case
letter. Naming conventions lead to consistency between individuals working on the
same code, enhance clarity and reduce ambiguity. They also help avoid “naming

collisions” between identifiers, leading to two identifiers with the same name.
Overall, following naming conventions and using sensible names for identifiers, that
describe the specific use of the identifiers, leads to better understanding of the code
after a long interval of time and as such, to easier and less costly maintenance.

—_— e

° Characters per line. (7, July 2016). In Wikipedia, The Free Encyclopedia. Retrieved 15:10, July 20,
2016, from https://en.wikipedia.org/wiki/Characters_per_line

End of chapter example questions with answers

Exercise 1: Consider the following method, method, where a is a non-negative number and

bisa String.

public static String method (int a, String b) {

if (a == 1)

return b;

} else {

return b + " " + method(a-1, b);

1

}

Define recursion.

Trace the call to method (5, "hi"), showing all steps and the final output.

Using method method, construct a method with the following signature:

String method2 (int a, String b, int c, String d)

that obeys the following specification:

e ifa > c then it first prints String b c times, then prints String d, and

finally prints String b a-ctimes.

e ifa <= cthenitprints”a must be greater than c".

For example, the a call tomethod2 (5, "hi", 3, "hello") will output:

hi hi hi hello hi hi

Answer to Exercise 1:

1. Recursion is a programming technique where a method calls itself.

2.

method (5, "hi")

hi + " " + method(4, "hi")

hi + " " + hi + " " + method(3, "hi")
hi + " " + hi + " " + hi + " " + method(2, "hi")
hi + " " +hi +" "+ hi + " " + hi + " " + method(l, "hi")
hi +" " +hi +" " +hi+ " " +hi+""+hi

Outputis:hi hi hi hi hi

3k

public static String method2(int a, String b, int c, String d) {

if (a > c) {

return method(c, b) + " " + d + " " + method(a-c, b);

} else {

return "a must be greater than c";

)
}

Exercise 2: Taking into account ADTListDynamicQueue from D.4.10, trace the following

code below.

public static void main(String[] args) {

ADTListDynamicQueue queue = new ADTListDynamicQueue () ;

for(int i=5; i>0; i--) {

queue.insert (i) ;

}

System.out.println("Elements in queue:");

for(int i=0; i<queue.size(); i++) {

System.out.println (queue.remove()) ;

}
}

}

Answer to Exercise 2: A new ADTListDynamicQueue object is created named queue. The

first for loop populates the queue, adding the elements 5, 4, 3, 2 and 1. As such, the

elements in the queue after the first for loop are:

front-5 4 3 2 1-Dback

In the second for loop i begins from 0 to one less than the queue size. However, during

every loop an element is removed from the queue. As such, after every loop, i increases by

one, but queue. size () decreases by one as well.

The trace table is the following:

fo VRS i<gueue.size () ocutput

>
5
5

©

4
4
4
4
3
2
1

1
N
w
e
s

o
o

u

Elements in queue

4 S

3
3
3
3 2
2

Exercise 3: Construct a program that checks whether a given email address is valid. An email

address is valid if it adheres to the following rules:

The @ character is included once.

A period is included once after the @.

At least 2 characters are included after the period.

There are at least 2 characters between @ and the period.

There are at least 3 chars before the @ character.

Answer to Exercise 3:

public class email validation

{
public static void main(String [largs)

{
String email = "kdimitriou@haef.gr";

int length = email.length();

boolean correct = false;

int counter = 0;

int c_counter = 0;

for (int i=0;i<=length-1;i++) {

if (email.charAt(i) == '@')

{
counter= counter + 1;

}
}

if (counter==1) {

System.out.println("The Q@ character is included once");

c_counter = c_counter + e

}

int at_index = email.indexOf('@") ;

String a = email.substring(at_index+l,length);

int counter_ 2 = 0;

for(int i = 0;i<a.length() ;it++) {

if(a.charAt(i) == ('.")) {

counter 2= counter_ 2 +1;

}

}

if (counter==1) {

System.out.println("A period is included once after the Q") ;

c_counter = c_counter + 1;

}

int index_period = a.indexOf('."');

int length a = a.length();
int distance (length_a—l) - index period; 1

if (distance>=2) {

System.out.println("At least 2 characters are included after

the period") ;
c_counter = c_counter + 1;

}

if (index period>2) {

System.out.println("There are at least 2 characters between Q

and the period") ;

c_counter = c_counter + 1;

}

if (at_index>3) {

System.out.println("There are at least 3 chars before the @

character") ;

c_counter = c_counter + s

}

if (c_counter != 5) {

System.out.println("Email is incorrect") ;
} else {

System.out.println("Ok") ;

}

Exercise 4:

Consider the following problem:

Mr. Joe Doe is a high-school teacher in Athens, Greece. He teaches all school grades and is

also responsible for all the computers in the school. The school started a school bookstore

around ten years ago, where schools could buy and sell second hand books and magazines,

to keep the prices low. Since it began as a side project and was initially small, there was no

need for keeping a digital record of the books and magazines.

Currently, all reading material (books and magazines) are allocated a unique identification
number and a paper card is created for each one of them that includes all their details.
Whenever a student buys a book or magazine, the paper card is removed. When a student

brings a book or magazine for sale, a paper card is created.

The school bookstore has grown a lot since the economic crisis hit Greece in 2010. Each year
more and more students prefer to sell their books from the previous year and buy used
books, for their new school year, at a lower rate. The school bookstore has grown so much
and so much paper card housekeeping needs to be managed by Mr. Joe Doe alone that he is

having a hard time keeping up with it. Although the school bookstore is a vital part of the
school, Mr. Joe Doe cannot be offered any help, since the school is a public one and there
are no funds available to recruit a full-time employee. As such, the current system, under

the current circumstances is inadequate. The new application should be maintainable and
there should be a way to back up all the data. The new application would need to handle all
the aspects of the bookstore in a digital manner so as for Mr. Joe Doe to remove the paper
cards currently in place and limit the time spent in housekeeping. The computer available for
the school bookstore is an old one and running Windows XP. It has Java installed.

Develop a Java program that will correspond to the above scenario. The program should

fulfil the following citeria:

A friendly command line interface that allows for easy use of the application.

A list of all the reading material in the bookstore.

Alist of all the reading material of some specific publisher.

A list of all the publishers of the books or magazines in the bookstore.

A data entry form to allow the addition of a publisher to the bookstore.

The ability to remove a publisher from the bookstore.

A data entry form to allow the addition of a reading material to the bookstore.
The ability to remove a reading material from the bookstore.

The ability to sort the reading material in the bookstore, according to price.

10. The ability to search for a reading material, using its ID or title.

©
e
O
N
O
U
r
®

N
e

Answer to Exercise 4:

ReadingMaterialFile

LinearSearch

 =

e

SE
ES

S
R

s

R

 ; 5 L

<<abstract>>

ReadingMaterial

Magazine 3 t

I L5 I 1
 e

Ee

s

Book

Ee
=c

L
t

ReadingMaterialFileRAF

CEosmmeen

 PublisherFileRAF

Figure D.10: Bookstore classes

ReadingMaterial, Book, Magazine and Publisher classes

The main data structures surrounding the bookstore can be the ReadingMaterial, an

abstract class, that just describes the basic information related to anything that may be part

of the bookstore. Since it is an abstract data structure, more concrete data structures need
to be created that can be used to create actual data objects in the bookstore. These
concrete data structures are the Book and the Magazine. Since they extend the capabilities

of the abstract class ReadingMaterial, both will have all the variables and methods

included in this class. As such, both will have an id, title, pages, price and a
publisher, as well as the getter and setter methods for these variables. A book will also

include chapters and a list of authors, while a magazine includes a list of additional resources

it may come with (ex. a cd, recipe guide, etc.).

IO class

In order to describe a publisher, one will need more than just a primitive data variable, such
asan int or a String. So, a Publisher data structure will be needed. It will include the id,

name, address, telephone number and website of the publisher. Every Book or Magazine

will have a single Publisher.

In order for the product to communicate with the user through a command line interface it

will need a way to output and input data:

e The output is easy, it's a single standard command provided by the Java

environment: System.out.print () and System.out.println(). The later will

terminate the current line with a newline character. Any String that appears

between the parenthesis of those commands will be printed to the terminal.

e The input is a bit more complicated. For that a public I0 class will be created that

will include a static method named input. That method will receive a String that

will be shown as a prompt to the user (ex. “Please enter the title of the

book:”).

ReadingMaterialFile and PublisherFile classes

The product will hold information regarding books, magazines and publishers. In order to do

so, all this information will need to be stored in files so that they may be retrieved and

persist after the application quits.

There are two classes that will be responsible for the reading and writing of all this

information to specific files:

e ReadingMaterialFile will write/read and output all the information regarding

the reading material (books and magazines). The information will be placed in two

separate files, one for the books and one for the magazines, respectively.

e PublisherFile will write/read and output all the information regarding the

publishers.

LinearSearch and SelectionSort classes

In order to be able to search through or sort any kind of data some kind of algorithm is

needed:

e The LinearSearch class will encompass different static methods that will allow the

user to search through a number of arrays holding different kinds of data, such as

Publisher, Book or Magazine objects.

e The SelectionSort class will encompass different static methods that will allow

the user to sort a number of arrays holding different kinds of data, such as Book or

Magazine objects.

Queue class

In order to be able to read the bookstore information from the files, one needs a data

structure that may handle any number of elements and not just a static array that may hold

a predefined number. Since the number of elements that will be read will be unknown the

Queue class will play that role. It will provide a simple implementation of a Queue data

structure.

InputTerminal class

This will be the class that will handle the communication of the user with the product while

creating new Book, Magazine or Publisher entries. It will be comprised of static methods

that will be called from the Bookstore class, where the main method of the application will

reside.

Bookstore class

Will be the entry point of the application. It will hold the main method and will be

responsible for most of the communication between the user and the product. It will

present the main menu, read in the user selections and orchestrate the correct functioning

of the application.

ReadingMaterialFileRAF and PublisherFileRAF classes

These two classes will have the same functionality as ReadingMaterialFile and

PublisherFile, respectively, but will use RandomAccessFile.

Using the RandomAccessFile is not necessary and is not used by default. It can be turned

off/fon by making withRandomAccessFile, in Bookstore and InputTerminal,

false/true, respectively. The RandomAccessFile functionality is included just to present

the different ways one may read/write to a file.

The code solution for this question, provided below, can also be digitally found online at:

http://www.expresspublishing.co.uk/ibadvancedcomputerscience

This code is copyrighted and should not be copied and pasted as part of any assessment, but

may only be used as a guide.

The code solution, provided below, may be improved in a variety of ways that are beyond

the scope of this book. However, some improvements are considered below:

e Additional input validation and error handling: At the moment, the product only

performs a small amount of input validations. For example, if the user does not

input anything for the title of a book it will request the title again. However, there

are a number of occurrences where input validation and error handling could be

better. For example, when the user inputs text instead of an integer when the

program is expecting the latter, or when the user inputs a decimal point number

instead of an integer. The application should be able to handle such input and

output a useful error message.

e Addition of a graphical user interface (GUI) instead of command line interface

(CLI): Visual interactive elements such as buttons, lists, menus would make the use

of the application a lot easier.

e Introduction of some sort of encryption/decryption algorithm that would allow

the bookstore data to be stored even more securely.

e Ability to make automatic backups: At the moment backups can be performed

manually by copying the three data files that have to do with books, magazines and

publishers. This could be done automatically by the application to make life easier

for the user. For example, it could create a copy of the files on the desktop.

e Publisher removal if no reading material links to it.

e Publisher removal disallowance if there are reading materials that include it.

Another aspect that could be improved, although it would be transparent to the users,

would be the actual code of the product. There is some duplicate (identical) code in various
classes (especially ~ ReadingMaterialFile, ReadingMaterialFileRAF and
InputTerminal) that could be combined and simplified.

Code of the product

TerxeieRbuTpESY
SUL

IO
PT

BUR
DT

w
e
x
e
d
y

o *
pouzsu

IO3EINH
x

%
/

{
!
p
T

u
a
n
y
s
x

}

()pI3eb
jur

o
r
1
q
n
d

TetIsaeRbUTPRSY
SY3

FO
PT

U3
/%

U
I
N
I
B
I
F

« #

P
O
Y
I
O
W

I
O
S
S
V
O
O
Y

x

xx/ {
t
z
o
y
s
t
T
q
n
d

=
z
o
y
s
t
r
a
n
d
-
s
T
y
l

!
o
o
t
a
d

=
s
o
t
a
d

s
T
y
l

!
s
e
b
e
d

=
s
s
b
e
d
-
s
t
y
j

{9T3T3
=

STITH"
pPT

=
PT

sTu3
STU3

}
(
z
o
y
s
t
1
q
n
d

xoysTtTgng
‘ootad

jur
‘sebed

jur
‘o73T3

buralzs
‘PT

JuT)
T
e
T
I
S
I
E
R
B
U
T
P
E
S
Y
N

\
*

T
e
r
a
s
s
e
n
b
u
i
p
e
s
y

oyy
o

x
e
y
s
t
i
a
n
d

sy3
s
s
y
s
t
i
q
n
d

w
e
z
e
d
y

T
e
t
a
s
s
e
p
b
u
t
p
e
s
y

syl
go

e
o
t
a
d

syu3l
e
o
t
a
d

w
e
x
e
d
y

o

T
e
T
I
o
j
e
n
b
u
t
p
e
s
y

9ya
yo

s
e
b
e
d

yo
x
e
q
u
n
u

8yl
s
e
b
e
d

w
e
x
e
d
y

i

T
e
T
I
o
l
e
R
b
U
T
P
E
S
Y

Syl
3O

ST3TI
SUI

21313
wezedy

.
T
e
T
I
L
l
R
R
O
U
T
P
R
e
Y

oYyl
JO

PT
Byl

pT
 wexedy

¥

A
O
J
O
N
I
Z
S
U
C
D

¢

%
/

‘
x
o
y
s
t
T
g
n
d

a
s
y
s
t
T
g
n
g

o
3
e
a
t
a
d

!
o
o
t
a
d

jut
o
j
e
a
t
a
d

!
s
a
b
e
d

jur
=
3
e
a
t
a
d

{
9
7
3
1
3

b
u
t
a
z
s

o
z
e
a
t
a
d

!pT
3ur

o
j
e
a
t
a
d

s
s
e
1
o

T
e
I
I
o
l
E
R
b
u
T
p
R
S
u
/
/

}
T
e
T
a
o
3
e
R
O
U
T
P
E
S
Y

SSeTD®
3
o
e
a
j
z
s
q
e

o
T
T
a
n
d

T
e
r
a
e
l
e
w

b
B
u
r
p
e
s
y

syz
jo

s
o
t
a
d

syl
u
a
n
i
e
r
y

»

%
P
O
y
l

W

I
O
S
S
V
O
O
Y

x
/

{
!{sobed

=
s
e
b
e
d
’
'
s
T
t
y
z

}

(
s
e
b
e
d

j
u
t
)
s
e
b
e
g
i
e
s

p
r
o
a

O
o
T
T
A
n
d

I
T
e
t
a
e
j
e
r
b
u
r
p
e
s
y

oyj
Jo

s
=
b
e
d

o

x
e
q
u
n
u

Lyl
s
e
b
e
d

w
e
x
e
d
p

y ¥

POYISW
IOFBINN

x
wx/

{
!{sebed

u
a
n
z
o
x

}

()
s
s
b
e
g
a
s
b

j
u
r

o
r
T
g
q
n
d

/x
T
e
t
a
o
l
e
r
b
u
t
p
e
s
y

sy3
zo

s
e
b
e
d

o

z
s
q
u
m
u

syl
u
I
n
I
S
I
A
Y

4 *
P
O
Y
R
B
U

T
O
S
S
V
O
O
Y

x

%
/

{
g
f
®
T
a
T

—
i
e
T
a
T
I
N
S
T
U
L

|}
(313713

b
B
u
t
a
i
s
)
s
r
3
i
T
i
i
e
s

proa
o
r
T
q
n
d

/x
t
e
r
a
s
j
e
g
b
u
t
p
e
s
y

eyl
Jo

STITI
oyl

873713
 wexedy

x %
poylew

I03eINH
wx/

{
/®13T3

u
a
n
y
e
x

}
(
)
®
1
3
1
1
3
9
6

B
u
t
a
z
s

o
r
i
g
n
d

/%
T
e
t
x
e
l
e
N
b
u
T
P
E
S
Y

Syl
FJO

°TITI
Oyl

uanlexy
» *

p
o
y
l

e
l

I
O
S
S
V
D
D
Y

xx/

{
!PT

=
PT'STUY}

}
(pT

3uT)pI3Ss
pros

oTTand
/%

j00q
Sy3

3O
STITI

euys
 or3r3

wexedy
i

jooq
eyl

Fo
PT

Su3
 Pr

wexedy
¥*

I
0
3
0
R
I
J
S
U
O
D

x x
x
/

!
s
a
o
y
a
n
e

[
]
b
u
t
a
z
s

s
3
e
a
t
a
d

f
‘
s
a
o
3
d
e
y
o

jut
s
3
z
e
a
t
a
d

}
T
e
t
z
e
j
e
g
b
u
T
p
e
s
y

s
p
u
s
i
x
e

joodg
s
s
e
T
o

o
T
T
q
n
d

s
s
e
T
o

o
o
d
/
/
 {

{
t
z
e
y
s
t
i
q
n
d

=
a
s
y
s
t
r
q
n
d

s
T
y
3

}

(zoysTTand
I
9
Y
S
T
T
N
d
)

IBYSTTGNE3®s

PTOA
OTTqnd

T
e
t
x
s
j
e
p
b
u
r
p
e
s
y

syl
Jo

x
o
y
s
t
I
g
n
d

Sy3
z
o
y
s
t
r
g
q
n
d

w
e
x
e
d
p

poyrsw
I03BINW

x
wx/

{
‘
z
s
y
s
t
r
g
n
d

u
a
n
z
e
x

}

()
a
o
y
s
T
T
a
n
g
3
e
b

z
e
y
s
t
I
q
n
d

o
T
T
q
n
d

/%
T
e
r
x
e
j
e
u

D
u
t
p
e
s
y

oyz
o

z
e
y
s
T
i
g
n
d

oy3
u
I
N
I
D
I
A
P

*

P
O
y

BW
I
O
S
S
V
O
O
Y

¥

wx/

{
‘
e
o
t
a
d

=
s
o
t
a
d
-
'
s
t
y
l

}

(
e
o
T
a
d

3
u
t
r
)
o
0
T
I
d
3
o
s

p
r
o
a

o
T
I
q
n
d

/%
T
e
r
x
s
i
e
p
b
u
r
p
e
s
y

oy3
jo

s
o
t
x
d

8yl
s
o
t
x
d

w
e
x
e
d
p
y

¥

p
o
y
j
s
w

I
0
J
B
I
N
W
 w
x
/

{
!
o
o
t
a
d

u
a
n
g
z
e
x

}

(
)
®
o
1
2
g
3
9
b

juT
O
T
T
q
n
d

/%

poyjew
F
o
3
e
I
n
g

4
xx/

{
!
s
z
o
y
g
n
e

u
a
n
z
a
x

}

(
)
s
a
o
y
z
n
y
y
s
b

[
]
B
u
t
x
z
s

o
r
T
g
n
d

/%
H904q

eyl
o

s
a
o
y
i
n
e

eyl
II®

JO
ISIT

u
I
n
y
e
a
y

. ¥

PoOYLSW
I
O
S
S
I
O
O
Y

x

sx/

{
‘
/
s
a
s
a
d
e
y
o

=
s
x
s
z
d
e
y
o

s
T
y
z

}

(
s
a
s
3
d
e
y
o

3
u
t
)
s
a
s
i
d
e
y
p
i
s
s

p
r
o
a

o
t
T
q
n
d

/%
joog

sy3
ut

sxsadeyo
yo

zsquUnu
BYJ

szendeys
wexedp

x %
P
O
Y
L
S
W

I
O
J
R
I
N
N
W

x

xx/

{
!
s
z
o
a
d
e
y
o

u
a
n
g
z
a
x

}

()
s
a
o
a
d
e
y
p
a
s
b

z
u
r

o
r
t
a
n
d

/%
joog

8yl
ur

sxejzdeyd
FO

I
S
Q
U
U

BYJ
u
I
n
l
e
x
y

x

P
O
Y
I
B
W

I
O
S
S
O
D
D
Y

H

xx/ d:
!
s
a
o
y
a
n
e

=
s
a
o
y
a
n
e
'
s
T
Y
3

/
s
z
o
3
d
e
y
o

=
szoizdeyo-

sTY3

!
(
z
o
y
s
t
T
q
n
d

‘
e
o
t
a
d

‘
s
e
b
e
d

‘
s
T
3
T
3

‘
p
T
)
a
a
d
n
s

‘
z
o
o
n
a
z
s
u
o
n

T
e
T
I
L
I
E
R
B
U
T
P
E
S
Y

°Ul
S
T
T
R
D
/
/

}
(
z
o
y
s
T
T
q
n
d

a
e
y
s
t
I
g
n
d

‘
s
a
o
y
z
n
e

[
]
B
u
t
a
l
z
s

‘
s
a
e
j
z
d
e
y
s

jur
‘=sotad

jur
‘
s
e
b
e
d

jur
‘
°
T
3
T
I

B
u
T
a
z
s

‘prT
j
u
r
t
)
y
o
o
g

o
r
i
q
n
d

/%
jooq

oyz
yo

aeystiand
oyy

zeystrand
wexedp

x
}oog

Syl
Jo

s
a
o
y
z
n
e

oyl
TIEB

IO
ISTT

®
s
a
o
y
z
n
e

u
e
x
e
d
p

j
o
o
g

oYy
ur

s
a
e
j
d
e
y
o

yo
I
e
q
u
n
u

ayz
s
z
e
a
d
e
y
o

w
e
x
e
d
y

jooq
ey3z

go
9
o
t
a
d

syl
sotad

w
e
x
e
d
y

y
o
o
q

@2uy3z
go

s
=
b
e
d

go
F
s
q
u
n
u

Y3z
s
o
b
e
d

w
e
x
e
d
p

® ® Kk

{
!
s
9
D
a
I
n
o
s
S
S
Y
T
R
U
O
T
I
T
P
P
E

uUINlax
}

()
s
e
p
a
n
o
s
a
y
T
R
U
O
T
A
T
P
P
Y
I
S
D

[
]
b
P
u
t
a
z
s

o
r
t
g
n
d

/%

s
u
t
z
e
b
e
w

syjz
JO

S
V
D
I
N
O
S
V
I

DYJ
T
R

FO
ISTT

U
I
N
I
S
I
P

x *
P
o
y
3
o
m

I
0
S
S
I
D
D
Y

x

xx/

/
S
O
D
I
N
O
S
O
Y
T
R
U
O
T
I
T
P
P
E

=
S
O
O
I
N
O
S
S
Y
T
B
R
U
O
T
I
T
P
P
E

S
T
U
F

!
(
z
o
y
s
t
i
a
n
d

‘eootad
‘
s
e
b
e
d

‘
s
T
3
T
3

‘
p
T
)
I
a
d
n
s

‘
x
1
0
3
0
N
I
Z
S
U
C
D

T
R
T
I
O
I
E
R
D
U
T
P
E
S
Y

3yl
S
T
I
T
E
D
/
/

)
}

(
z
o
y
s
t
T
a
q
n
d

I
9
y
s
T
I
O
n
g

‘
s
e
o
a
n
o
s
e
y
r
e
u
o
c
T
3
T
P
P
E

[
]
B
u
r
i
d
s

‘
e
o
t
a
d

jur
‘
s
e
b
e
d

jur
‘
°
T
3
T
3

DBuralds
‘PT

J
u
t
)
o
u
r
z
e
b
e
n

o
t
T
a
n
d

/4
s
u
r
z
e
b
e
w

oyz
yo

x
o
y
s
t
r
a
n
d

syy
x
o
y
s
t
r
a
n
d

w
e
z
e
d
y

x

{
‘
o
3
e

‘
e
u
m
g
x
e
d

T
r
e
w
s

‘eptndb
o
d
r
o
s
x

‘
s
p
T
n
b

AL
" %9)

*

s
u
r
z
e
b
e
w

oyz
yo

3
a
e
d

se
p
e
p
n
i
o
u
t

oq
K
e
w

j
e
y
m

X

S
9
D
I
N
O
S
D
I

B
A
J
X
D

Aue
JO

JSTT
B

S
O
O
I
N
O
S
O
Y
T
R
U
O
T
I
T
P
P
R

w
e
x
e
d
y

g
y
o
o
q

ayy
yo

s
o
r
x
d

sya
a
o
t
a
d

w
e
x
e
d
y

x

j
o
o
q

ayz
yo

s
e
b
e
d

yo
z
o
q
u
n
u

Y
3

s
e
b
e
d

w
e
a
e
d
p

s

}0Oq
By}

FO
OTITR

S
R

or3t3
uwexedy

x
}0oq

By}
3O

PT
BuI

pr
 weaedy

x %
Z
0
3
D
N
I
L
S
U
O
C
D

xxf

!
s
e
o
o
a
n
o
s
s
y
T
e
u
o
T
3

I
P
P
E

[
]
b
u
t
a
i
l
s

o
j
e
a
t
a
d

}
e

T
e
t
a
o
j
e
b
u
r
p
e
s
a
y

s
p
u
o
j
x
s

a
u
r
z
e
b
e
y

s
s
e
r
d

o
r
r
a
n
d

s
s
e
y
n

2
u
t
z
e
b
e
y
/
/
 {

{
!{szoyazne

=
s
i
o
y
j
z
n
e
'
s
t
y
l

}

(
s
z
o
y
a
n
e

[
]
H
B
u
t
a
l
g
)
s
a
o
y
j
n
y
l
s
s

p
r
o
a

o
r
T
q
n
d

/x
j
o
o
q

9yl
Fo

s
a
o
y
i
n
e

8yl
TTE

JO
I
S
T
I

s
x
o
y
n
e

w
e
x
e
d
y

x *

(
o
3
T
s
q
e
m

m
n
fi
u
u
m
,
\
w
n
o
s
m
w
fl
c
u

3
u
T

‘
s
s
e
z
p
p
e

b
u
r
t
a
l
s

‘
s
u
e
u

b
u
r
a
y

zeystiqnd
By3

yo
e3rsqem

a
s
y
s
t
r
a
n
d

o2yl
yo

s
u
o
y
d
e
y
e
n

z
e
y
u
s
T
T
g
q
n
d

Syl
Jo

s
s
a
a
p
p
e

o
y
s
T
I
g
n
d

2yl
JO

Suweu

zeystignd
ey3

yo
pr

*
P
O
Y
3
S
W

I
O
S
S
S
0
O
Y

4

wx/ {
{
9
3
T
S
g
a
M

=
93 T

S
S
M

STY3Z
‘
s
u
o
y
d
s
T
e
y

=
s
u
o
y
d
e
T
o
l

- s
T
U
Z

/{SS9Ippe
=

S
S
9
I
P
p
E
’
S
T
Y
3

!
o
u
r
e
u

=
S
w
e
u

-’
s
T
Y
l

!
P
T

=
PT

S
T
U
3
}

}
S

‘PT
3
u
T
)
a
o
y
s
T
I
a
n
g

o
r
T
a
n
d

/%
|y

o
3
1
s
g
e
n

w
e
a
e
d
p

oy3
o
u
o
y
d
e
T
e
n

w
e
x
e
d
p

x
au3

s
s
a
a
p
p
e

w
e
x
e
d
p

y
sy3

suweu
w
e
x
e
d
p

i

Y3
pr

 uwexedy
x *

Z
0
J
O
N
I
A
J
S
U
C
Y

x xx/

{
!
s
®
d
I
n
o
s
s
y
T
E
U
O
T
I
}
I
T
I
P
P
E

=

!
9
3
T
s
q
e
m

b
u
t
a
z
s

s
j
e
a
r
t
a
d

‘
s
u
o
y
d
s
T
e
]

3utr
=
3
e
a
t
a
d

!
s
s
e
a
p
p
e

b
u
r
t
a
z
s

s
j
e
a
t
a
d

foureu
b
u
t
a
3
z
s

s
j
e
a
t
a
d

!PT
jut

°
j
3
e
a
t
a
d

}
I
o
y
s
T
I
q
n
d

s
s
e
r
o

o
r
t
a
n
d

SseTo
I
L
y
S
T
T
A
R
d
/
/

S
9
0
I
N
O
S
S
Y
T
R
U
O
T
I
T
P
P
R

"
S
T
Y
3

}
(
s
e
o
a
n
o
s
e
x

[
]
B
u
T
t
a
l
s
)
S
e
0
I
N
O
S
E
Y
T
R
U
O
T
I
T
P
P
Y
I
S
S

p
r
T
o
a

o
t
i
q
n
d

s
u
t
z
e
b
e
w

Y
l

FO
S
Y
D
I
N
O
S
S
I

VY3
TTe

IO
ISTT

B
308

/%
s
o
o
a
n
o
s
e
x

w
e
z
e
d
p

i *

POYISW
I0FTINR

*x/

*

PoY3sW
I0IBINK

£
%
/

{
!
s
s
e
o
a
p
p
e

u
i
n
i
a
x

}

()
s
s
e
a
p
p
y
a
s
b

bButazs
o
r
T
a
n
d

/%
z
e
y
s
t
I
q
n
d

Syl
JO

S
S
B
I
P
P
R

OYI
uInNIeAP

¥ x
poyjeul

I
O
S
S
B
O
D
Y

x

xx/

{
!
s
w
e
u

=
s
u
r
e
u
'
s
T
y
l

}

(
s
w
e
u

B
u
T
a
l
g
)
s
w
e
N
3
S
s

p
T
o
A

o
t
1
q
n
d

/%
a
o
y
s
t
r
a
n
d

Sy3z
Fo

s
w
e
u

ay3l
o
u
e
u

w
e
x
e
d
p

x *

poyjsw
I03eINK

x
wx/

{
¢{ouwreu

u
a
n
3
y
s
x

}

(
)
o
w
e
N
3
s
b

b
u
t
a
z
s

o
r
i
q
n
d

/%
a
e
y
s
t
T
a
n
d

eyl
Fo

SurRu
Iy}

u
I
N
I
S
I
A
Y

» *
P
O
y

BW
I
O
S
E
D
O
O
Y

xx/

{
!PT

=
P
T
"
S
T
U
3

}

(PT
3uT)pIies

proa
otrignd

/%

z
o
y
s
t
i
g
n
d

8y3z
o

PT
Byl

pr
w
e
x
e
d
p

x *

poyjsw
I03eINK

x
*
*
\

{
!pt

u
a
n
j
e
x

}

()p13eb
qur

or1and

L
/*

asystTqnd
sy3

3Jo
PT

U
3

uan3exy
x

{
‘®3Tsgem

=
°3TSgem

STUZ
}

(°3Tsqem
B
u
t
a
l
g
)
e
3
T
s
q
e
M
i
s
s

proa
orrand

/x
a
s
y
s
t
i
g
n
d

syl
Jo

s
3
T
E
g
e
s

DYJ
s
3
t
s
g
e
n

w
e
x
e
d
y

4 x
poujsul

I03e30H
x

N
*
\

{
‘
s
3
T
s
g
e
m

u
a
n
j
z
s
x

}

(
)
®
3
1
s
g
e
m
a
e
b

B
u
t
a
z
s

o
r
r
a
n
d

/*
a
e
y
s
t
i
q
u
d

8yl
JoO

3
T
E
g
E
M

PUJ
UIANYDIAP

« ¥

p
o
u
l
s
W

I
O
S
S
I
I
O
Y

x

xx/

{
!
s
u
o
y
d
e
r
e
l

=
s
u
o
y
d
e
T
o
l

S
T
y
l

}

(
s
u
o
y
d
s
T
a
3

j
u
t
)
s
u
o
y
d
e
a
T
a
r
i
e
s

p
r
o
a

o
r
t
q
n
d

/%
a
a
y
s
t
i
q
n
d

sy3y
yo

s
u
o
y
d
e
r
e
n

oyl
s
s
s
a
p
p
e

w
u
e
x
e
d
y

x ¥

p
o
u
j
s
w

I
O
J
e
I
N
H

»

xx/

{
!
s
u
o
y
d
s
r
e
3

u
a
n
j
y
s
x

}

(
)
s
u
o
y
d
a
t
r
s
g
i
a
b

jur
o
r
r
q
n
d

/x
z
s
y
s
t
y
g
n
d

sy3
yo

s
u
o
y
d
e
T
s
]

syl
uaInyeAy

%
poylBUW

I
O
S
E
B
O
D
Y

«

2x/

{
!
s
s
o
a
p
p
e

=
s
s
e
i
p
p
e

'
s
I
y
z

}
(
s
s
o
x
p
p
e

b
B
u
t
a
3
s
g
)
s
s
o
a
p
p
y
i
s
s

p
r
o
a

o
r
r
q
n
d

/%
a
o
y
s
t
T
g
n
d

®Yy3
JO

S
S
L
I
A
P
P
R

SUJ
s
s
o
a
p
p
e

u
w
e
x
e
d
y

x

i

i

e

S
e

}

(yeTtaxoogpesz
[]3oog

oT3eas
orrdnd

/%

(ex095%00q
SU3

UT
SY0OQ

BUF
TTE

"S°F)

s
T
T
A
O
O
q

BYF
FO

S
I
u
S
I
U
O
R

SUF
TTF

yatm
Leaze

U
I
N
I
S
I
H

¥

s
z
0
3
5
3
0
0
q

SY3
FO

S
O
T
I
R
U
S

HOoq
SUI

TT®
spesz

-
S
T
T
A
A
C
C
E
P
E
I
R
I

4

¥
¥
\

- g
p
o
u
s
s
u

p
e
l
e
T
e
a

o
o
g
/
/

!
o
T
T
a
s
u
T
Z
R
b
R
Y
,

=
m
S
fl
Z
m
A
H
h
|
H
Z
H
m
K
w
¢
S

f
u
t
z
y
g

TRUTIF
D
T
I
E
R
S

:
,
o
T
T
d
y
0
0
d
,

=
E
W
Y
N
E
T
I
I

Y
O
O
H

H
u
t
a
z
s

T
e
U
T
F

O
T
I
E
A
S

}

o
r
T
a
T
R
T
I
O
I
E
R
O
U
T
P
E
S
Y

S
S
B
T
D

o
t
t
a
n
d

“
u
m
u
m
w
m
w
fi
fl
m
.
O
fi
.
m
>
m
fi

q
x
o
d
u
t

u
u
m
v
m
0
M
U
m
u
m
w
u
s
m
.
0
fl
.
m
>
m
n

a
x
o
d
u
t

N
u
m
u
fl
u
z
u
u
a
u
m
.
O
H
.
m
>
m
n

q
x
o
d
u
t

s
s
e
n

B
T
T
A
T
R
T
I
S
R
E
R
b
U
T
P
E
S
/
/
 {

{
9
u
U
T
T

u
I
N
3
e
x
 {

fun
=

SUTT

}
(e

u
o
r
a
d
e
d
o
x
d
)

Yo3IED
{

w
A
v
w
:
fl
q
v
m
w
u
.
A
A
A
c
fi
.
E
w
p
m
h
m
v
H
w
fi
m
m
e
m
w
u
u
m
u
n
m
n
H
.
O
fl
.
m
>
m
fl

a
n
v
v
a
m
m
m
v
m
u
m
u
w
fl
m
.
O
fl
.
m
b
m
fl

M
a
u
)

=
S
U
T
T
 }

&x3

N
A
m
w
m
w
m
m
E
v
u
n
fl
u
m
.
u
s
o
.
E
w
u
m
h
m

{4u
=

OUTT
b
u
t
i
l
s

}

(
o
b
e
s
s
a
u

p
u
t
a
y
s
)
a
n
d
u
r

Sutailzg
D
T
I
E
I
S

}

OI
SS®eId

o
t
t
a
n
d

S
S
B
T
D

o
t
/
/

!/ (
)
o
n
e
n
d

M
B
U

=
3
S
T
T
I
O
Y
I
N
E

=
n
o
n
d

!
(
(
u
s
y
o
g
a
x
e
u

‘
T
+
u
s
y
o
l
)
b
u
r
a
z
s
q
n
s

o
u
r
r
)
j
u
r
e
s
a
e
d
-
a
s
b
e
j
u
r

=
g
r
a
s
y
s
r
i
T
q
n
d

3uT

1) FOXSPUT
'BUTT

=
ueyOL3IXBU

{
U
j
y
O
L
3
X
S
U

=
U
S
H
O
J

!
(
T
+
u
s
y
o
y

’

!
(
(
u
e
y
o
r
a
x
s
u

‘
T
+
u
e
y
o
l
)
b
u
r
t
a
z
s
q
n
s

s
u
r
y
)
j
u
r
e
s
a
e
d

a
e
b
e
j
u
r

=
s
a
e
z
d
e
y
o

jut

4)
J
O
X
O
P
U
T

' SUTT
=

USHOLIKSU
{ueOoI3IXOU

=
uSyOo3

{(T+usyoy
’

!
(
(
u
s
y
o
r
3
y
x
e
u

‘
T
+
u
s
y
o
l
)
b
u
t
a
a
s
q
n
s
-
o
u
r
T
)
3
u
r
s
s
z
e
d

z
e
b
e
j
u
r

=
s
o
r
t
a
d

j
u
r

{(T+uUe¥03
‘. :.)

FOXOPUT
SUTT

=
USHOIIXSU

!
{
u
a
o
r
l
x
¥
o
u

=
u
d
O

I

!
(
(
u
e
o
g
3
i
x
a
u

‘
T
+
u
s
y
o
l
)
b
u
r
a
i
s
q
n
s

s
u
r
y
)
j
u
r
s
s
a
e
d

a
s
b
e
j
u
r

=
s
e
b
e
d

jur

{
(
T
4
u
®
3
0
3

‘
,
:
,
)
F
J
O
X
S
P
U
T

' S
U
T
T

=
U
S
Y
O
L
I
X
S
U

{
U
9
y
O
I
3
I
X
B
U

=
U
S
H
O
I

{
(
u
e
o
g
a
x
a
u

‘ T
+
u
s
y
o
l
)
b
u
t
a
z
s
q
n
s

L
U
l

=
o9T3T3

H
B
u
t
a
l
s

! (
(
u
s
x
o
3

‘
g
)
b
u
r
a
z
s
q
n
s

s
u
t
T
)
j
u
r
e
s
a
e
d
-
a
e
b
e
j
u
l

=
PT

FUT

£ (T4U9x03
’,1,)

FJOXSPUT
SUTT

=
USHOLIXSU

JUT
! (41 4)JOXSPUT

SUTT
=

USYO3F
JUT

{1
+

y
a
b
u
s
t

=
y
z
b
u
s
t

 }

(TTnu
=;

(()surTPesz
yooginduT

=
SUTT))STTUM

‘0
=

y
a
b
u
s
r

u
r

!
e
u
t
T

b
u
t
a
a
s

!
(
e
T
T
a
Y
o
0
o
g
e
Y
3
)

T
o
p
E
a
Y
p
a
I
e
F
I
n
g

M
U

=
Y
o
o
g
i
n
d
u
T

i
s
p
e
s
y
p
e
i
o
i
y
n
g

¢
(
E
W
Y
N
E
I
I
A

M
O
O
S
H
)

I
9
P
e
s
d
e
T
T
d

M
d
U

=
S
T
T
I
H
0
O
g
e
y
3

I
S
p
e
a
y
u
s
T
T
d
 }

&
3

/{11nu
=

s
y
o
o
g
g
o
l
e
a
x
e

[]3jood

!
{
(
)
o
n
a
n
d

mMsu
=

s
j
y
o
o
q

o
n
a
n
d

£
(
u
u
)
u
T
a
u
t
a
d
-

3
n
o
-
w
e
3
s
i
s

L
y

T
m
o
u

3T
B
u
t
j
e
s
a
d

‘
3
S
T
X
®

jJOuU
S
S
O
P

ISTTF
H
0
0
q

w
n
H
=
v
=
H
u
:
fl
N
m
.
u
n
o
.
E
w
u
m
>
m

!

(
u
n
)
u
t
3
z
u
r
a
d
-
3
n
o
-
w
e
3
s
i
s

{
(
)
B
u
t
a
z
s
o
z
 e

=
Ix°

B
u
r
a
i
s

‘
p
e
j
e
e
I
d

©g
30U

UBD
IO

ISTXS
J0U

SI0P
s
T
T
A
N
0
0
q
/
/

}
(o

u
o
t
a
d
e
o
x
m
)

uyojed
{

{

o
n
a
n
d
w
o
x
g
i
o
o
q

=
[
T
]
s
y
o
o
g
z
o
l
e
a
a
e

“
A
v
m
fl
w
n
w
w
v
.
m
x
o
o
a
fi
x
o
o
m
v

=
o
n
a
n
d
w
o
x
i
l
o
o
q

o
o
d

}
(44T

{
y
3
b
u
s
T
>
T

‘0=T
3IUT)IOF

!
[
y
z
b
u
a
t
]
o
o
g

M
U

=
s
y
o
o
g
z
o
k
e
a
x
e
 {

1
(
A
z
a
u
e
)

s
n
e
n
b
u
a

* s
3
0
0
q

!
(
z
a
y
s
t
I
g
n
d

‘
s
a
o
y
i
n
e

r
s
x
o
q
d
e
y
o

‘
e
o
t
a
d

‘
s
e
b
e
d

‘
®
T
3
T
3

‘
P
T
)
3
0
0
H

M
O
U

=
K
x
j
u
e

3joog

/
(
g
r
x
o
y
s
T
T
A
n
d
)

AIYA T
M
I
S
Y
S
T
I
A
R
G
P
E
S
T

S
T
T
I
I
S
Y
S
T
I
A
N

=
zeysTTand

IOUSTIANA {

u
A
v
m
s
w
n
w
w
v
.
u
m
fl
a
n
o
n
u
s
m
A
w
fl
fl
n
u
m
v

=
[
T
]
s
a
o
y
a
n
e

}
(++T

‘
y
3
b
u
e
T
-
s
z
o
y
i
n
e

>
T

{0
=

T
IUT)

I03

u
—
A
v
m
u
fl
m
.
U
m
H
A
u
o
n
u
a
m
H
m
n
fl
u
u
w

m
o
u

=
s
a
o
y
z
n
e

[
]
B
u
t
a
i
s
 {

. i.)
J
O
X
O
P
U
T

' SUTT
=

U
S
Y
O
L
I
X
S
U

{
u
s
y
o
g
3
I
X
d
U

=
uUSYO3

{
(
T
+
u
e
y
o
l

“
A
n
o
n
p
s
w
v
w
s
w
s
w
fl
w
.
u
m
fi
q
n
c
n
u
fi
m

¢
(
u
o
y
o
g
a
x
e
u

‘
T
+
u
s
y
o
l
)

b
u
r
a
y
s
q
n
s

S
U
T
T

=
I
o
y
i
n
e

B
u
t
a
y
s

}
(

T-
=i

uejol3x¥su
)
S
T
T
U
M

£ (T4+US303
‘. :.)FOXSPUT

SUTT
=

USYOIF¥SU
u
e
y
o
L
I
X
d
U

=
USAOJF

}
&x3

{
1
T
n
u

=
3
n
d
3
l
n
o

I
9
I
T
A
M
I
U
T
I
A

}
(s300q

[]%00H) S
T
T
A
N
O
O
H
O
L
S
H
O
O
H
S
I

TIM
PTOA

DTIEds
orTand

/%
s
j
o
o
q

Fo
Avxze

ue
syooq.

w
e
a
e
d
y

y

3
¥

‘97Tz
A00q

BY3
03

SHoOq
FO

KeITe
UR

SBYTIM
-
B
T
T
A
N
C
O
H
O
L
S
H
O
O
H
S
I
T
I
M

x
xx/ {

¢ (
3
(
0
0
E
P
A
P
P
Y
Y
I

TMSH00]) STTINOOHOLSHOOHDF TIM

‘q
=

[0]300HPoPPYYUITMSIOO]
{[1]300g

MSU
=

}OOHPSPPVUITMSHOOQ
}

esto
{

{q
=

[1-Y3BUST
* JOOHPSPPYUF

TMSHOOA]
JOOTPOPPYUR

TMSHOOq {
{[T]sj00q

=
[T]3COHPEPPYUITMSIOO]

}
(+4T

‘yabusT-syo0q
>

T
Q=T

3UT)I03

¢ [T+y3busT
 s300q]300H

MU
=

JOOHPSPPVUITMSIOO]

}
(TTnu

=i
syooq)zFt

{
}
0
0
g
p
P
I
P
P
Y
U
I

T
M
S
H
0
o
q

[
]
3
o
0
d

{()eTTayo0gpeEax
=

sjyooq
[]3joog

(9 300g)
S
T
T
I
A
O
O
F
O
L
S
I
T
I
M

PTOA
DTIFEIS

UMHpaw

K
x
j
u
s

j
o
o
g

m
e
u

B
q

E
m
u
u
m
w
x
u

*
S
T
T
I

y
o
o
q

sy3
03

A
I
j
u
e

O
O

M
S
U

B
S
B
I
T
I
A
M

-
O
T
T
I
H
O
O
H
O
L
S
I
T
I
M

H

5
/
 {

!
s
y
j
o
o
g
F
o
A
r
a
z
e

u
a
n
j
z
s
x

‘
p
e
l
e
s
a
d

8
q

1
0
u

u
B
D

I
O

J
I
S
T
X
®

J
0
U

S
8
0
p

s
+

[
[
l
s
a
o
y
a
n
e
)
3
j
u
r
a
d
-
3
n
d
i
n
o

o

a
s
T
®

w
+

[
L
l
s
z
o
y
a
n
e
)
u
r
j
u
r
a
d

andano

(
T
-
y
3
a
b
u
e
T

' s
a
o
y
a
n
e

==
{)3T

}
(+4C

‘
y
a
b
u
e
t
-
s
a
o
y
a
n
e
>
l

(o=C
jur)aoz

/()
s
z
o
y
a
n
y
a
e
b
-
d
u
e
y

=
s
a
z
o
y
z
n
e

[]HButaizs

{(uiu
+

(
)
p
1
3
9
b
-
a
9
y
s
t
r
a
n
d
)
3
j
u
r
a
d
:
a
n
d
i
n
o

!
(
u
i
u

+
s
a
o
z
d
e
y
o
)
j
u
r
t
a
d
-
a
n
d
a
n
o

!(uiu
+

®
0
o
1
a
d
)
3
u
t
a
d
:
a
n
d
a
n
o

'y
+

s
o
b
e
d
)
j
u
r
a
d
-
z
n
d
a
n
o

+
©
1
3
7
1
3
)
3
u
r
a
d
-
3
n
d
i
n
o

+
p
t
)
3
u
t
a
d
-
3
n
d
i
n
o

*®TTF
S
T
T
A
H
0
O
q

3y3z
o3

weya
p
u
s
d
d
e
/
/

‘()
a
s
y
s
T
T
q
n
g
i
e
b

d
w
e
y

=
x
s
y
s
t
i
q
n
d

IBYSTIIANg
! ()

s
a
o
a
d
e
y
p
i
s
b
-
d
w
e
y

=
s
x
e
s
j
d
e
y
o

jut

!
(
)
o
o
t
a
g
3
e
b

d
u
e
y

=
s
o
t
a
d

jur

! ()
s
e
b
e
g
y
e
b
-
d
u
e
y

=
s
e
b
e
d

jur

{
(
)
®
1
3
T
1
3
9
6

d
w
e
y

=
o13713

B
u
r
a
a
s

{()pI3eb-duey
=

pT
3uT

!
[
T
]
s
y
o
o
q

=
dwejz

x
o
o
g

}
(++T

{y3busT-sxooq
>

T
Q=T

JUT)I03
}

(0
=i

y3busT'sjooq
33

TTAU
=]

SY00q)3IT

!
(
w
u
)
u
T
3
u
t
a
d
-

3
n
o
-
u
e
3
s
i
s

(
.

'
M
o
u

3T
B
u
T
l
e
9
I
D

‘
3
S
T
X
D

3
0
U

S
S
O
P

OTTIF
Y
O
O
q

9
Y
L
,
)
u
T
3
z
u
t
a
d
-
z
n
o
-

w
e
j
l
s
i
s

y
u
t
j
u
t
a
d
-
3
n
o

- w
e
l
s
i
s

‘(

! (
)
b
u
t
a
y
s
o
l
 s

=
zxs

B
u
t
a
l
s

sTTaY00q/ /
}

(@
u
o
t
a
d
e
o
x
m
)

y
o
z
e
o

{

! (
E
W
Y
N
Z
T
I
A

MOOH) I93TIMIUTI
M8U

=
3ndino

!
(
s
e
b
e
d

+
, :
s
E
9
V
4
.
)
u
T
I
u
T
I
d

N
0

W
S
3
S
A
S

{
(
®
T
3
T
3

+
. :
F
I
I
I
L
.
)
u
T
I
u
T
a
d

3
n
o

w
e
l
s
i
s

{(PT
+

:
Q
I
,
)
u
T
3
i
u
t
a
d

3
n
o
-
w
e
3
s
i
g

.
===,)

u
r
3
u
t
a
d
-
3
n
o

- ue3ysis
y
u
r
j
u
t
a
d
-
3
n
o
-
w
e
a
s
i
s

¢ (
)
a
e
y
s
T
I
q
n
g
3
l
e
b

d
w
e
y

=
z
e
y
s
t
I
q
n
d

I
B
Y
S
T
T
A
N
G

! (
)
s
a
o
z
d
e
y
p
i
s
b
-
d
u
s
y

=
s
a
o
z
d
e
y
o

3ut

! (
)
o
o
T
a
g
3
9
b
6

' d
u
e
y

=
s
o
T
a
d

jutr

! (
)
s
o
b
e
g
y
e
b

d
u
e
y

=
s
a
b
e
d

jut

{
(
)
°
T
3
T
I
3
9
6

d
w
e
y

=
73713

b
u
t
a
a
s

{
(
)
p
1
3
9
b
6
-
d
w
s
l

=
pT

3uUT

!
[
T
]
s
3
y
o
o
q

=
d
w
e
]

x
o
o
g

}
(++T

{
y
z
b
u
s
T
'
s
j
y
o
o
q

>
T

!{0=T
3JUT

¢
{
w
u
)
u
T
3
u
t
a
d
-
j
n
o
-
w
e
a
s
i
s

(.
A
a
d
u
e

st
°I03s300q

O
Y
L
,
)
u
T
3
u
t
a
d

3
n
o
-
w
e
3
s
i
s

¢
(wu)ur3autad-3no-welsis

}
(0

==
y
a
b
u
o
T
-
s
y
o
o

}
(
T
T
R
u

=

¢ ()
oTTdYOOEPEST

{TInu
=

S$3}00) x03

q)
T

s
3
0
0
q
)

I T

=
sj00q

q
[]sood

}
()
T
R
U
T
W
a
D
T
O
L
S
H
o
o
H
T
T
Y
I
n
d
a
N
O

PTOA
D
T
3
e
3
s

o
r
i
q
n
d

/4
BUTIZOS

JHOYGTM
TEUTWIOY

SYL
01

SIOISHOOY
oY3

uT
syooq

eyr
T1e

sandino
-

f
e
u
T
H
x
S
L
O
L
s
N
o
O
U
T
I
v
V
I
n
d
I
n
G

«

! (
)
e
s
o
T

i
(
,
°

"
m
o
u

3T
B
u
r
j
e
s
a
d
o

‘
3
S
T
X
®

3
0
U

S
9
O
P

O
T
T
F

}
o
o
q

9
Y
L
,
)
3
u
t
a
d
:
3
n

0
*and3ano

diano

}
e
s
1
e

{

4%/ {

}
este

{
!

(
y
u
)
u
T
3
u
t
r
a
d
-
3
n
o

- w
e
l
s
i
s
g

-
K
3
d
w
e

sT
®
3
1
0
3
5
3
0
0
q

9
Y
L
,
)
u
T
3
u
t
r
a
d

3
n
o
-
w
e
l
s
i
s

¢
(
w
u
)
u
T
3
u
t
a
d
-
g
n
o
-
w
e
3
s
k
s

}
(0

==
uy3abuesT'sy00q)IT

}
(TTnu

=
s3o0q)3IT

! (
)
e
T
T
a
y
o
o
g
p
e
a
x

=
S
3
o
o
q

!
T
T
n
u

=
s
j
y
o
o
q

[
]
3
j
o
o
g

}
()
T
R
U
T
W
I
S
L
O
L
S
O
T
A

T
I
S
A
I
S
N
o
o
g
T
T
Y
I
N
d
I
n
o

pPToa
o
T
3
e
3
s

o
T
T
q
n
d

/% *
H
U
T
E
T
0
E

G
N
O
Y
I
T
H

T
R
U
T
W
L
X
S
Y

SY3
07

D
A
O
J
E
H
O
O
Y

8YF
UT

»

S
9
T
3
T
3

pue
SAI

,
S
¥
0
0
q

oYy
TTe

s
i
n
d
i
n
o

-
T
R
U
T
U
I
D
L
O
L
S
O
T
I

T
L
S
A
L
S
H
O
O
H
T

T
Y
A
N
d
I
N
G

%
/
 {

!
(
y
u
)
u
T
a
u
t
r
a
d
:

3
n
o

w
e
3
s
i
s

! (
,
"
9
1
0
3
S
3
0
0
q

SY3
UT

S
I
O
O
Q

Ou
BIB

®
x
9
Y
g
,

) u
T
3
u
T
a
d

 3no

‘we3lsis

!
{
w
u
)
u
T
d
u
t
a
d
-

3no
welsis

}
e
s
t
e

{

!
(
w
u
)
u
T
3
a
u
t
a
d
-
3
n
o
-
w
e
l
s
i
s

{
(
y
=
=
=
=

w
)
u
T
a
u
t
a
d
-
a
n
o

- w
a
3
s
i
g

£ (()sweN3ob
a
o
y
s
T
I
q
n
d

+
, W
E
H
S
I
T
E
N
G
.
)
u
T
3
u
t
a
d

-jno
w
e
3
s
i
s

{
(
[
C
]
s
z
o
y
a
n
e

+
,:
(
S
)
M
O
H
I
N
Y
.
)
U
T
3
u
T
a
d

3
n
o

w
e
3
s
i
s

(
(
(
u
u
)
s
T
E
N
b
e
"

(Jutx3 - [[]sIoyane)
) FT

}
(++C

‘y3bueT
s
a
o
y
a
n
e
>
l

!o=(
jut)zoz

! ()
s
z
o
y
a
n
y
a
r
s
h
-
d
w
e
y

=
s
a
o
y
a
n
e

[
]
B
u
t
a
a
s

¢
(
s
a
e
a
d
e
y
o

+
,
:
S
Y
A
L
A
V
H
D
.
)
u
T
3
u
t
a
d

-
3
n
o
-
w
e
l
s
i
s

‘
(
e
o
t
a
d

+
,:($)

E
O
I
¥
d
.
)
u
T
3
u
t
a
d

3
n
o

uwelsis

! (
)
e
T
T
a
y
0
0
g
P
E
S
T

=
S
3
j
0
0
q

{ITTnuU
=

s
j
o
o
q

[
]
y
o
o
g

(39b7e3
3uT)TAYSTIqRIFOTPUTWISTOLSHoOTTYINdINO

PTOos
DoT3e3s

orTand

b
u
t
l
z
o
s

J
n
o
y
l
T
M

T
R
U
T
W
A
S
I

SY3
03

‘
I
e
y
s
T
T
A
n
d

U
T
E
I
A
S
D

®
JO

4
‘
®
2
0
3
8
3
0
0
q

SY3
UT

$
Y
0
0
q

oyl
TTe

53ndIN0C
-

I
S
Y
S
T
T
I
A
N
G
I
O
T
E
U
T
W
A
S
L
O
L
S
H
O
O
E
T
T
Y
I
N
d
I
N
O

«

!
{
u
w
u
)
u
t
z
u
t
a
d
-
3
n
o
-
w
e
3
s
i
s

!
(
,
"
®
0
3
8
3
0
0
q

SY3
UT

S
)
0
0
q

Ou
oIE

®x9Yyr,
)
u
T
a
u
t
a
d

- a
n
o

- w
e
j

sis

{
{
u
u
)
u
T
3
u
r
a
d
:

3
n
o
-
w
e
3
s
i
s

}
esto

{

!
(wu) u

T
3
u
T
I
d

3
N
0

‘
W
3

S
A
S

a

w
)
u
r
3
u
r
a
d
-
3
n
o
-
w
e
3
s
i
s

{(9T37T3
+

.
WIIIL

u
+

PT
+

,:QI,)uT3urad-jno-we3sis

! ()
x
o
y
s
t
i
g
n
g
3
e
b

-
d
w
e
l

=
x
e
y
s
t
i
q
n
d

z
o
Y
s
T
I
A
N
g

!
()
s
a
o
3
y
d
e
y
p
z
e
h

- d
u
e
s

=
s
z
e
z
d
e
y
o

j
u
r

{
(
)
o
o
T
a
g
y
s
h

d
w
e
y

=
s
o
t
x
d

j
u
r

{ ()
s
e
b
e
g
y
s
b
h
-
d
u
e
y

=
s
e
b
e
d

jutr

{
(
)
e
1
3
T
I
3
°
6

d
w
e
y

=
973713

HButaas
{
(
)
p
r
3
s
b
-
d
w
e
l

=
pt

3uT

!
[
T
]
s
y
o
o
q

=
d
u
e
g

3yoog

}
(++7

{yabust-'sjooq
>

T
0=t

3uT)I0z

o
===,)

u
T
3
u
T
a
d

3
n
o

w
e
3
s
i
s

‘8}00q
e
T
g
e
r
T
e
A
y
,
)
u
r
3
z
u
r
i
d
-
j
n
o
-
w
s
y
s
i
s

!
{
u
w
u
)
u
t
z
u
t
a
d
-
3
n
o
-
w
e
3
s
i
s

!
(
[
C
]
s
x
o
y
a
n
e

+
,
:
(
S
)
H
U
O
H
I
A
Y
,
)
u
T
3
u
t
a
d
-
3
n
o

w
e
l
s
i
s

(
(
(
u
u
)
s
T
E
n
b
®
"

()wrxy - [[]saoy3ne)
)
3
T

}
(++C

‘y3buet
s
a
o
y
z
n
e
>
[

!o=[
jut)zoz

!
(
)
s
a
o
y
a
n
y
z
s
b
-
d
w
e
y

=
s
a
o
y
z
n
e

[
]
B
u
t
a
a
s

!
(
s
a
e
a
d
e
y
o

+
,
:
S
Y
E
I
A
Y
H
O
,
)
u
T
3
u
T
a
d

j
n
o

w
e
l
s
d
s

‘
(
e
o
t
a
d

+
,:(4)

@
O
I
¥
A
.
)
u
r
3
u
t
a
d

3
n
o
-
w
e
l
s
i
s

!
(sebed

+
,
:
s
E
O
V
J
.
)
u
T
3
u
T
a
d

3
n
o

- w
a
3
s
i
g

£
(9T3T3

+
. :
F
I
L
I
L
,
)
u
T
3
u
t
a
d

3
n
o

- w
e
3
s
i
s

£ (PT
+

4
:
Q
I
)
u
T
a
u
t
a
d

3
n
o
-
u
e
l
s
i
s

l
l
l
l
l

o)
u
r
a
u
t
a
d
-
q
n
o

-
w
e
3
s
i
s

!
(
u
u
)
u
r
a
u
t
r
a
d
-
3
n
o
-
w
e
3
s
i
s

{1
4+

P
U
N
O
g
s
S
}
0
0
q

=
P
U
N
o
I
s
Y
o
o
q

}
(
(
)
p
1
3
e
b
-
a
e
y
s
t
r
a
n
d

==
39bae3)sT

! (
)
x
o
y
s
T
T
a
n
d
3
s
b
-
d
w
e
y

=
z
a
y
s
t
T
q
n
d

I
8
y
s
S
T
I
A
n
d

!
(
)
s
x
e
o
a
d
e
y
p
i
s
b
-
d
u
w
e
y

=
s
x
s
z
d
e
y
s

jut

{
(
)
e
o
T
a
g
3
e
b
-
d
w
e
y

=
s
o
t
a
d

jutr

!
()
s
e
b
e
g
y
e
b
-
d
u
e
y

=
s
s
b
e
d

jut

¢ (
)
o
T
3
T
I
3
e
b

duwey

=
°1313

butraas

!
(
)
p
r
3
e
b
-
d
u
w
e
y

=
pT

3uT

!
{
[
T
]
s
y
o
o
q

=
d
w
e
j

j
o
o
g

}
(++T

‘uy3zbusT
s3y00q

>
T

!Q=T
JUT)IOF

{0
=

p
u
n
o
g
s
y
o
o
q

3uT

}
esT8

{
!
(
w
u
)
u
T
3
u
t
a
d
-
3
n
o

- w
o
3
s
i
s

! (
.
"
&
K
3
d
w
s

sT
@
x
0
3
s
3
0
0
q

8
Y
y
L
,
)
u
r
i
u
t
a
d
-
i
n
o
-
w
e
l
s
i
s

!
(
w
u
)
u
r
z
u
t
a
d
-
3
n
o
-
w
a
3
s
i
s

}
(0

==
y3abusT

s
y
o
o
q
)
3
I
T

}
(110w

=;
sjooq)FT

Rulle
L

REE S
t

B
T

‘0
=

y
a
b
u
s
t

jqut
!
o
u
t
T

b
u
t
a
z
s
g

u
A
m
fl
fi
h
m
fl
fi
u
m
m
m
z
m
s
u
v
u
m
v
m
m
e
m
u
m
m
u
s
m

M
o
u

=
s
u
r
z
e
b
e
y
a
n
d
u
r

I
s
p
e
s
y
p
a
i
e
z
I
n
g

!
(AWYNTTIA

E
N
I
Z
V
O
V
R
)

ZopesysTTs

Mou
=

S
T
T
a
s
u
t
z
e
b
e
y
e
y
s

zepesysTrg }
&x3

‘
I
T
n
u

=
s
s
u
r
z
e
b
e
n
z
o
l
e
z
z
e

[
1
s
u
r
z
e
b
e
y

{
(
)
o
n
e
n
d

M
e
u

=
s
s
u
t
z
e
b
e
w

anengd

}
()
o
T
T
a
s
u
T
z
e
b
e
y
p
e
s
s

[
1
s
u
t
z
e
b
e
y

o
1
3
e
a
s

o
T
T
q
n
d

/%
(ea0383%00q

BYl
uT

seuyzebew
syy

Tre
e
y

i
P
T
T
A
S
U
T
Z
E
L
R
U

6U3
FO

53UL3UOD
eUR

TTR
uzTh

Aexue
uIng

eIy
4 *

SIOABACOY
BYR

FO
sOTIIUS

duTzEbEN
Byl

TTE
SpEex

-
B
T
T
g
s
u
T
Z
R
S
E
H
p
R
S
x

,
k
*
\

‘Bpoulew
pejeres

surzeben// {

!
{
u
w
u
)
u
t
a
u
t
a
d
-

3no- w
e
y
s
k
s

!
(
«
"
®
3
0
3
8
3
0
0
q

BYR
UT

s)jo0q
ou

axe
®
I
8
Y
y
,

) u
T
3
u
t
a
d
-

3no

w
e
y
s
i
s

{(wu)
U
T
A
U
T
I
d

3
0
0

W
e
3
s
h
s

}
e
s
t
e

{

{
!
(
u
2
9
y
s
t
r
a
n
d

s
T
y
3

W
O
I
F

punozy
s
j
o
o
q

o
z
:
v
c
fi
u
:
fi
u
m
.
u
n
o
.
E
O
u
m
h
m

}
(0

==
p
u
n
o
g
s
y
o
o
q
)

51

‘(uu)
u
T
3
U
T
I
d

N0
W
O
3
S
K
g

u
u)

U
T
3
u
t
a
d

3
n
o

w
e
y
s
i
g

(
(
)
s
w
e
N
3
e
h

- zoysTTqnd
+

u {¥EHSITENG,
) uT3uTad

" 3no
‘wegsis

}
(++T

‘
y
a
b
u
e
r
-

s
e
o
a
n
o
s
s
a

>
T

(g
=

T
UTL)

IOF

[
(
)
o
z
T
s

'
3
s
t
I
S
s
o
a
n
o
s
s
x
]
b
u
t
a
l
s

M
a
u

=
s
s
o
a
n
o
s
a
x

[
]
H
u
r
t
a
a
s

{
£ (T+usy03

‘,:,)JOXOPUT
SUTT

=
USYOLIXSU

{uejyoL3xXau
=

u
s
y
O

!
(
e
0
a
n
o
s
a
x
)
o
n
o
n
b
u
s

*
3
S
T
I
S
9
O
I
N
O
S
S
T

{
(
u
a
y
o
r
a
x
e
u

‘
T
+
u
s
y
o
l
)
b
u
r
a
i
s
q
n
s

s
u
r
T

=
s
o
a
n
o
s
s
x

b
u
r
i
l
s

}
(T~

=i
ueyoz3xeu

)eTTum

{
(
T
+
u
s
y
o
3

‘
,
:
,
)
J
O
X
S
P
U
T

'SUTT

=
U
S
Y
O
I
I
X
B
U

{
U
S
Y
O
I
I
X
I
U

=
USY03

! (
)
o
n
a
n
d

M
a
U

=
3
S
T
T
S
O
D
I
N
O
S
I
I

aInanyd

!
(
(
u
e
y
o
g
a
x
a
u

‘
I
+
u
s
y
o
l
)
b
u
r
t
a
y
s
q
n
s

- s
u
r
T
)
3
u
r
s
s
a
e
d
-

a
s
b
e
j
u
r

=
g
r
a
s
y
s
t
i
g
n
d

Jut

£ (T+u®30]
‘,:,)

JOXOPUT
SUTT

=
USHOIIXIU

{
u
9
3
O
o
L
3
X
o
U

=
U
0
}

!
(
(
u
e
y
o
g
a
x
a
u

’
T
+
u
s
y
o
l
)
b
u
r
t
a
i
s
q
n
s

s
u
r
T
)
j
u
r
s
s
a
e
d
-
a
z
s
b
e
j
u
r

=
o9oTad

jutr

1)
J
O
X
S
P
U
T

'
S
U
T
T

=
U
S
Y
O
L
I
X
D
U

{
U
S
O
L
3
X
R
S
U

=
usy

O3
£ (T+usyox

’

!
(
(
u
e
j
o
g
a
x
s
u

‘
T
+
u
s
y
o
l
)
b
u
r
t
a
z
s
q
n
s

-
s
u
r
T
)
j
u
r
s
s
a
e
d
-
a
z
e
b
e
j
u
r

=
s
e
b
e
d

jut

\)
FJOXOPUT

*SUTT
=

U
S
Y
O
L
I
X
D
U

{usyoIlxXau
=

usyol
{
(
T
+
u
s
y
o
x

!

!
(
u
s
y
o
g
a
x
s
u

‘
T
+
u
s
y
o
l
)
b
u
r
t
i
z
s
q
n
s
-
s
u
r
l

=
971313

b
u
r
a
a
s

! (
(
u
s
y
o
3

‘
p
)
b
u
r
a
z
s
q
n
s
-
s
u
r
r
)
i
j
u
r
s
s
a
e
d
-
x
s
b
e
q
u
r

=
PT

JuTr

4)
F
O
X
S
P
U
T

' SUTT
=

USHOLIXDU
JUT

{
(
u
:
u
)
F
O
X
O
P
U
T

'SUTT

=
USYO3

3JFUT
!
(
T
+
u
e
y
o
y

!T
+

y
a
b
u
e
s
t

=
y
z
b
u
s
t

}
(
T
T
n
u

=j
(
(
)
s
u
r
p
e
s
a

s
u
r
z
e
b
e
y
i
n
d
u
t

=
S
U
T
T
)
)
S
T
T
U
M

A

!
(
z
o
y
s
t
T
g
n
d

}
(TInu

=i
ssurzebew)sT

!
s
u
t
z
e
b
e
R
p
o
p
p
y
y
l

t
M
s
a
u
t
z
e
b
e
u

[
]
a
u
r
t
z
e
b
e
y

! (
)
o
T
T
d
s
u
T
Z
e
b
E
e
N
p
e
a
x

=
s
a
u
t
z
e
b
e
w

[
]
o
u
r
z
e
b
e
y

K
x
j
u
e

s
u
r
z
e
b
e
w

m
s
u

®
w

w
e
z
e
d
p

x

‘
o
1
1
3

s
u
r
z
e
b
e
w

ay3
o3

A
x
j
u
e

s
u
r
z
e
b
e
w

M
B
U

B
S
I
Y
T
I
M

-
S
T
T
I
S
U
T
Z
R
B
R
H
O
L
S
I
T
I
M

o

*x/

!
s
e
u
t
z
e
b
e
y
y
o
l
e
z
z
e

u
i
n
j
y
a
x

{
(
w
u
)
u
T
a
u
r
a
d

- g
n
o
-
w
e
y
s
i
s

mou
3T

b
u
r
j
e
s
a
o

‘3sTX®
30U

Ssop
STTF

S
u
r
z
e
b
e
w

a
y
g
,
)
u
r
j
u
r
a
d
-
j
n
o
-
w
e
l
s
i
s

!
(
w
u
)
u
r
t
a
u
r
a
d
-

3
n
o
-
u
w
e
3
s
i
s

!
(
)
b
u
t
a
z
s
o
l
-
 s

=
z
x
>

H
B
u
t
i
j
s

‘pPe3eeaD
©q

30U
URD

IO
3STXKO

J0U
SO0p

S
T
T
I
d
u
r
z
e
b
e
u
/
/

}
(®

u
o
r
a
d
e
o
x
m
)

y
o
j
e
o

{

!
o
n
o
n
p
u
w
o
x
g
a
u
t
z
e
b
e
u

=
[
1
]
s
a
u
r
z
e
b
e
n
y
o
l
e
a
z
e

!
(
)
e
n
e
n
b
e
p
-

s
s
u
t
z
e
b
e
w

(
s
u
r
z
e
b
e
y
)

=
s
n
a
n
f
w
o
x
g
s
u
r
z
e
b
e
w

s
u
t
z
e
b
e
y

}
(++T

‘y3abusT>T
‘
=
T

3uT)I0F

!
[
y
a
b
u
s
T
]
l
a
u
T
z
e
b
e
y

M
o
u

=
s
s
u
r
z
e
b
e
y
y
o
l
e
r
z
e

!
(
A
x
a
u
s
)
s
n
s
n
b
u
s
-

s
s
u
t
z
e
b
e
w

‘
s
o
p
a
n
o
s
a
x

‘
s
o
t
a
d

‘
s
e
b
e
d

‘
e
T
3
T
3

‘
p
T
)
s
u
r
z
e
b
e
n

m
o
u

=
Axzjus

s
u
r
z
e
b
e
y

¢
(qrroys

TTqnd)
AIY3

T
M
I
S
Y
S
T
I
G
N
I
P
R
O
T

" S
T
T
A
I
B
Y
S
T
I
G
N
d

=
I
O
Y
S
T
T
A
n
d

I
S
Y
S
T
I
A
n
d

{
(
)
o
n
o
n
b
s
p

-
3
s
T
I
s
e
o
a
n
o
s
a
x

(
b
u
t
a
l
s
)

=
[
T
]
s
e
o
a
n
o
s
a
x

}
(u

a
u
t
z
e
b
e
y
)
s
T
T
I
s
u
T
Z
E
R
O
R
H
O
L
O
3
T
I
A

PTOA
D
T
3
e
3
s

OoTTgnd {

{()praeb-dwey
=

pT
3JUT

!
[
t
]
s
o
u
t
z
e
b
e
w

=
d
w
e
y

s
u
r
z
e
b
e
n

}
(++T

{
y
3
a
b
u
e
t
-

s
o
u
r
z
e
b
e
w

>
T

Q
=
T

3JUT)IOZF

}
(0

=i
y
a
b
u
e
T

s
o
u
t
z
e
b
e
u
w

33
TTnuU

=

s
s
u
r
z
e
b
e
w
)
s
T
 {

!
(
y
u
)
u
T
a
u
T
a
d

 3no
w
e
l
 sAs

<
-
-
m
o
u

3T
B
u
r
j
e
®
a
d

‘
3
S
T
X
®

3
0
U

S
9
O
P

S
T
T
F

S
u
r
z
e
b
e
w

ayL,
) u
r
t
j
u
r
a
d
'

a
n
o

w
e
l
s
i
g

!
(
y
u
)
u
T
a
u
t
a
d
:

3
n
o

- w
e
3
s
i
s

! (
)
b
u
r
a
a
s
o
z
 e

=
xx9

H
u
t
a
i
s
g

‘
p
e
j
E
O
I
D

©q
30U

UEBD
IO

J
S
T
X
O

30U
$90p

S
y
T
a
s
u
r
z
e
d
b
e
u
/
/

}
(o

u
o
t
a
d
e
o
x
y
)

yo3zed
{

{
(
A
W
Y
N
T
T
I
A

E
N
I
Z
Y
O
V
W
W
)

I
9
3
T
I
M
I
U
T
I

Mou
=

3
n
d
i
n
o
 }

Ax3

/
7
T
n
u

=
3
n
d
3
a
n
o

IS}
T
I
M
A
U
T
I
J

(
s
e
o
u
t
z
e
b
e
w

[
]
s
u
r
z
e
b
e
n
)
o
T
T
d
s
u
t
z
e
b
S
e
H
O
L
S
o
U
T
Z
R
O
R
R
S
I
T
I
M

P
T
O
A

D
T
i
E
l
S

U
M
H
A
D
M

s
o
u
t
z
e
b
e
w

o

A
e
a
x
e

ue
s
a
u
t
z
e
b
e
u

E
m
u
m
m
®
\
H

‘o1tz
o
u
t
z
e
b
e
w

syz
03

s
e
u
r
z
e
b
e
w

yo
Aexxe

ue
S
9
3
T
I
M

-
O
T
T
I
S
U
T
Z
E
D
E
R
N
O
L
S
S
U
T
Z
E
O
E
R
S
3
I
T
I
A

H

xx/ {

!
(
s
u
t
z
e
b
e
N
P
e
P
P
Y
Y
3

T
M
s
o
u
T
Z
e
b
e
u
)

a
T
T
i
s
u
T
z
e
b
e
o
s
a
u
T
z
e
b
e
H
a
l

T
I
M
 {

‘w
=

[
g
]
s
u
r
z
e
b
e
R
p
e
p
p
y
u
l
T
M
s
a
u
T
z
e
b
e
u

{
[
1
]
s
u
t
z
e
b
e
y

m
o
u

=
s
u
T
z
e
b
e
H
P
O
P
P
Y
U
I
T
M
S
S
u
T
z
Z
E
b
E
W

}
esTo

{

w
o
=

H
fi
l
n
a
m
c
w
fl
.
m
c
fl
u
m
m
m
z
v
m
fi
fi
m
n
u
fl
s
m
w
:
fi
u
m
m
m
E
u
m
c
fi
u
m
m
m
fl
u
w
v
v
d
n
u
fl
z
m
o
n
fl
fl
m
m
m
fi
 {

/
[
1
]
s
o
u
t
r
z
e
b
e
w

=
[
T
]
o
u
r
z
e
b
e
R
p
o
p
p
Y
y
l
T
M
S
a
u
U
T
Z
E
b
R
W

}
(++T

‘
y
3
b
u
e
t
-
s
e
u
t
r
z
e
b
e
w

>
T

!0=T
J
U
T
)
I
O
F

! [
1
+
y
3
b
u
s
T

- s
o
u
t
z
e
b
e
w
]

s
u
t
z
e
b
e
y

m
o
u

=
s
u
t
z
e
b
e
y
p
e
p
p
y
y
l

T
M
S
a
u
T
Z
e
b
e
u

}
(
1
T
n
u

=

s
o
u
r
z
e
b
e
w
)
z
T

{
(
)
o
T
T
a
s
u
T
z
e
b
e
p
e
s
s

=
s
s
u
t
z
e
b
e
w

/
T
I
n
u

=
s
a
u
t
z
e
b
e
w

[
]
a
u
t
z
e
b
e
y

()
T
e
u
t
w
r
s
g
o
r
s
e
u
t
z
e
b
e
n
T
T
y
a
n
d
a
n
o

proa
o
T
j
e
3
s

o
r
i
q
n
d

Butazos
4nouy3Ta

TRUTWZD]
B
3

03
4

paO3EY0CY
BY3

UT
seurzebew

ouiy
1T®

sandino
-

T
e
u
T
W
I
S
O
L
S
B
U
T
Z
R
B
E
N
T
T
Y
I
N
d
I
N
O

!
()esot1o

3
n
d
a
n
o

{
(
u

"
m
o
u

3T
B
u
r
j
e
s
a
d

‘
3
S
T
X
®

3
0
U

s
e
o
p

o
1
1
3

s
u
r
t
z
e
b
e
w

s
y
g
,
)
3
u
r
a
d
-
j
n
d
a
n
o

!
{
u
:
u

+
[
L
]
s
e
o
a
n
o
s
a
x
)
j
u
r
a
d
-
j
n
d
a
n
o

osT®
uw

+
[
[
]
s
e
o
a
n
o
s
s
x
)
u
r
j
u
r
t
a
d
-
3
a
n
d
a
n
o

(
t
-
y
3
b
u
e
t

- s
e
o
z
n
o
s
e
x

==
[
)
3
T

}
(++€

‘
y
3
b
u
e
t
-

s
e
o
a
n
o
s
e
a
>
l

!p=[
j
u
r
)
z
o
z

!
()
s
e
o
a
n
o
s
e
y
T
R
U
O
T
I

T
P
P
Y
3
S
H

"
d
w
s
y

=
s
e
o
a
n
o
s
s
x

[
1
B
u
t
a
z
s

fluta
+

A
v
a
u
m
m

zayst1and)

jutad-
3ndano

.
+

®
o
t
a
d
)
j
u
r
t
x
d
:
3
n
d
a
n
o

+
s
o
b
e
d
)
j
u
t
a
d
-
:
3
n
d
a
n
o

+
®
7
3
7
1
3
)
3
u
t
a
d
a
n
d
i
n
o

u
+

P
T
)
a
u
t
a
d
-
j
n
d
i
n
o

B
T
T
F

s
fi
fi
&
m
n
fi
u
n
m
m
s

®yy
03

weysy
p
u
s
d
d
e
/
/

! ()
z
o
y
s
T
I
q
n
g
l
e
b
-
d
u
e
y

=
x
s
y
s
t
i
q
n
d

z
o
y
s
T
T
Q
n
g

‘
(
)
o
o
t
a
g
3
e
b

d
u
e
y

=
e
o
t
a
d

jur
! (
)
s
e
b
e
g
3
y
s
h
-
d
u
e
y

=
s
e
b
e
d

jur

{
(
)
e
T
1
3
T
L
3
9
6

d
w
e
s

=
o7313

b
u
t
a
a
s

 !
(
w
u
)
u
T
a
u
t
a
d
-

3
n
o
-
w
e
3
s
i
s

! (
,
'
®
z
0
3
8
y
0
0
q

°y3
ut

s
s
u
r
z
e
b
e
w

ou
axe

o
a
9
y
g
,

) u
r
a
u
t
a
d

3
n
o

w
e
3
s
A
s

W
u
t
3
z
u
t
a
d
-
a
n
o
-
w
e
y
s
i
s

}
est1e

{

!
(
4
u
)
u
T
3
u
T
a
d

3
n
o

- w
e
l
s
i
g

Al
===,)

UT3uTad
3no-we3sis

£ (()
o
w
e
N
3
o
b
-
z
o
y
s
t
T
a
n
d

+
,
:
M
I
H
S
I
T
E
N
.
)
U
T
I
U
T
I
d

Ino
w
e
l
s
i
s
 {

:
(
[
C
1
s
e
o
a
n
o
s
e
x

+
,: (
S
)
H
D
¥
N
O
S
H
Y
E
,
)

u
T
3
u
t
a
d

-3no

w
e
3
s
i
s

(
(
(
,
u
)
s
T
E
N
D
b
S
"

(Jutxy- [
[
]
s
e
o
a
n
o
s
a
x
)

j) It

}
(++C

{
y
z
b
u
e
-
s
e
o
a
n
o
s
s
a
>
l

!p=[
j
u
t
)
a
o
x

/()
s
e
p
a
n
o
s
s
y
T
R
U
O
T
3
T
P
P
Y
3
I
®
b

"
d
u
s
y

=
s
e
o
a
n
o
s
s
x

[
1
B
u
t
a
3
s

f
(
e
o
t
a
d

+
,:(§)

E
O
I
W
A
,
)
u
r
3
u
t
a
d

j
n
o
-
u
e
l
s
i
s

¢
(sebed

+
,
:
s
E
O
V
A
,
)
u
T
I
u
t
a
d

3
n
o
-
u
e
3
s
i
s

{
(
9
T
3
T
I

+
u
!
E
I
L
I
L
.
)
u
T
3
u
T
I
d

3
n
o

w
e
l
s
i
s

{(PT
+

,
:
Q
I
.
,
)
u
T
3
u
t
a
d

3
n
o
-
w
e
l
s
i
s

{(a
—===,

) u
T
3
u
t
a
d

3
n
o

u
w
e
3
s
i
s

¢
(
w
u
)
u
T
a
u
t
a
d

3
n
o

w
e
3
s
i
s

¢
(
)
z
o
y
s
T
I
q
n
g
3
o
h

- d
w
e
l

=
z
o
y
s
t
T
q
n
d

I
S
Y
S
T
I
A
N
d

{
(
)
e
o
1
x
g
3
9
b

- d
w
e
y

=
o
o
t
a
d

jutr

! ()
s
e
b
e
g
y
a
b
-
d
u
e
y

=
s
a
b
e
d

jur

{
(
)
o
1
3
T
I
3
o
h

d
w
e
y

=
°13T13

B
u
t
a
a
s

{()pI3eb-duey
=

pT
3JuUT

! [
t
]
s
o
u
t
z
e
b
e
w

=
d
u
o
y

s
u
r
z
e
b
e
y

}
(++T

‘yjbuet
s
e
u
r
z
e
b
e
w

>
T

{Q=T
3IUT)IOF {

!
(
w
u
)
u
T
a
u
t
a
d

- 3
n
o
-
w
e
3
s
i
s

i
(,-Kk3dwe

st
°
x
0
3
S
N
0
O
q

B
Y
I
L
,
)
u
T
3
u
t
a
d
-
3
n
o
-
w
e
l
s
i
s

{
(
,
u
)
u
t
3
u
t
r
a
d
-
3
n
o
-
w
e
l
s
i
s

}
(0

==
uy3abueT

s
o
u
r
z
e
b
e
w
)
I
T

(
u
u
)
u
r
j
u
r
a
d
-
g
n
o
-

e

w
)
u
r
3
j
u
t
a
d
-
3
n
o
-

w
a
l
s
i
s

w
o
3
z
s
i
s

{
(
S
T
A
T
3

+
W E

T
I
I
L

u
+

PT
+
.
:
Q
I
.
)
u
T
3
u
t
a
d

3
n
o

w
e
3
s
i
s

()
z
a
y
s
T
I
a
n
g
3
1
s
h

‘
d
u
s
y

=
a
s
y
s
t
i
q
n
d

a
s
y
s
t
I
g
n
g

{
(
)
o
o
T
a
g
3
e
b

d
w
e
y

=
s
o
t
a
d

jur
! ()

s
e
b
e
g
i
s
b

d
u
e
y

=
s
e
b
e
d

j
u
r

{
(
)
e
T
3
T
I
A
e
6

d
w
e
s

=
eT3T3

B
u
t
a
s
g

{()p1asb-dwey
=

pr
jur

‘
[
r
]
l
s
s
u
t
z
e
b
e
w

=
d
w
e
y

s
u
r
z
e
b
e
y

}
(++T

!
y
3
b
u
s
T
'
s
s
u
t
z
e
b
e
w

>
T

/0=T
3
U
T
)
I
0
3
F

il
J)utautad-jno:

!
(
u
s
s
u
t
z
e
b
e
w

a
T
q
e
T
T
R
A
Y
,
)
U
T
3
U
T
I
d

3
0
0
"

{
(
w
u
)
u
T
3
z
u
t
a
d
-
3
n
o
-

! (
w
u
)
u
t
3
z
u
t
a
d
-
3
n
o
-

! (u
A
3
d
w
e

sT
@
x
0
3
s
3
0
0
q

B
Y
T
,
)
u
r
z
u
t
a
d

3
n
O
"

!
(
u
u
)
u
r
t
a
u
r
a
d
-
q
n
o
-

w
e
j
3
s
i
s
g

w
a
3
s
i
s

w
e
3
s
i
g

}
®
s
t
o

{

u
e
3
s
i
g

w
a
l
s
i
s

w
o
3
s
i
g

}
(0

=

y
3
b
u
e
T

‘- s
o
u
t
z
e
b
e
u
)

31
}

(
T
T
n
u

=

s
s
u
r
z
e
b
e
w
)
3
T

! (
)
e
T
T
d
s
u
T
Z
R
b
R
R

P
R
S
I

=
s
s
u
r
z
e
b
e
w

{
T
I
N
U

=
s
a
u
t
z
e
b
e
w

[
]
s
u
r
z
e
b
e
y

fi
v
H
m
fl
fl
fi
u
m
a
o
a
m
w
fl
u
fl
a
n
H
m
e
fl
N
m
m
m
E
H
fl
m
u
s
m
u
fl
o

B
u
t
a
z
o
s

3
n
o
y
z
t
s

T
e
u
T
W
I
S
Y

SYy
O3

9
I
0
3
8
Y
0
0
q

BYJ
UT

S
9
T
3
T
3

pue
sqI

,
s
s
u
r
z
e
b
e
w

syy
tTe

s
a
n
d
q
n
o

-
T
e
U
T
U
I
B
L
O
L
S
8

11 T
I
S
q
I
s
o
u
T
z
e
b
e
n
T

T
v
a
n
d
a
n
o

4

PToA
O
t
3
e
3
s

o
r
i
g
n
d

{1
+

p
u
n
o
g
s
s
u
r
z
e
b
e
w

=
p
u
n
o
g
s
s
u
r
z
e
b
e
w

}
(
(
)
p
1
3
s
b
-
a
s
y
s
t
i
g
n
d

==
39bae3)

3T

! ()
x
o
y
s
T
I
q
n
d
a
e
b

-
d
w
e
y

=
z
s
y
s
t
T
q
n
d

I
9
Y
s
S
T
T
A
n
d

! (
)
s
o
t
a
g
a
e
b

d
u
s
y

=
s
o
t
a
d

j
u
t

! ()
s
e
b
e
g
y
e
b

d
u
s
y

=
s
e
b
e
d

j
u
r

‘
(
)
e
T
3
T
1
3
°
6

d
w
e
y

=
=13T13

B
u
t
a
z
s

{
(
)
p
r
3
e
b
-
d
u
w
e
l

=
pT

JuUT

!
[1]soutzebeu

=
dusy

surzebey

}
(++1

‘
y
3
b
u
e
T
-
s
e
u
r
z
e
b
e
w

>
T

/
=
T

3
U
T
)
I
0
F

!0
=

p
u
n
o
g
s
s
u
t
z
e
b
e
w

jur

}
estTe

{
!
(wu)uT3utad

3
n
o
-
w
e
3
s
i
s

(4
A3dwe

ST
Sx035¥00q

°YL,)uT3uTad
3no-we3sis

!
(
w
u
)
u
T
3
u
r
a
d

3
n
o

w
e
3
s
i
s

}
(0

==
y
z
b
u
e
t
-
s
e
u
r
z
e
b
e
u
)
z
T

}
(TTnu

=i
s
e
u
t
r
z
e
b
e
w
)
I
T

! (
)
o
T
T
a
s
u
T
z
Z
E
b
E
K
p
P
E
S
I

=
S
s
u
r
z
e
b
e
u

!
T
T
n
u

=
s
a
u
t
z
e
b
e
w

[
]
s
u
r
z
e
b
e
y

}
(
3
9
6
1
3

3UT)
I
P
Y
S
T
T
A
N
A
F
O
T
R
U
T
W
I
S
L
O
L
S
O
u
T
Z
e
b
e
N
T
T
Y
a
n
d
I
n
o

pToa
oT13e3s

o
r
T
a
n
d

/%
H
U
T
3
I
O
S

I
N
O
Y
J
F
T
M

T
R
U
T
W
I
D
Y

oYyl
03

‘
I
o
y
s
t
r
g
n
d

u
T
e
3
I
S
D

B
JO

4

‘sxzogsxooq
ay3

ur
s
a
u
r
z
e
b
e
w

syz
TIe

s
a
n
d
y
n
o

-
I
B
Y
S
T
I
Y
N
I
F
O
T
R
U
T
W
I
S
I
O
L
S
S
u
T
z
E
e
b
e
N
T
T
V
a
n
d
i
n
o

x

*x/

!
(
w
u
)
u
T
a
u
T
a
d

- 3
n
o

-
w
a
3
s
i
s

! (
,
-
@
x
0
3
8
3
y
0
0
q

By}
UT

s
s
u
r
z
e
b
e
w

ou
sae

°
8
I
9
Y
L
,
)
u
r
3
r
u
r
a
d
-
i
n
o
-
w
e
i
s
i
s

!
(
w
u
)
u
T
3
u
T
t
x
d

3
n
o
-
w
a
3
s
i
s

}
est1e

{

}
STTLISYSTTANG

Ssero
otrqnd

!
z
o
p
e
e
y
s
T
T
d

' OT ‘
e
a
e
l

j
x
o
d
u
t

! z
e
p
e
s
y
p
a
a
s
g
I
n
g

o
t

'
e
a
e
l

jzodwut
{293
T
I
M
3
U
T
I

"oT "eAaR[
j
a
o
d
u
t

S8RTD
o
T
T
g
I
L
Y
S
T
I
U
N
G
/
/
 {

!
(
w
u
w
)
u
t
3
d
u
t
a
d
-
3
n
o
-
w
e
3
s
i
g

¢
(4

"
®
x
0
3
8
y
0
0
q

9Yy3z
uUT

s
e
u
r
z
e
b
e
w

ou
sae

8
x
8
Y
y
l
,
)
u
T
z
u
t
a
d

3
n
o

w
e
i
s
i
s

{
(
w
u
)
u
T
a
u
r
a
d
:

3
n
o

w
e
3
s
i
s

}
este

{

‘
z
o
y
s
T
T
q
n
d

S
T
Y
3

W
o
x
F

p
u
n
o
y

s
a
u
t
z
e
b
e
w

o
p
,
)
u
T
3
z
u
t
a
d
-
3
n
o
-
w
e
z
s
i
s

}
(0

==
p
u
n
o
c
g
s
s
u
t
z
e
b
e
u
w
)
 T

/ (u
! (
u
u
)
u
T
3
z
u
t
a
d
-
3
n
o
-

a
)
u
r
a
u
r
a
d
-
a
n
o
-

w
o
3
s
i
s

w
e
j
s
k
g

{(()oureN3®b
a
s
y
s
t
T
q
n
d

+
,
:
M
A
H
S
I
T
E
N
G
.
)
u
T
3
u
t
a
d

3
n
o
-
w
e
y
s
i
s

!
(
[
C
]
s
e
p
a
n
o
s
e
x

+
,:
(
§
)
H
O
W
N
O
S
E
Y
,
)

u
T
I
u
T
I
d

3Nn0

' W
e
3
s
h
s

(
(
(
u
u
)
s
T
e
E
n
b
S

" (
)
w
t
a
g

" [

[
]
s
e
o
a
n
o
s
a
x
)

{
)
I
T

s (u

}
(++C

‘
y
3
b
u
e
t
-
s
e
o
a
n
o
s
e
a
>
l

!p=[
q
u
r
)
a
o
z

!
()
s
e
o
a
n
o
s
a
y
T
e
R
U
O
T
I
T
P
P
Y
I
S
h

‘
d
w
e
y

=
s
e
o
a
n
o
s
s
x

[
]
b
u
t
a
z
s

{
(
o
o
t
a
d

+
,:($)

=
O
I
¥
W
A
,
)
u
T
3
u
t
a
d
-
3
n
o
-

¢ (
s
e
b
e
d

+
,
:
s
@
A
D
V
A
,
)
u
T
3
u
t
a
d
-
a
n
o
’

£
(
®
T
3
T
3

+
.
T
I
L
I
L
.
)
u
T
3
u
t
a
d
-
j
n
o
-

{(PT
+

w
:
Q
I
.
)
u
r
3
j
u
t
a
d
-
a
n
o
:
 ‘
w
o
g
s
i
g

w
a
y
s
i
s

w
a
3
s
k
s

w
a
3
s
i
s

w
o
3
s
i
s

‘
w
e
3
s
i
s

T

mEmEmmommmmEEE
I
R

—

{
U
D
O
I
I
X
D
U

=
U
I
Y
O
3

!
(
(
u
o
o
r
3
i
x
o
u

’
T
+
u
s
3
o
l
)

b
u
t
a
i
s
q
n
s
-
s
u
t
T
)
j
u
r
e
s
a
e
d
-

a
s
b
e
j
u
r

=
s
u
o
y
d
s
T
e
y

3
u
T

{(T+#uD303
‘,1,)FOXSPUT

SUTT
=

USHOLIXDU
!
{
u
s
i
o
L
3
X
o
u

=
U9

O
}

!/
(
u
o
o
r
3
x
o
u

‘
T
+
u
s
y
o
l
)
b
u
T
a
z
s
g
n
s

- S
U
T
T

=
S
s
o
a
p
p
e

D
u
r
t
a
z
g

{
(
T
+
u
s
y
o
l

‘
,
:
,
)
I
O
X
S
P
U
T

SUTIT

=
U
S
Y
O
L
I
X
d
U

{
u
9
y
o
I
3
X
o
U

=
u
a
Y
o
3

!
(
u
e
y
o
g
a
x
e
u

‘
T
+
u
s
x
o
l
)
b
u
r
a
z
s
q
n
s
-
s
u
t
r

=
s
w
e
u

b
u
r
t
a
l
g

! (
(
u
s
x
o
l

‘
@
)
b
u
r
a
z
s
g
n
s
-
s
u
t
r
y
)
j
u
r
s
s
a
e
d

a
s
b
e
j
u
l

=
PT

J
U
T

4) J
O
X
S
P
U
T

' SUTT
=

USOLIXSU
JUT

(4}
u)FOXSPUT

SUTT
=

USX03
JUT

¢ (T+us3ol

{1
+

y
a
b
u
s
1

=
y
a
b
u
e
r

}
(TTnu

=i
(
(
)
s
u
r
I
p
e
s
a

a
9
y
s
T
T
q
n
d
l
I
n
d
u
t

=
S
U
T
T
)
)
S
T
T
U
M

!0
=

y
a
b
u
e
t

3ur

!{sutT
b
B
u
t
a
a
s

!
(
T

T
A
T
I
B
Y
S
T
T
A
N
A
D
Y
?

) I
S
p
R
O
Y
p
P
a
I
S
I
I
n
g

M
U

=
I
o
y
s
T
T
q
n
g
i
n
d
u
t

I
o
p
e
s
y
p
e
i
s
i
y
n
g

!
(AWYNETIA

WEHSITHENd)
I9PeSySTTd

MOU
=

STTITISYSTTIANISYF
ISPEaUSTTd }

&xq

{
1
I
n
u

=
s
a
s
y
s
T
i
q
n
d
y
o
A
e
a
z
e

[
]
l
z
s
y
s
T
T
a
n
d

! (
)
o
n
e
n
d

mMau
=

s
z
o
y
s
t
i
q
n
d

s
n
e
n
d

}

()oTTaIoysTIqngpeax
[]xoystrand

Ot3e3s
oTTqnd

/%
s
r
r
g
r
e
y
s
t
r
a
n
d

sy3
Fo

S3USIUCD
SYY

TTE
U
K

Avase
UINJOI]

4 ¥

s
e
T
I
j
U
s

H
@
&
&
.
fl
fi
g
&

BYUYY
TTIE

S
p
E
S
H

-~
S
Y
T
A
T
I
S
U
B
T
T
U
N
I
P
E
S
I
T

4

s
/

{
,
o
T
T
a
T
o
y
s
T
T
a
n
d
,

=
E
W
Y
N
A
T
I
A

W
E
H
S
I
T
A
N
d

B
u
T
a
l
s

TeUuTF
O
T
3
e
3
s

(d
T
9
Y
S
T
T
A
N
g
)

S
T
T
I
I
B
S
Y
S
T
I
I
N
I
O
L
O
I
T
I
M

PToA
D
T
3
e
l
s

o
T
I
q
n
d

/x
A
z
q
u
e

z
s
y
s
t
i
g
q
n
d

M
o
u

®
d

ureaxedp
s *

‘oT1T3
z
o
y
s
t
i
a
n
d

oyl
o3

A
x
j
u
s

z
o
y
s
t
T
q
n
d

M
U

B
S
S
I
T
I
M

-
S
T
T
A
A
S
Y
S
I
I
N
J
O
L
O
I
T
I
M

xx/

!
s
I
9
Y
s
S
T
T
O
N
d
F
0
o
A
e
I
I
e

U
I
N
3
O
I

{
(
w
u
)
u
T
3
r
u
r
a
d
-
j
n
o

w
e
3
s
i
s

! (
)
b
u
t
a
a
s
o
l
 s

=
z
a
s

B
u
t
r
a
a
g

‘
P
O
3
E
S
I
D

9¢
J
O
U
U
R
D

IO
I
S
T
X
S

JOouU
S
0
P

S
T
T
I
I
d
U
s
T
T
a
n
d
/
/

}
(®

u
o
t
a
d
e
o
x
m
)

yojzeo
{

!
(
9
3
1
s
g
e
m

‘
s
u
o
y
d
e
T
e
l

‘
s
s
o
a
p
p
e

‘
s
w
e
u

‘
p
I
)
I
L
Y
s
T
T
A
n
g

M
U

=
[
T
]
s
a
s
y
s
t
i
q
n
d
z
o
l
e
x
a
e

!
(
)
o
3
T
s
g
s
m
a
o
b
h

o
n
o
n
p
w
o
a
g
r
s
y
s
t
T
a
n
d

=
9
3
T
s
g
e
m

b
u
t
a
j
s

!
()
s
u
o
y
d
e

1
1
3

o6

- e
n
e
n
f
w
o
a
g
z
e
y
s
t
T
a
q
n
d

=
s
u
o
y
d
e
T
e
l

FUT

!
()
s
s
a
a
p
p
y
a
a
b

s
n
e
n
g
u
o
x
g
a
a
y
s
t
i
a
n
d

=
s
s
a
a
p
p
e

b
u
r
t
a
i
s

!
()

s
w
r
e
N
3
o
b

s
n
s
n
g
w
o
z
g
x
s
y
s
t
i
g
n
d

=
s
w
e
u

b
u
t
a
j
l
s

!
(
)
p
1
3
o
b
-
e
n
e
n
p
u
w
o
r
g
r
s
y
s
t
i
q
n
d

=
PT

JUT

! (
)
o
n
o
n
b
e
p
-
s
a
s
y
s
t
i
q
n
d

(
z
s
y
s
T
I
q
n
d
)

=
o
n
s
n
d
w
o
r
g
a
s
y
s
t
i
q
n
d

I
o
y
s
T
T
q
n
d

}
(441

‘
y
a
b
u
s
T
>
T

!Q=T
3
u
T
)
I
0
3

!
[yabusT]

x
9
y
S
T
I
O
N
g

MSuU
=

s
a
s
y
s
T
T
q
n
g
z
o
k
e
x
x
e

!
(KAz3ue)

e
n
s
n
b
u
e

- s
x
s
y
s
t
T
a
n
d

!
(
@
3
1
s
g
e
m

‘
s
u
o
y
d
s
t
o
]

‘
s
S
s
a
i
p
p
e

‘
s
u
e
u

‘
p
r
)
I
s
y
s
T
I
q
n
d

M
e
u

=
A
x
j
u
s

r
s
y
s
T
I
q
n
d

!
(
u
e
y
o
r
a
x
s
u

’
T
+
u
s
y
o
l
)
b
u
r
a
y
r
s
q
n
s

S
U
I
T

=
9
3
T
S
g
e
O
M

D
u
T
t
a
l
s

{
(
T
+
U
S
y
0
3

‘, 1,
) J
O
X
O
P
U
T

B
U
T
T

=
U
S
Y
O
L
I
X
O
U

¢ (
I
9
Y
S
T
T
A
N
G
P
o
P
P
Y
Y
3

TMSIDYSTTANd) STTAISUST TANAOLS IOUS TTANGSF TIM4

‘d
=

[
p
]
a
®
y
s
T
T
A
N
a
P
e
P
P
Y
Y
3

T
M
S
I
=
Y
s
T
T
a
n
d

{
[
T
]
I
9
Y
S
T
I
A
N

MOU
=

ISYSTTANIPSPPYYUI
T
M
S
I
Y
S
T
T
A
N
d

}
est1e

{
!d

=
[
1
-
y
3
b
u
e
T
’

I
9
Y
S
T
T
A
N
A
P
S
P
P
Y
Y
I

I
M
S
I
S
Y
S
T
T
q
n
d
]

28Ys

T
T
A
N
I
P
e
p
P
P
Y
Y
3

T
M
s
I
a
y
s
T
T
q
n
d

{[T]1saoysTTand
=

[T]I9USTIANAPSPPYUI
TMSISYSTTARd

}
(++7

‘uy3bust-sasystrand
>

T
[0=T

IUT)I0F

¢ [
T
+
y
3
b
u
e
T

- s70ysTTANd] IBYSTIANd
MSU

=
ISUSTTANAPSPPYYI

TMSISYSTTAnd

}
(TTnu

=
s
a
s
y
s
t
T
q
n
d
)
I
T

{29YSTTANAPOPPYY3
TMSIoYsTIand

[]aoysTIdna
¢ ()eTTazoysTIqngpeaa

=
sasystrqnd

[lasustrand

)
a
u
t
a
d
-
a
n
d
a
n
o

}
estTa

{

+
9
3
T
s
q
g
e
m
)
u
t
j
u
r
t
a
d
-
j
n
d
i
n
c

.
+

s
u
o
y
d
e
t
e
j
)
a
u
t
a
d
:
a
n
d
i
n
o

+
s
s
o
a
p
p
e
)
3
j
u
t
a
d
-
a
n
d
a
n
o

+
s
u
r
e
u
)
j
u
t
a
d
-
a
n
d
a
n
o

2
.

+
P
T
)
3
u
t
a
d
-
3
a
n
d
a
n
o

*®TT3
o
r
T
a
x
e
y
s
t
i
g
n
d

Sy3z
o3

weyaz
p
u
s
d
d
e
/
/

!
(
)
o
a
t
s
g
q
e
M
a
s
b

d
w
e
y

=
o
3
T
s
g
s
m

b
u
t
a
a
s

!
(
y
o
s
u
o
y
d
e
T
a
r
y
s
b
h
-
d
w
e
y

=
s
u
o
y
d
s
y
s
y

jutr

! (
)
s
s
o
a
p
p
y
a
o
b
-
d
w
e
y

=
s
s
e
a
p
p
e

bButails

!
(
)
s
w
e
N
3
a
b

' d
w
e
y

=
s
w
e
u

b
u
t
a
z
g

{()p13eb-duey
=

pt
3ur

!
[
T
]
s
a
s
y
s
T
t
T
a
n
d

=
d
w
e
y

I
a
Y
S
T
T
A
N
g

}
(++T

‘yabusT- s
a
s
y
s
T
t
T
a
n
d

>
T

Q
=
T

3
u
T
)
I
0
F

}
(0

=i
u
3
b
u
s
t
'
s
a
s
y
s
t
T
a
n
d

33
TINU

=|
s
a
s
y
s
t
I
q
n
d
)
I
T

!
(
w
u
)
u
T
a
u
r
a
d
:

3
n
o

w
e
3
s
i
s

{(,
p
o
3
e
s
a
d

oq
j
o
u
u
e
d

oTTI
z
o
y
s
t
r
q
n
d

oYL,)
u
r
j
u
t
a
d
-

3
n
o
-
w
e
l
s
i
s

!
(
w
a
n
)
u
r
3
a
u
t
a
d
-
a
n
o

w
a
j
l
s
i
s

{
(
)
b
u
t
a
a
s
o
l
 s

=
z
a
o

B
u
t
a
a
s

‘
P
e
3
E
8
A
D

SO
JIOU

UBD
IO

J
S
T
X
S

3
0
U

S
0
P

S
T
T
I
x
D
Y
S
T
I
g
n
d
/
/

}
(®

u
o
r
a
d
e
o
x
m
)

y
o
z
e
o

{

!
(EWUNTTIZ

W
E
H
S
I
T
E
N
G
)

I9ITIMIUTII

Mou
=

3nd3no }
&x3

{TTnu
=

3
n
d
j
n
o

x93
T
I
M
I
U
T
I
]

(sasystrqnd
[
]
I
9
Y
S
T
T
q
n
d
)
®
T
T
I
I
S
Y
S
T
T
A
N
I
O
L
S
I
S
Y
S
T
T
A
N
G
S
I
T
I
M

PTOA
DT3e3s

oTrqnd

s
a
s
y
s
t
T
q
n
d

yo
A
e
a
z
e

ue
s
a
a
y
s
t
i
g
q
n
d

u
e
x
e
d
y

»

-orTy
x
o
y
s
t
i
g
n
d

Syl
o3

s
a
o
s
y
s
t
i
q
n
d

Fo
Aezze

UR
S
O
A
T
I
M

-
O
S
T
T
A
I
S
Y
S
T
T
A
N
J
O
L
S
I
D
U
S
T
I
G
N
A
D
I
T
I
M

xx/

}

! (
u
u
)
u
r
a
u
r
a
d
-
3
n
o
-
w
e
3
s
h
s

! (,
s
a
o
y
s
t
r
a
q
n
d

ou
axe

a
y
g
,
)
u
r
i
u
t
r
a
d
-
i
n
o

w
e
l
s
i
g

!
(
w
u
)
u
r
3
u
r
a
d
-
3
a
n
o
-
w
e
a
s
i
s

}
(0

==
y
a
b
u
e
'
s
a
s
y
s
t
r
a
n
d
)
I
T

}
(TTnu

=i
s
a
s
y
s
T
T
a
n
d
)
I
T

{
(
)
e
T
T
A
T
I
O
Y
S
T
I
A
N
d
P
E
®
T

=
s
a
s
y
s
T
T
q
n
d

{TTnu
=

s
a
s
y
s
t
I
q
n
d

[
]
a
e
y
s
T
I
a
n
d

}
()
T
R
U
T
W
I
S
I
O
L
S
I
O
Y
S
T
I
A
N
d
T
T
Y
I
n
d
a
n
o

proa
or3e3s

oriqnd
/*

H
u
r
a
x
o
s

3
n
o
y
l
T
A

T
e
U
T
U
I
D
]

2Yyj3
03

s
a
s
y
s
t
r
a
n
d

oyl
TIR

S
3
n
d
a
n
o

-
T
R
U
T
W
I
S
I
O
L
S
I
S
Y
S
T
T
A
N
G
T
T
I
v
I
n
d
a
n
c

sx/ {
{
T
T
n
u

u
a
n
i
s
x
 {

{
!
[
t
]
s
a
o
y
s
T
T
a
n
d

=
a
a
y
s
T
T
q
n
d

u
I
n
N
3
l
o
x

}
(pT

==
()p13eb’ [

T
]
s
a
s
y
s
t
r
a
n
d
)
s
T

}
(++T

‘
y
a
b
u
s
t
'
s
a
s
y
s
t
T
q
n
d
>
T

{Q=T
3JUT)I0F

‘zeystrqnd
a9YSTIANG

{
(
)
o
T
T
a
a
o
y
s
T
I
g
n
g
p
e
s
x

=
sasystiqnd

[]aeysTidnd
}

(PT
3UT)

Q
I
Y
I
T
M
I
S
Y
S
T
T
A
N
G
P
E
S
I

ISYSTIAnd
dT3e3s

orTqnd
/¥

pt
asystrand

sy3
 pr

weaedp
4 *

‘pt
orgToeds

®
uylTe

FousTTAnd
SU}

SUINIBI
-

AIUF
THASUSTIANIPESI

i
*
x
/

!
(
y
@
s
o
1
o
-
3
n
d
a
n
o

}
(TTnu

=i
sasystrand)

It

! (
)
o
T
T
d
I
v
Y
S
T
T
A
N
d
P
e
S
T

=
s
a
s
y
s
t
T
a
n
d

{rrou
=

sasystiand
[laeysTIqnd

()
T
R
U
T
W
I
S
L
O
L

S
O
W
R
N
S
Q
I
S
I
S
Y
S
T
T
A
N
d

TTY3Ind3no

H
u
T
l
a
I
O
S

J
N
O
Y
J
T
H

}
proa

o
t
3
e
3
s

o
r
r
q
n
d

/% *
TRUTWI®Y}

Y3}
O3

x
seweu

pue
(I

,
s
x
s
y
s
t
i
q
n
d

sy3
Tre

s
3
n
d
i
n
o

-
T
R
U
T
W
I
S
L
O
L
S
S
W
E
N
S
J
I
S
I
S
Y
S
T
T
A
N
A
T
I
¥
I
n
d
I
n
o
e

»

{(uu)utzurad:
r
s
a
z
o
y
s
t
T
q
n
d

ou
=
1
e

B
I
9
Y
L
,
)
u
r
3
z
u
r
t
a
d
’

{
(
u
n
)
u
t
a
u
r
a
d
:

 !

(ww)uT3zutad-3no

f
a

w
)
u
T
z
u
t
a
d

a
n
o
-

{(93TSq9M
+
,
:
9
3
T
S
q
e
M
,
)
u
T
3
u
t
a
d

3
n
o
’
 -weg3sks

!
(
o
u
o
y
d
a
T
o
3

+
,
:
d
u
o
y
d
e
T
a
l
L
,
)
u
r
a
u
r
a
d

3
n
o

!
(
s
s
a
a
p
p
e

+
,
:
S
S
8
I
P
P
Y
,
)
u
r
i
u
r
a
d
-
3
n
o
-

!
(eweu

+
,:euweN,)urjurxd-ano-

‘(PT
+

.
:
Q
I
s
)
u
T
3
d
u
r
a
d
-
3
n
o
-

il
===,

) ur3utTad
3no:

g
J
u
r
j
u
r
a
d
-
a
n
o
:

! (
)
o
3
T
s
g
e
M
3
s
b

d
w
e
y

=
9
3
T
S
U
e
M

xx/ {

a
n
o
-
w
e
3
s
i
s

3
n
o
-
w
e
3
s
i
s

q
n
o
-
w
e
3
s
i
s

}
esTo

{

‘
w
o
3
s
k
s

w
e
3
s
i
s

w
o
3
s
k
s

w
e
3
s
A
s

w
e
3
s
k
s

w
e
3
s
i
s

w
a
y
s
i
s

w
o
3
s
i
s

B
u
t
a
a
s

!
(
)
s
u
o
y
d
e
t
s
r
i
e
b

d
w
e
y

=
s
u
o
y
d
s
T
o
y

Jutr

!
()
s
s
e
a
p
p
y
a
s
b

-
d
w
e
y

=
s
s
a
a
p
p
e

!
(
)
o
w
e
N
3
o
b
-
d
w
e
y

=
s
w
e
u

¢ ()pI3eb-duey
=

B
u
t
a
z
s

B
b
u
t
a
a
s

PT
3uT

!
[
t
]
l
s
a
e
y
s
t
T
a
n
d

=
d
w
e
y

I
9
Y
S
T
I
T
A
N
g

}
(++T

‘
y
3
b
u
e
r

s
a
s
y
s
t
i
q
n
d

>
T

Q
=
T

3
U
T
)
I
O
F

rzeystrand
otzroads

B
I0JI

SPIODSI
ISBYSTIANG

FO
ABIIR

UR
SOUDIRSS

-
U
O
I
R
D
S
I
B
O
U
T
T

x
»x/

}
y
o
x
e
s
g
a
e
s
u
t
]

s
s
e
r
o

o
r
T
q
n
d

SSRTD
U
Y
D
I
B
S
S
I
R
D
U
T
T
/
/

{
{

{
!
(
w
n
)
u
T
a
u
r
a
d
:

ano w
e
l
s
i
s

! (,
s
a
o
y
s
T
t
r
a
n
d

ou
°9xe

9
I
9
Y
J
,
)
u
T
I
u
T
i
d
’

3
n
o

w
e
l
s
i
s

!
(wu)

uT3utad
3
n
o
-
u
e
l
s
i
s

}
esT®

{

{
{
(wu)uTdurad-qno

u
e
l
s
i
s

=
=
=

w
)
u
r
3
u
t
a
d
-
3
a
n
o

w
e
a
s
i
s
 {

{(oweu
4+

,
I
E
W
Y
N

‘.
+

PT
+

,
:
Q
I
,
)
u
r
3
u
t
a
d
-
3
n
o
-
u
e
i
s
i
s

! (
)
o
3
T
s
q
e
m
3
s
b

d
w
e
y

=
S
3
T
s
q
e
m

b
B
u
t
a
i
s

!
()
s
u
o
y
d
e
t
a
r
i
e
b

d
w
e
l

=
s
u
o
y
d
s
T
e
l

JFuT

/()
s
s
e
a
p
p
y
a
s
b
-
d
w
e
y

=
s
s
s
a
p
p
e

D
b
u
r
a
i
s

! (
)
o
u
r
e
n
3
y
o
b

- d
u
e
y

=
s
w
e
u

B
u
t
i
i
z
s

{()praeb-duey
=

pT
3UT

!
[
t
]
s
a
s
y
s
t
r
q
n
d

=
d
w
e
y

a
o
Y
S
T
I
q
N
g

}
(++T

{
y
3
b
u
e
t
r
-
s
a
s
y
s
t
i
g
n
d

>
T

Q
=
T

3IUT)IOF

!
(
y
=
=
=
m
=
s
=
s
s
s
s
s
m
s
m
s
=
s
s
m
s
m
—
—
=

u
)
u
T
3
u
t
a
d
-
3
a
n
o
-
w
e
y
s
i
s

{
(
,
:
s
a
o
y
s
T
T
a
n
d

o
T
q
e
T
T
E
R
A
Y
,
)
u
T
3
u
T
a
d

3
n
o

w
a
3
s
i
s

!
(
w
u
)
u
T
a
u
t
a
d

3
n
o

we3siks

}
e
s
t
e

{
!
(
w
u
)
u
T
a
u
T
t
a
d

3
n
o

w
a
3
s
i
s

{(,
s
a
o
y
s
t
T
a
n
d

ou
axe

o
y
r
m
L
,
)
u
r
3
z
u
t
a
d

j
n
o

w
e
l
s
i
s

!
(
w
u
)
u
T
a
u
r
a
d
-
q
n
o
-
w
e
3
s
i
s

}
(0

==
yabueT' s

a
s
y
s
t
i
q
n
d
)
3
I
T

{
(
)
p
1
3
o
b
-

[
e
p
e
T
d
]
s
a
s
y
s
t
i
q
n
d

=
p
u
t
g
o
l

3ut

(punogz i
}

33
®z1s

>
ooefd)

STTUM
{0

=
@
o
e
r
d

jut

!
8
s
T
e
J

=
p
u
n
o
j

u
e
s
T
o
o
q

{
y
a
b
u
s
a
t
-
s
a
s
y
s
T
t
r
g
n
d

=
°
z
T
S

3
U
T

(sxoystTand
[]aoysTIAnd

‘396783
JUT)UDIESSIESUTT

JUT
OT3ILIS

OTTqnd

}

/%
rAexxe

oYy
UT

S
O
P
I
S
S
I

J
U
S
W
S
T
D

INO
S
I
V
Y
M

X
S
P
U
T

BYJ
SSTS

PUNOIF
J0U

J
U
S
W
S
T
S

FT
-

uInNADAP
»

PouDIESsS
°g

03
S
P
I
O
D
B
I

I
V
Y
S
I
I
A
n
g

IO
A
v
a
z
e

syl
s
a
e
y
s
t
r
a
n
d

w
e
x
e
d
p

p
u
n
o
z

8q
03

PT
BY3

a
o
b
a
e
y

w
e
x
e
d
y

x x

r
z
e
y
s
t
i
q
n
d

o
T
g
T
o
a
d
s

B
Z0J

S
P
I
O
O
D
X

I
D
Y
S
T
I
Q
n
d

FO
AvIxie

Ue
SOYDIAVDS

-
Y
O
A
B
I
S
I
V
O
U
T
T

»

xx/ 4
{

{
1
-

u
a
n
g
e
x

}

osT®

{
‘
o
o
e
r
d

u
a
n
j
y
a
x

}

(punoz)
3T {

{
{1

4+
s
o
e
r
d

=
s
o
e
1
d

}

osTe

{
‘
e
n
a
3

=
p
u
n
o
z

}

(
(
w
t
a
g
p
u
t
g
o
s
)

s
y
e
n
b
e
-
3
a
b
a
e
y
)

3T

{()WTa3
"puUTIO]

=
W
I
I
L
P
U
T
I
o
l

B
u
t
a
s

!
(
)
o
u
r
e
N
3
o
b

- [
e
o
e
T
d
]
l
s
a
s
y
s
t
T
a
n
d

=
p
u
t
g
o
l

b
u
t
a
j
s

}
(
p
u
n
o
z

3%
°zTs

>
ooeld)

S
T
T
U
M

!0
=

s
o
e
r
d

jutr

/9STey
=

punoy
u
e
s
T
o
o
q

!
y
z
b
u
e
t
-
s
a
s
y
s
t
i
q
n
d

=
9
Z
T
S

J
U
T

}
(
s
x
e
y
s
t
r
q
n
d

[
]
a
s
y
s
T
T
q
n
g
d

‘3°bxe3z
H
B
u
r
a
3
g
)
y
o
z
e
s
g
a
e
s
u
r
T

3uT
OoT13exs

o
T
T
g
n
d

/%
rAexae

9yl
UT

SOPTISOI
J
U
S
W
O
T
S

JINO
D
I
D
Y
M

XSPUT
SY3

OSTS
’‘puUnog

jou
j
u
s
w
e
r
d

IT
T-

uInNIDIP
«

P
o
Y
o
I
R
S
S

9

O3
SPAOVVIT

I
V
Y
S
T
I
G
N
G

JO
A
B
a
a
e

9Y3
punoy

8q
03

SWeu
8y3

s
a
s
y
s
t
i
o
n
d

w
e
a
e
d
p

q
9
b
a
e
y

w
e
x
e
d
p

* ok

{
{1-

u
a
n
z
e
x

}

osT9
{

!
o
o
e
r
d

u
a
n
j
z
e
x

}

(punoz)
3T {

{
{1

+
o
o
e
r
d

=
s
o
e
1
d

}

asTe®
{

‘
o
n
a
3

=
p
u
n
o
z

}

(
(
w
t
a
z
p
u
T
g
o
l
)

stenbe
3abzel)

3T
{()wta3

puUTIO}
=

WTIIPuTIOl
ButIls

! ()e131I3e6"
[oorTd]S300q

=
PuTgol

buriis
}

(punoz;
33

°zTs
>

@oerd)
aTTUM

{0
=

@
o
e
r
d

3jut

!
9
s
T
e
I

=
P
U
N
O
F

u
e
S
8
T
O
O
q

!
{
y
3
z
b
u
e
T

" s
j
o
o
q

=
S
Z
T
S

J
U
T

}
(
s
y
o
o
q

[]jocog
‘
3
e
b
a
e
;

H
u
T
a
l
s
)
y
o
a
e
o
S
I
E
S
U
T
T

JUT
O
T
I
E
3
S

O
T
T
q
n
d

/=
-
A
e
x
i
e

e
y
3

UT
S
S
P
I
S
O
I

J
U
S
W
S
T
S

INOC
D
I
S
Y
M

X
O
P
U
T

Y
3

O
S
T
D

‘
P
u
U
n
o
y

J
O
U

J
U
S
W
I
L
S

I
T

T~
U
I
N
I
B
I
P

x

p
o
y
p
I
e
a
s

8q
01

SsYooq
FO

A
e
x
x
e

oyl
s
y
o
o
q

w
e
x
e
d
y

x

punoil
g

03
Y
0
o
q

Y
3

IO
S
T
I
T
I

Bud
q
e
b
r
e
y

w
e
x
e
d
y

x *
*o7213

O
r
y
T
o
e
d
s

®
x03

S
}
0
O
Q

IO
ARITe

uUe
SBUYDIBLDS

-
Y
O
I
E
I
S
I
B
S
U
T
T

xx/ {
{

{1-
u
a
n
z
s
x

}

ssT®
{

‘ooperd
u
a
n
i
z
e
x

}

(punoz)
3IT

{
/1

4+
o
o
e
1
d

=
s
o
e
r
d

}

(
p
u
n
o
z
i
)

3
T

{
!
o
n
x
3

=
p
u
n
o
j
y

}

(putgo3
==

39bae3)
IT

{0
=

o
o
e
r
d

jur
/9sTez

=
punog

u
e
s
T
o
o
q

{
y
a
b
u
e
t

- s
s
u
r
z
e
b
e
w

=
8
2
T
S

JuUT

}
(
s
e
u
t
z
e
b
e
w

[
]
s
u
r
z
e
b
e
y

‘
3
e
b
r
e
y

B
u
t
a
y
s
)
y
o
a
e
s
g
z
e
s
u
t
t

jur
o
r
3
e
3
l
s

o
r
r
q
n
d

/%
‘Aezae

oyl
uT

S
O
P
I
S
R
Z

J
U
B
W
S
T
S

Ino
SIABYM

X
B
P
U
T

BYJ
BSTS

‘puncy
Jou

J
U
S
W
S
T
D

FT
-

U
I
N
I
D
I
H

4
p
e
y
b
a
e
e
s

oq
o3

s
s
u
r
z
e
b
e
w

go
A
e
x
x
e

oyy
s
o
u
t
z
e
b
e
n

w
e
x
e
d
y

punoy
sq

o3
s
u
r
z
e
b
e
w

syj
Jo

STITI
OYI

3
8
b
x
e
y

 weaedy
o *

y
‘ar

o
r
g
T
o
e
d
s

®
203

syooq
yo

Ae
xxe

ue
s
o
y
o
z
e
s
s

-
Y
D
I
A
R
D
G
A
R
D
U
L
T

x

sx/ {
{

{
1
~

u
a
n
g
y
s
x

}

asT®
{

!
e
o
e
r
d

u
a
n
j
a
x

}

(punoz)
3T {

{
{1

+
o
o
e
1
d

=
o
o
e
r
d

}

asTe
{

‘
e
n
a
3

=
p
u
n
o
z

}

(Putgo3
==

3e@bae3)
3t

‘
(
)
p
1
3
e
b
-

[
s
o
e
r
d
]
s
j
o
o
q

=
p
u
r
g
o
l

3ut
}

(
p
u
n
o
z
i

33
°
z
T
s

>
o
o
e
r
d
)

S
T
T
Y
M

{0
=

s
o
e
r
d

jut
m
m
m
.
fl
m
m

=
p
u
n
o
y

u
e
a
T
o
o
q

!
{
y
3
b
u
s
T

- s
y
o
o
q

=
°
z
T
S

JuT

}
(
s
y
o
o
q

[
]
y
o
o
g

‘
3
e
b
i
e
y

3
u
T
)
Y
O
I
B
R
S
S
I
B
S
U
T
T

JUT
O
T
I
E
]
S

o
r
T
a
n
d

/%
‘Aexae

oy3
UT

S
e
p
r
S
e
x

JuUSWSTS
INC

e
a
B
Y
M

¥SPUT
DY}

SSTD
‘puUnog

30U
J
U
S
W
S
T
S

IT
T~

u
r
n
l
e
x
y

4
p
e
y
o
x
e
s
s

8q
03

s
j
c
o
q

yo
Aevaxe

syjl
s
j
o
o
q

u
w
e
x
e
d
p

4
PUnOT

q

03
jooq

dY3l
JO

I

Y
R

3
e
b
a
e
y

 wexedp
i *

‘ar
o
i
g
r
o
e
d
s

®
a0y

sjooq
yo

Keaxe
ue

s
e
y
o
x
e
s
s

-
Y
D
I
B
S
S
I
R
D
U
T
T

x

xx/

asTe
{

!
o
o
e
r
d

u
a
n
j
z
e
x

}

(
p
u
n
o
z
)

3T

{
‘{1

+
o
o
e
r
d

=
s
o
e
f
d

}

a
s
T
o

{
!
{
®
n
x
3

=
p
u
n
o
z
y

}

(putrgo3l
==

3
e
b
x
e
y
)

It

! (
)
p
r
3
e
s
b

- [
e
o
e
r
d
]

s
s
u
r
z
e
b
e
w

=
P
U
T
I
O
3

JUT

}
(punozj

3%
°9zTs

>
9
o
e
d
)

STTUM
{0

=
o
o
e
1
d

juT

!9sTEF
=

p
u
n
o
y

u
e
s
T
o
o
q

!
{
y
z
b
u
s
T

‘' s
o
u
t
z
e
b
e
w

=
3
2
T
S

JUT

}
(
s
e
u
t
z
e
b
e
w

[
]
o
u
t
z
e
b
e
n

‘39b61e3
3
U
T
)
Y
O
I
E
S
S
I
E
S
U
T
T

JUT
O
T
3
e
3
s

d
T
T
q
n
d

/%
+ARIi®

9Uy3
UT

S
O
P
I
S
O
I

J
U
S
W
O
T
S

JANO
B
I
B
Y
M

XSPUT
9Y}

9ST2
'PUROIF

30U
J
U
B
U
S
T
S

IFT
T~

u
I
n
I
e
I
H

p
o
y
o
a
e
e
s

og
o3

s
a
u
t
z
e
b
e
w

yo
K
e
x
x
e

ayj
s
o
u
r
z
e
b
e
w

w
e
x
s
d
y

o

p
u
n
o
z

oq
o3

s
u
r
z
e
b
e
w

syl
FO

I

SU3
q
e
b
a
e
y

w
e
x
e
d
p

¥ A

‘qr
o
t
g
t
o
e
d
s

®
I03

$300q
JO

AR
ITR

UR
S
O
U
D
I
R
O
S

-
U
D
I
B
S
H
I
V
B
U
T
T

x ¥
wx/ {

{
!T-

u
a
n
z
e
x

}

osT®
{

!eoperd
u
a
n
j
s
x

}

(punoz)
3T {

{
{1

+
s
o
e
1
d

=
o
o
e
1
d

}

asT®
{

‘
e
n
a
y

=
p
u
n
o
z

}

(
(
u
t
a
r
p
u
t
d
o
l
)

s
y
e
n
b
s
-
3
s
b
a
e
3
)

3T

{
()WTaI3

"pPUTIO}
=

W
I
I
I
P
U
T
I
O
}

B
u
t
a
z
s

{
(
)
o
T
a
T
I
3
°
b

" [
e
o
e
T
d
]
s
s
u
t
z
e
b
e
w

=
p
u
r
g
o
l

b
u
r
a
z
s

}

(punoz
33

°zTs
>

ooeld)
STTUM

!sj00q
u
a
n
l
e
x

! dwoy
[
3
s
x
T
3
]
s
)
o
o
q

‘[3saTz]syooq
=

[3sesT]syooq
!
{
[
3
s
e
a
r
]
s
y
o
o
q

=
d
u
e
j
 4

{
{
3
u
e
x
z
a
n
o

=
3
s
e
s
T

}

(
(
)
o
o
T
a
g
3
e
h
-

[
3
s
e
s
a
t
]
s
y
o
o
q

>
(
)
9
0
T
a
g
3
a
e
b
’

[
j
u
e
x
a
n
o
]
s
i
o
o
q
)

IT
}

sst1o
{

{
{
3
u
s
z
a
n
o

=
3
s
e
s
T

}

(
(
)
o
o
T
a
3
3
e
b

[
q
s
e
s
r
]
s
y
o
o
q

<
(
)
®
0
T
a
g
3
e
b

-’ [
3
u
s
z
a
n
o
]
s
i
o
o
q
)

3T
}

(
B
u
t
p
u
s
o
s
e
)
z
t

}
(T

+
3
u
e
x
a
n
d

=
j
u
s
x
a
n
o

!
Y
I
B
u
e
T

S
Y
0
O
Q

>
F
U
S
I
A
I
N
D

!
T
+
3
S
I
T
I

=
J
U
S
I
I
N
D
)

I0F

!
3
8
I
T
I

=
3
s
e
s
T

}

(I
+

3saTF
=

3ISITI
‘
y
3
b
u
e
T

s3j00q

>
ISITF

/0
=

3ISITI)I0F

{
d
w
e
y

3yoog

{
3
s
e
s
T

‘
j
u
s
a
a
n
o

‘
3
S
I
T
I

J
U
T

}
(
b
u
t
p
u
s
o
s
e

u
e
s
T
o
o
q

‘sS}0oq
[
]
j
o
o
g
)
3
j
a
o
s
u
o
r
i
o
a
T
e
s

[
]
y
o
o
g

o
T
3
z
e
z
s

o
r
i
q
n
d

e

B
u
t
p
u
s
o
s
e
p

Io
B
u
r
p
u
s
o
s
e

sq
p
r
n
o
y
s

B
u
r
j
z
o
s

z
s
u
y
z
s
y
s

D
u
r
j
e
o
t
p
u
t

°
n
y
e
a

u
e
s
y
o
o
q

'
B
u
r
p
u
s
o
s
e

w
e
x
e
d
y

«

p
e
3
z
o
s

ag
o1

s
i
c
o
q

aya
D
B
u
r
u
r
e
j
u
o
n

A
e
x
a
e

uw
s
y
o
o
q

w
e
a
e
d
y

*
a
o
t
x
d

Aq
©
x
1
0
3
S
H
O
O
G

BYI
UT

S
Y
O
O
Y

JYJ
S
I
I
O
S

-~
1
I
O
S
U
O
T
A
N
I
T
A
S

y

xx/

3
I
0
S
U
O
T
3
0
9
T
9
8

sseTd
o
r
r
q
n
d

SSBID
3I0§

U
O
T
I
V
V
T
S
S
/
/

{
‘1T-

u
a
n
z
e
x

}

: {

}
()eneny

o
t
q
n
d

‘
e
n
e
n
b

<
3
o
8
l
q
o
>
3
s
T
T
d
e
a
a
y

o
3
e
a
T
a
d

}
o
n
e
n
p

s
s
e
r
o

o
r
T
a
n
d

{
a
s
t
T
h
e
x
a
y

T
T
a
n

A
R
l

j
x
o
0
d
u
T

ssero
s
n
o
n
d
/
/
 {

!
s
e
u
t
z
e
b
e
w

u
i
n
j
z
e
x

!
d
u
e
y

[
3
s
x
T
3
]
s
s
u
t
z
e
b
e
w

!
[
3
s
a
t
3
]
s
e
u
r
z
e
b
e
w

=
[
3
s
e
s
T
]
s
s
u
r
z
e
b
e
u

! [
3
s
e
s
a
T
]
s
o
u
t
z
e
b
e
w

=
d
u
s
j
 {

{
!
{
3
u
e
x
a
n
o

=
3
s
e
e
T

}

(
(
)
®
o
T
x
g
3
e
h
’

[
a
s
e
s
a
r
]
s
a
u
t
z
e
b
e
w

>
(
)
°
9
0
T
a
g
3
9
b
°

[
3
u
s
a
a
n
o
]
s
s
u
t
z
e
b
e
w
)

IT

}
ss19

{
{

‘
q
u
s
a
a
n
o

=
3
s
e
s
T

}

(
(
)
o
o
T
2
g
3
0
6
"

[
3
s
e
s
T
]
s
o
u
t
z
e
b
e
w

<
(
)
®
o
T
a
g
3
e
b

' [
3
u
s
a
a
n
o
]
s
s
u
r
z
e
b
e
w
)

IT

}
(
B
u
t
p
u
s
o
s
e
)

3
T

}
(I

+
3
u
s
x
a
n
d

=
j
u
s
x
a
n
o

‘
y
j
b
u
s
r

s
s
u
r
z
e
b
e
w

>
J
u
a
z
a
n
d

!
T
+
3
S
I
T
F

=
J
U
S
I
I
N
D
)

10T

1
1
8
I
T
I

=
3
I
S
B
S
T

}
(I

+
3
s
a
t
3

=
3
s
a
T
y

‘
y
a
z
b
u
e
T

s
s
u
r
z
e
b
e
w

>
3
S
I
T
F

Q0
=

I
S
A
T
F
)
I
O
F

!
d
w
e
q

a
u
t
z
e
b
e
l

{
3
s
e
e
T

‘
j
u
a
x
a
n
d

‘
3
s
I
T
F

J
U
T

}
(
B
u
t
p
u
s
o
s
e

u
e
s
T
o
o
q

‘
s
o
u
t
z
e
b
e
w

[
]
s
u
r
z
e
b
e
y
)
i
z
z
o
s
u
c
r
i
o
e
T
s
s

[
]
s
u
r
z
e
b
e
y

o
r
j
e
i
s

o
r
r
q
n
d

/x
B
u
t
p
u
s
o
s
e
p

o

b
u
r
p
u
s
o
s
e

sg
p
i
n
o
y
s

H
u
r
i
z
o
s

z
s
y
z
e
u
y
m

H
u
r
i
l
e
s
t
p
u
r

s
n
j
e
a

u
e
s
y
o
o
q

e
H
u
r
p
u
s
o
s
e

w
e
x
e
d
y

p
e
j
x
o
s

sq
03

s
s
u
r
z
e
b
e
w

oy3
H
u
t
u
r
e
i
u
o
d

A
e
z
x
e

ue
s
s
u
r
z
e
b
e
w

w
e
x
e
d
y

x *

o
o
t
a
d

Ag
s
x
o
l
s
i
y
o
o
q

syj
uT

s
s
u
T
z
e
b
e
w

BY3
S
I
I
O
S

-
J
I
O
S
U
O
T
I
D
I
[
B
E

xx/

 ¥

03
PSdU

OSTE®
TTTM

J
V
H
S
T
T
I
A
D
U
S
T
T
U
N
G

®
‘
O
I
0
O
W
I
B
Y
I
I
N
T

‘yooq
Y
3

ur
z
e
j
d
e
y
d

STYZ
FO

S
V
S
T
D
I
D
R
S

sya
yo

3aed
se

p
e
j
e
r
d
w
o
d

ST
sseyd

STYL
'
p
P
a
s
T
d
w
e
d

°q
3snW

SSRTO
A
V
Y
S
T
T
I
T
R
T
I
O
N
E
N
B
U
T
P
E
S
Y

OY3
BNI3

=
S
T
T
A
S
S
O
D
O
Y
W
O
P
U
R
N
U
I
T
A

BYJ
UYITA

A
1
3
p
e
x
x
o
d

u
o
t
i
o
n
y

o3
w
e
x
b
o
x
d

syz
X0y

I
O
P
A
O

UT
H
N
I
N
I
Y
M
 £

N KX ok X ok ok

}
T
e
u
t
u
x
e
r
i
n
d
u
r

s
s
e
r
o

o
T
T
q
n
d

s
s
e
r
o

T
e
u
t
w
i
s
g
a
n
d
u
r

// {

{
(
)
o
z
1
s

e
n
e
n
b

u
i
n
j
s
x

}
()ezts

3ut
otrrqnd

{
Z
e
q
u
m
u

u
I
N
3
O
I

{(1
-

(
)
®
z
T
s

s
n
s
n
b
)
s
a
c
w
s
z

s
n
a
n
b
 {

! (
(
1
+
7
)
3
9
6

'
s
n
e
n
b

‘
T
)
3
s
s

o
n
s
n
b

}
(++4T

T

-
(
)
e
°
z
T
s
'
e
n
e
n
b

>
T

/(0
=

T
3JUI)

IOF

£
(
0
)
3
9
b

s
n
s
n
b

(
3
0
8
l
q
p
)

=
z
o
q
u
m
u

3
0
9
L
q
o

}
estT®

{
{
T
T
n
u

u
a
n
i
a
x

!
(
w
"
A
3
d
w
s

st
s
n
e
n
b

:
x
o
x
x
m
,
)
u
r
z
u
t
a
d
-
3
n
o
-
w
e
y
s
i
s
g

}
(()

Z
a
d
u
g
s
t
-
s
n
a
n
b
)

IT

}
(
)
e
n
e
n
b
e
p

3
0
8
l
q
o

o
T
T
g
n
d
 {

!
(o)

ppe - s
n
a
n
b

}
(o

3
p
e
l
q
p
)
e
s
n
e
n
b
u
e

prtoa
o
T
T
q
n
d

(
)
<
3
o
e
l
q
o
>
3
s
t
i
d
e
a
a
y

Mau
=
s
n
e
n
b

‘(.
:
o
u
r
e
u
,
)
3
n
d
u
t

O
l

=
Sweu

{
(
,
a
9
d
o
x
z
d
u
t

sem
p
a
x
s
j
u
s

n
o
k

s
w
e
u

°yg
:
z
0
2
a
%
,
)

u
T
3
u
t
a
d

- 3no
- w
e
j
s
i
s

}
(0

==
(
)
u
3
b
u
s
T
’

()wTay - suwreu)oTTYM
! (,

:
o
u
e
u
,
)
3
i
n
d
u
t
-
Q
I

=
S
w
e
u

£
()enTea3ut’

(()wraz®
(,

:PT,.)3ndur
O
I
)
F
o
e
n
T
e
a

a
e
b
e
r
u
l

=
PT

!
(
,
7
o
q
u
m
u

pt
z
o
d
o
a
d

B
j
o
u

SBM
P
O
I
L
3
U
®

Nok
PT

SYL
:
I
0
x
I
W
,
)
u
r
i
u
t
a
d
-
i
n
o
-
w
e
l
s
i
s

}
(0

==PpT
||

0
>

PT)oTTUM
{()enTeA3ut

(()wrx3:
(,

:
P
T
.
)
3
n
d
u
t
-
0
I
)
j
o
e
n
r
e
a

a
s
b
e
j
u
l

=
PT

!

(
w
u
w
)
u
T
a
u
t
a
d
:

3
n
o

‘
u
e
j
l
s
i
s

f
g
m
m
m
m
m
m
m

e

W)
u
T
a
u
t
a
d
-
3
n
o

w
e
3
s
i
s

{(uSTTE3I®P
I
9
U
S
T
T
A
n
d
,
)
u
T
3
u
t
a
d
:

3
n
o
-
w
e
i
s
i
s

y
u
t
a
u
t
a
d
-
3
n
o

‘
w
e
l
s
i
s

!
(
w
u
)
u
T
r
u
t
a
d
:

3
n
o
 ‘
w
e
3
s
i
s

!
(
w
u
)
u
t
a
u
t
a
d
-
3
n
o

w
e
3
s
i
s

!
(
y
=
=
=
=
=
=
=
=
=
=
=
=
=
—
=
=
c
=
=
c
=
=
,
)

u
T
3
u
t
a
d

3
n
o

‘we3sisg

!
(
,
A
z
3
u
e

@
a
0
3
s
0
O
q

M
O
N
,
)
u
T
3
z
u
t
a
d

3
n
o

w
e
l
s
i
g

!
(
,
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
,
)

u
T
3
u
T
t
a
d

3
n
o

‘
w
e
3
i
s
i
g

!
(
w
u
)
u
T
z
u
r
a
d
:

3
n
o

w
e
3
s
h
s

!
(
w
u
)
u
t
3
z
u
t
a
d
-
3
n
o

w
e
3
s
k
s

‘
s
u
o
y
d
a
T
a
l

‘pPT
3JUT

/
2
3
T
S
s
q
e
m

‘
s
s
a
a
p
p
e

‘
s
w
e
u

b
u
t
i
l
s

()
£
x
j
u
g
a
s
y
s
t
i
a
n
d

I
9
Y
S
T
T
A
N
d

O
T
I
E
I
S

U
fl
fl
n
:
w

-
@
x
0
3
8
)
0
0
q

By3
ut

A
x
j
u
s

z
e
y
s
t
T
g
n
d

meou
e

zoy
j
n
d
u
r

a
s
s
n

H
u
r
z
a
s
h

zogy
m
a
fl
fl
m
u
c
m
n
w
m
\
“

poyzew
A
x
j
u
g
z
e
y
s
t
i
g
n
d

“
%
*
\

!
o
s
T
E
I

=
O
S
T
T
I
S
S
O
O
O
Y
W
O
P
U
R
Y
Y
I
T
M

U
E
B
D
T
O
O
J

T
B
U
T
I

O
T
J
I
E
3
S

/x
-
K
r
n
g
s
s
e
o
o
n
s

p
o
l
o
T
d
w
o
d

USDYG
S
A
R
Y

S
O
S
T
O
I
D
A
K
S

oyl
u
s
y
m

A
T
u
o

S
n
I
)

=
S
T
T
I
S
S
O
O
D
Y
W
O
P
U
B
R
Y
Y
I
T
M

I¥=wl
‘
y
o
n
s

sy

“
j
o
o
q

eyz
ut

z
e
a
d
e
y
n

S
T
y
}

JO
S
9
S
T
O
I
S
X
®

9Y3z
Fo

j
x
e
d

se
p
e
y
s
r
d
w
o
n

‘
u
r
e
b
e

e
o
u
o

‘ST
S
S
B
I
O

S
T
Y
L

"
O
T
T
F

A
x
e
u
r
q

e
o3

u
®
3
3
T
I
A

p
u
B

p
e
s
x

oq
o3

s
i
s
y
s
T
r
g
n
d

Byl
I0F

I
S
P
I
O

UT
p
I
r
e
T
d
w
o
d

X Kk k%

!o1313
bButazs

}
()
A
x
j
u
m
y
o
o
q

joog
o
r
3
e
3
s

o
r
T
q
n
d

/=
‘
®
x
0
3
8
3
0
0
q

BY3
uT

A
x
j
u
s

jyooq
m
e
u

v
zoy

3
n
d
u
r

a
e
s
n

Huriyzebh
zoz

s
i
g
r
s
u
c
d
s
s
y

. *

p
o
y
z
s
u

A
z
3
u
m
i
o
o
q

x

x5/ {
/9T

T
A
S
S
O
O
O
Y
U
O
P
U
R
Y
Y
I
T
M

U
I
N
J
D
I

}
(
)
p
o
y
z
e
r
o
I
3
z
e
b

u
e
e
r
o
o
q

o
T
3
e
3
s

o
r
r
q
n
d

/¥
‘
a
n
d
a
n
o

p
u
e

a
n
d
u
t

103
s
s
e
o
D
e

T
e
T
j
u
e
n
b
e
g

70
B
I
T
A
S
s
E
O
O
y
w
o
p
u
r
y

H
u
r
s
n

S
R

BM
I
B
y
U
I
L
U
M

U
I
N
Y
D
I
H

4 *

poylsw
p
o
u
l
s
H
o
I
I
n
h
 x
/
 {

!d
u
a
n
g
e
x

{
(
®
3
T
s
q
e
m

‘
s
u
o
y
d
e
T
e
]

‘
s
s
e
a
p
p
e

‘
s
w
e
u

‘
p
r
)
a
s
y
s
T
t
i
q
n
d

Meu
=

d
I
9
Y
S
T
T
I
R
d

{(4
9
3
T
s
q
e
m
,
)
3
n
d
u
t

0
I

=
SsSeIppe

!
(
,
7
o
d
o
x
d
u
t

sem
p
e
r
s
j
u
d

n
o
k

9
3
T
S
g
e
M

Y
L

:
I
0
I
x
d
,
)
u
T
i
u
t
a
d
’
3
n
o

w
e
l
s
i
s

}
(0

==
(
)
u
y
3
a
b
u
s
T
'

(
)
w
r
a
3
 - o

3
T
S
q
O
M
)
S
T
T
U
M

!
(.,

:
°
3
T
S
q
e
M
,
)
3
n
d
u
T

Q
I

=
S3TSqeM

f
(
)
e
n
t
e
a
r
u
r
”

((
)
w
r
a
l

' (,

:
a
s
q
u
n
u

s
u
o
y
d
s
t
e
l
,
)
3
n
d
u
r
-
Q
I
)

J
o
o
n
T
e
a
s

x
s
b
e
q
u
r

=
s
u
o
y
d
e
t
e
l

!
(
y
x
o
q
u
m
u

s
u
o
y
d
s
T
e
l

z
o
d
o
x
d

®
j
o
u

s
e
m

p
a
I
d
j
u
s

nol
z
s
q
u
n
u

s
u
o
y
d
s
T
e
l

BYL
:
I
o
x
a
d
,
)
u
r
i
u
r
t
a
d
:
i
n
o

w
e
l
s
i
s

}
(0

=
P
T

||
0
>

pPT)oTTUM
f
(
)
e
n
T
e
A
3
u
T
”

(
(
)
w
t
a
y

- (,
:
I
x
o
q
u
n
u

s
u
o
y
d
s
T
e
l
,
)
3
n
d
u
t

- O
I
)
J
o
o
n
T
e
a
'
z
s
b
e
j
u
r

=
s
u
o
y
d
s
T
e
l

{(.,
:
s
s
o
a
p
p
e
,
)
3
a
n
d
u
t

0
l

=
s
s
o
a
p
p
e

!
(
,
x
o
d
o
a
d
w
t

sem
p
o
a
x
e
j
u
e

n
o
k

s
s
a
a
p
p
e

oYL
:
x
o
x
a
y
,
)
u
r
j
u
r
a
d
-
i
n
o
-
w
e
i
s
i
s

}
(0

==
(
)
u
y
z
b
u
e
T
’

(
)
w
r
a
y

' s
s
e
a
p
p
e
)
S
T
T
U
M

! (.
:
s
s
o
a
p
p
e
,
)
3
n
d
u
T
r

O
I

=
S
S
3
I
p
p
e

}
(0

==
s
a
o
a
d
e
y
o

||
¢

>
s
x
o
z
d
e
y
d
)
o
T
T
y
M

‘
(
)
e
n
T
e
A
3
U
T
"

(
(
)
w
r
a
a
®

(,
:
s
x
e
z
d
e
y
o
,
)
3
n
d
u
t

O
I
)
F
o
s
n
i
e
a
i
d
b
a
j
u
r

=
s
a
s
3
z
d
e
y
o
 {

‘
(
)
e
n
T
e
a
z
u
t
”

((Ywrtaa
- (,

:($)
o
o
1
x
d
,
)
3
n
d
u
r
-
O
I
)
g
F
o
e
n
i
e
s

a
s
b
e
z
u
l

=
s
o
t
a
d

!
(
,
z
o
q
u
m
u

@
a
T
3
T
s
o
d

®
30U

Sem
p
a
x
a
j
u
s

nok
9
o
t
a
d

Syl
:
I
0
x
x
W
,
)
u
T
i
u
r
a
d
-
i
n
o
’
u
e
l
s
i
s

}
(0

==
®otad

||
o

>
s
o
T
a
d
)
e
T
T
y
m

s
(
)
e
n
T
e
A
3
U
T

(
(
)
w
r
a
z

(,
:(¢)

o
o
1
a
d
,
)
3
n
d
u
t
-
O
I
)
3
F
o
o
n
t
e
s

a
d
b
a
3
u
l

=
s
o
t
a
d
 {

7
(
)
e
n
T
e
a
s
z
u
t
’

(
(
)
w
r
a
3
-

(,
:
s
a
b
e
d
,
)
a
n
d
u
r

0
1
)
3
o
e
n
t
e
a
’
a
e
b
o
j
u
r

=
s
e
b
e
d

!
(
,
a
9
q
u
n
u

o
a
T
3
T
s
o
d

®
j
o
u

sem
p
e
a
i
s
j
u
e

n
o
k

s
o
b
e
d

s
y

:
I
0
x
x
d
y
,
)
u
r
i
u
r
i
d
-
j
n
o

w
e
l
s
i
s

}
(0

==
s
o
b
e
d

||
o

>
s
o
b
e
d
)
s
T
T
U
u
m

s
(
)
e
n
T
e
a
z
u
t

" (
(
)
w
r
a
y
:

(,

:
s
s
b
e
d
,
)
a
n
d
u
t

0
I
)
3
F
o
e
n
t
e
a

a
s
b
e
j
u
r

=
s
a
b
e
d
 {

‘(s
1
9
1
3
T
3
,
)
3
n
d
u
T

O
I

=
ST3ITI

!
(
,
s
a
9
3
0
R
I
R
Y
D

Gz
U
B
Y
3
}

S
I
o
w

s
e
y

Io
A
j
d
w
e

s
e
m

p
a
x
s
j
u
s

no&k
7
1
3
7
1
3

9
y
l

:
x
0
x
1
x
d
,
)
u
r
i
u
T
i
d
-

3
n
o

w
e
l
s
i
s

}
(§z

<
(
Y
u
a
b
u
e
t

 (Jwraz

o
1
3
t
3

||
0

==
(
)
y
a
b
u
s
T
’

(
)
w
r
a
3

S
T
I
T
I
)
S
T
T
U
M

(
u

:
9
1
3
T
3
,
)
3
0
n
d
u
t

0
1

=
OT3T3

¢
(
)
e
n
t
e
a
3
u
t
:

(()wta3
-

(,
:PT,)3andut

0
I
)
z
o
e
n
T
e
A
’
I
9
b
9
3
u
U
L

=
PT

!
(
y
a
o
q
u
m
u

pT
z
o
d
o
a
d

e
j
0
u

s
e
m

p
a
x
s
j
u
s

nok
pPT

SYL
1
1
0
2
3
3
,

) u
T
3
u
T
a
d

 3no

w
e
3
s
i
s

}
(0

=
=
p
T

||
0
>

P
T
)
a
T
T
U
M

¢ (
)
e
n
t
e
A
l
u
T

(()wWrx3d:
(4,

P
T
.
)
3
n
d
u
t

O
I
)
g
O
e
n
T
e
A

I
9
6
9
3
U
I

=
PT

! (
4
u
)
u
T
3
d
u
t
a
d
-

a
n
o

‘
w
e
3
l
s
i
s

L
(
p
m
m
m
m
m
m

w
)
u
T
3
z
u
t
a
d
-

a
n
o

‘
w
e
a
s
A
s

{(,STTE3®P
3
Y
o
o
d
,
)
u
r
3
u
r
a
d
-
3
n
o

w
s
l
s
i
s

!
(
w
n
)
u
T
a
u
t
a
d
-
a
n
o

‘
w
e
3
s
i
s

!
(
w
u
)
u
T
a
u
t
a
d
:

a
n
o

‘
w
e
3
s
i
s

y
u
T
3
u
t
a
d
:

3
n
o

‘
w
e
3
s
i
s

«
)
u
T
3
u
T
a
d

3
n
o

‘
w
e
3
s
i
s

!
(
W
K
a
j
u
s

s
x
0
3
s
H
0
O
q

M
O
N
,

) u
T
i
u
T
a
d

3Ino
w
e
l
s
i
s

!
(=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
,
)

u
T
3
u
T
t
a
d

3
n
0

wWe3lsig

‘
(
u
u
)
u
T
a
u
t
a
d
-
q
n
o

w
e
l
s
i
s

!
(
u
n
)
u
T
a
u
t
a
d
-
a
n
o

‘
w
e
l
s
i
s

 ‘
a
o
y
s
t
T
a
n
d

I
O
Y
S
T
I
A
N
g

!
s
a
o
q
d
e
y
o

‘
s
o
t
a
d

‘
s
e
b
e
d

‘prt
juT

/%
‘
@
1
0
3
8
3
0
0
q

BY3
Ut

Azjus
0
o
q

meu
B

Fo
s
z
o
y
j
n
e

eyi
zoy

3ndut
s
s
n

B
u
r
y
i
e
b

zoz
e
r
q
i
s
u
c
d
s
e
y

x #

p
o
y
j
e
w

A
x
j
u
g
r
o
y
j
n
e

.

wx/ {
/q

u
a
n
3
e
x

!
(
z
9
y
s
T
r
q
n
d

‘
A
e
a
a
y
a
o
y
z
n
e

‘
s
a
s
j
d
e
y
o

‘
e
o
r
a
d

‘
s
e
b
e
d

‘
S
T
3
T
3

‘PT)
o
o

M
O
U

=
q

jyoog
!

()
A
z
q
u
g
z
o
y
z
n
e

=
K
e
x
x
y
z
o
y
z
n
e

[
]
B
u
t
a
z
s

¢
(
p
r
a
s
y
s
T
T
a
n
d
)

AIY3 T
M
I
S
Y
S
T
T
A
N
I
P
E
S
T

' A
V
M
S
T
T
A
I
O
Y
S
T
I
A
N
d

=
IoysTTqnd

¢
(
)
e
n
t
e
a
j
u
t
-

((Jwrxa:
(.,

:PT
x
o
y
s
t
T
a
n
d
,
)
3
n
d
u
t

O
I
)
J
o
e
n
T
e
a

a
e
b
e
z
u
r

=
p
r
a
s
y
s
t
r
a
n
d

!
{
(
,
a
o
q
u
m
u

p
T

x
9
d
o
a
d

B
j
0
U

S
e
M

p
a
I
L
s
U
D

N
O
A

P
T

o
y
j

:
x
0
x
x
d
,

)
u
r
d
u
t
a
d

3
n
o

- w
e
3
s
i
s

}
(TTnu

==
z
s
y
s
t
i
a
n
d

||
0

==
®
o
t
a
d

||
¢

>
®
o
T
a
d
)
o
T
T
U
m

¢ (
p
1
r
9
Y
s
T
I
q
n
d
)

QIY3I TMISYSTTANIPLSI
' IYYSTTITSYSTIANG

=
Foystrand

‘(yenteA3uT”
((Jwrad

- (,
:PT

a
o
y
s
t
r
a
n
d
,
)
3
n
d
u
r
-
O
I
)
F
o
s
n
t
e
a

xebejur
=

prasystiqnd
3ut

¢ ()
TRUTUISLOL

S
S
W
E
N
S
Q
I
S
I
S
Y
S
T
T
A
R
d

TTY3NdIN0
- IYISTTATSYSTTANG

S8ODDE
wopuRI//

}
este

{

¢
(
P
1
a
9
y
s
T
T
A
N
d
)

AIYI T
M
I
S
Y
S
T
T
I
N
I
P
E
S
I

' S
T
T
A
I
S
Y
S
T
I
A
N
G

=
IoysTIgnd

‘()enTepjuT”
(()wray

-
(,

:PT
x
9
y
s
T
T
q
n
d
,
)
3
n
d
u
t
-
0
I
)
3
o
e
n
T
e
a

a
s
b
e
j
u
l

=
pIrasystIqnd

!
(
y
z
o
q
u
m
u

pT
x
9
d
o
a
d

®
j0u

SeM
p
e
a
s
j
u
s

nok
PT

oYL
:
I
0
x
x
™
,
)
u
T
i
u
t
i
d
-
i
n
o

w
e
g
s
i
s

}
(
1
1
U

==
zoystiand

||
0

==
®o1ad

||
o

>
®
o
T
a
d
)
e
T
T
y
m

¢ (Prxoys
TTqnd)

QIY3I T
M
I
S
U
S
T
T
N
A
P
E
S
a

" STTATSYSTTIANG
=

xoystrqnd
‘()entep3utr”

((Jwraz®
(,

:PT
I
o
y
s
T
T
q
n
d
,

)
3
n
d
u
t

O
I
)
o
e
n
t
e
a

x
e
b
e
q
u
l

=
p
r
a
s
y
s
t
r
a
n
d

uUT
¢ ()
T
R
U
T
W
I
S
L
O
L
S
O
U
W
E
N
S
Q
I
S
I
S
Y
S
T
T
A
N
G

TTYFNd3IN0
ST T

I
I
S
Y
S
T
T
A
N
G

A
t
r
e
r
j
u
e
n
b
e
s
/
/

}
(
(
)
p
o
u
z
s
n
o
r
a
=
b
i
)
s
t

!
(
w
u
)
u
T
3
u
t
a
d
-
3
a
n
o

-
w
e
j
s
i
s

!
(
)
e
n
t
e
a
z
u
t

- (
(
)
w
r
a
z

- (
,

:
s
x
e
o
z
d
e
y
o
,
)
a
n
d
u
r
’
o
1
)
F
o
e
n
T
e
s

1
o
b
o
3
u
r

=
s
a
o
q
d
e
y
o

!
(
w
T
o
q
u
m
u

2
A
T
3
T
S
O
d

®
j
0
U

Sem
p
e
a
s
j
u
s

n
o
k

s
a
e
j
d
e
y
o

oyg
i
x
o
x
x
y
,
)
u
r
j
u
r
a
d
’

3no

- w
e
3
s
i
s

%
p
o
y
z
a
w

A
x
j
u
g
a
u
t
z
e
b
e
w

*
*
\
 {

!
K
e
x
a
y
a
o
y
a
n
e

uxnisax

!
(
)
e
n
e
n
b
e
p

- s
a
z
o
y
j
n
e

(
b
u
t
a
i
s
)

=
[
T
]
A
e
x
a
y
a
o
y
z
n
e

}
(++T

‘
y
z
b
u
s
t
:
A
e
z
a
y
a
o
y
n
e

>
T

(0
=

T
JUT)

IOF

[
(
)
o
z
T
s

‘
s
a
o
y
j
n
e
]
b
u
t
a
z
s

m
e
u

=
K
e
x
a
y
a
o
y
i
n
e

[
]
B
u
t
i
a
s

{(,N,
=i

s
a
o
y
a
n
y
s
I
o
w

3%
,U,

=]
S
I
O
Y
I
O
N
Y
S
I
O
W

3F
,X,

=]
SIoyjznygaxow

33
&,

=j
s
z
o
y
j
z
n
y
s
z
o
w
)
d
T
T
y
s

{

(
0
)
a
¥
x
e
y
o
-
"

(
,

é
(
u
)

o
N

o

(K)
s
s
x

‘
I
o
y
z
n
e

I
S
Y
j
O
U
R

D
I
B
Y
I
F

ST
u
)
3
n
d
u
t

-
0
I

=
s
x
o
y
z
n
y
e
o
a
o
w

}
op
}

s
s
T
®

f,u,
=

s
a
o
y
j
n
y
d
I
o
w

(y
<

U
M
N
I
O
Y
I
N
E
)
I
T

TsSIOYaN®
§

UBY3
D2I0W

DABY
J0U

UBD
Yooq

B//

! T
+
u
n
N
I
o
y
a
n
e

=
u
m
N
I
o
y
j
n
e

!
(zoyane)

s
n
s
n
b
u
s

* s
x
o
y
a
n
e

(
s

'y
+

u
n
N
z
O
Y
3
N
E

+
,
I
0
Y
3
N
e
,
)
3
n
d
u
T

O
I

=
I
O
Y
3
N
E

! (
,
S
I
9
3
0
B
I
R
Y
D

Gz
u
e
y
]

S
x
0
o
w

s
e
y

Io
A
j
d
w
s

s
e
m

p
a
r
s
j
u
s

n
o
k

s
u
r
e
u

I
o
y
i
n
e

S
Y
J

:
1
z
0
x
x
%
,

)
u
T
3
a
u
t
a
d

3
n
o
-
w
e
j
l
s
i
s

}
(sz

<
()y3bust-

()wral
- z
o
y
a
n
e

||
==
(
)
y
a
b
u
e
T
-

() w
r
a
3

I
0
o
U
3
I
N
E
)
S
T
T
Y
M

{(4
i

+
wunNIoyane

+
,
I
o
y
a
n
e
,
)
3
n
d
u
t

O
l

=
Ioyzne

}
(
,
&
,

=
=

s
a
z
o
y
a
n
y
s
z
o
w

||
K
,

=
=

s
a
o
y
z
n
y
a
z
o
w
)
S
T
T
I
U
M

!1
=

u
m
N
I
O
o
y
j
n
e

3ut

!
K
,

=
s
z
o
y
z
n
y
s
a
o
w

x
e
y
d

!
{
a
o
y
a
n
e

b
B
u
t
a
j
s

! (
)
e
n
e
n
d

M
o
u

=
s
I
o
y
j
z
n
e

s
n
a
n
y

}
()
£
z
3
u
g
z
o
y
a
n
e

[
]
B
u
t
a
z
s

o
r
3
e
d
s

o
r
r
q
n
d

{
(
)
e
n
t
e
A
3
u
T
”

(()wraz - (,
:(¢)

e
o
t
a
d
,
)
3
n
d
u
t

0
I
)
3
F
o
°
n
T
E
A

a
8
b
o
j
u
r

=

}
(0

==
®oT1ad

||
0

>
®

¢ ()enTeAduT’
((Jwra3d®

(,
:(¢)

9otad,)3ndut
oI)Fosnrea’xsbey

‘£ (
)
e
n
t
e
A
l
u
t
”

(()uwraz - (,
:
s
s
b
e
d
,
)
3
a
n
d
u
r

0
I
)
F
o
e
n
t
e
a

a
s
b
e
j
u
r

=
!
(
,
x
9
q
u
m
u

@
a
T
3
T
s
o
d

B
j
o
u

s
e
m

p
a
z
s
j
u
s

n
o
k

s
e
b
e
d

o
y
l

:
x
o
x
x
d
,
)
u
r
j
u
r
t
a
d
-
i
n
o
-
w
e
i
s
i
s

}
(0

=
=
s
e
b
e
d

||
0

>
s

{
(
)
s
n
t
e
a
r
u
t
:

((Jwraz - (,
:
s
o
b
e
d
,
)
3
n
d
u
t

0
I
)
I
0
o
S
n
T
e
A

1
9
6
9
3

{(u
:
®
T
3
T
3
4
)
3
n
d
u
T

O
I

=

o
o
t
a
d

!
(
,
7
o
q
u
m
u

a
a
T
3
T
s
o
d

®
j
o
u

s
e
m

p
e
x
o
j
u
d

n
o
k

e
o
t
a
d

syy
:
x
o
x
x
d
,
)
u
r
i
z
u
t
a
d
-
i
n
o
-
w
e
l
s
i
s

o
T
a
d
)

o
T
T
Y
M

ur
=

s
o
t
a
d

s
e
b
e
d

s
b
e
d
)
s
T
T
y
m

ur
=

s
a
b
e
d

sT3T3
! (
,
s
a
9
3
0
®
B
a
R
Y
D

GZ
u
e
y
l

S
x
o
w

sey
o

A
j
d
w
s

s
e
m

p
e
r
s
j
u
d

n
o
k

OT3ITI
oYL

:
I
0
x
a
y
,
)
u
T
z
u
t
a
d
-
3
n
o

w
e
l
s
i
s

}
(sz

<
(
Q
y
a
b
u
e
r
:

(Jwraz
1
3
t
y

||
0

==
()y3zbuer’

(juraz-s
{(u

:9T373,)3nduT"

{()enTeAjuT’
(()wra3

- (,
:PT,)3Indut

O
I
)
3
F
o
e
n
i
e
a
’
a
s
b
e
j
u

!
(x
o
q
u
m
u

pt
x
a
d
o
x
d

B
j
0
u

seM
p
a
x
s
j
u
s

nok
pT

8yl
:
x
o
x
x
d
,
)
u
r
j
u
r
a
d
-
3
n
o
-
w
e
l
s
i
s

}
(0

=
p
T

|l
O

{
(
)
e
n
T
e
A
z
u
t
”

(()wray
'

(,
:
P
T
.
)
3
n
d
u
r
-
O
I
)
z
F
o
o
n
T
E
R
A
"

IS

-
s
x
o
y
s
y
o
o
q

oy3
ut

Axjus

{
(
w
u
)
u
t
a
u
r
a
d
:

J
u
r
g
u
t
a
d
:

y
u
r
j
u
t
a
d
-

y
u
r
a
u
t
a
d
-

w)ut3urad:

TIT3)
STTUM

oI
=

ST313

I
=pT

>
PT)STTUM

Bo3ur
=

PT

ano
"
w
e
3
s
i
g

*3no
-wej3sis

*3no
‘
w
a
3
s
i
s

3no
‘
w
e
3
s
i
s

3
n
o

‘
w
e
3
s
i
s

3no
‘uwe3sis

3no
"
w
e
3
s
i
s

"3no
-wajsisg

*3n0
"
w
a
3
s
i
s

!
(
u
w
u
)
u
T
a
u
T
t
a
d
:

3
n
o

w
e
3
s
i
s

!
(
w
u
)
u
r
a
u
t
a
d
-
a
n
o

‘
w
e
3
s
i
g

‘zeystTqnd
IOUSTIANd

!
o
o
t
a
d

‘
s
e
b
e
d

‘prt
3juUT

!e13T13
b
u
t
a
z
s

()
A
x
q
u
g
s
u
t
z
e
b
e
w

s
u
r
z
e
b
e
y

orjzeazs
o
r
r
a
n
d

s
u
t
z
e
b
e
w

m
a
u

e
o
y

a
n
d
u
r

x
e
s
n

B
u
r
y
z
e
b

zoz
s
y
g
r
s
u
o
d
s
s
y

}

()
A
z
3
u
g
e
o
a
n
o
s
s
x

[
]
b
u
t
a
z
s

o
r
3
e
z
s

o
r
r
q
n
d

/%
‘
a
x
0
3
s
y
0
0
q

®Y3l
uT

A
r
j
u
s

s
u
t
z
e
b
e
w

meu
B

FO
s
s
o
n
o
s
s
a

syl
xoz

a
n
d
u
r

x
s
s
n

Burizazeh
xoy

s
r
q
r
s
u
o
d
s
e
y

i *

p
o
y
j
z
e
m

A
I
j
u
g
e
s
I
n
o
s
s
x
 xx/

fur
u
r
n
j
e
x

!
(
r
o
y
s
t
T
a
n
d

‘
s
e
o
i
n
o
s
a
x

‘
e
o
t
a
d

‘
s
e
b
e
d

‘
S
7
3
T
3

‘
p
P
T
)
s
u
r
z
e
b
e

M
o
u

=
u

s
u
t
z
e
b
e
R

¢ ()
K
z
j
u
g
e
o
a
n
o
s
a
x

=
s
e
o
a
n
o
s
a
x

[
]
b
u
t
a
a
s
 {

{
¢
(
p
1
a
o
y
s
T
T
A
N
d
)

AIYF T
M
I
S
Y
S
T
T
A
N
d
P
E
S
I

" J
Y
Y
S
T
T
I
I
O
Y
S
T
I
A
N
G

=
IoysTTand

f
(
)
e
n
t
e
A
j
u
t
’

((Jwrxy
-

(,
:PT

F
d
y
s
t
i
q
n
d
,
)
3
n
d
u
t
-
O
I
)
3
z
o
o
n
i
e
a

x
s
b
a
j
u
r

=
p
r
a
s
y
s
t
i
q
n
d

!
(
,
a
o
q
u
m
u

pT
x
a
d
o
a
x
d

®
j
0
u

s
e
m

p
a
x
s
j
u
e

nok
pT

oYL
:
I
0
x
x
¥
,
)
u
r
z
u
r
a
d
-
i
n
o
-
w
a
3
z
s
i
s

}
(11nu

==
asystiqnd

||
0

==
®oTad

||
0

>
s
o
r
a
d
)
S
T
T
U
M

¢
(
p
1
a
o
y
s
T
I
9
n
d
)

4IU3 T
M
I
S
Y
S
T
T
A
N
I
P
E
S
I

" A

V
Y
S
T
T
I
I
S
Y
S
T
I
A
N
G

=
Ioystignd

f
(
)
e
n
t
e
A
3
u
T

(
(
J
w
r
a
y
®

(,

:PT
a
v
y
s
t
i
a
n
d
,
)
3
n
d
u
t

0
1
)
z
o
e
n
t
e
a

x
e
b
e
q
u
l

=
p
r
a
s
y
s
t
r
q
n
d

Jur

£ ()
T
R
U
T
W
I
S
L
O
L
S
S
W
R
N
S
A
I
S
I
B
Y
S
T
T
A
N
A
T
T
Y
I
N
d
I
N
O

* A
V
Y
S
T
T
I
I
S
Y
S
T
T
A
N
G

s
5
e
0
0
R

w
o
p
u
e
x
/
/

}
este

{

¢
(
p
1
x
9
Y
s
T
T
A
n
d
)

A
I
Y
I

T
M
I
S
Y
S
T
T
A
N
I
P
e
S
T

* 9
T
T
I
I
S
Y
S
T
I
A
N
d

=
T9ysTIgqnd

f
(
)
e
n
t
e
A
j
u
T
”

(()wrxy
-

(,
:PT

F
o
y
s
t
I
q
n
d
,
)
3
n
d
u
t
-
Q
I
)
z
o
o
n
T
e
a
s

a
9
b
2
3
u
I

=
p
r
a
s
y
s
t
i
q
n
d

!
(
,
a
s
q
u
n
u

pT
x
o
d
o
a
d

®
j0u

s
e
s

p
a
x
e
j
u
s

n
o
k

pPT
SYIL

:
I
0
x
x
F
,
)
u
r
T
i
u
t
i
d
-
j
n
o
-
w
s
l
s
i
s

}
(1Inu

==
a
s
y
s
t
i
a
n
d

||
0

==
®
o
t
a
d

||
o

>
@
o
T
a
d
)
s
T
T
U
m

¢
(p1aoys

TTand)
QIYA

T
M
I
S
Y
S
T
I
A
N
I
P
®
O
I
T

' S
T
T
A
I
S
Y
S
T
I
A
N
d

=
IoYstTIgqnd

{()enteazutr:
((Jwraz:

(,
:PT

I9ystTIand,)3ndut
O
I
)
F
o
e
n
t
e
a

a
e
b
e
j
u
r

=
p
r
a
s
y
s
t
i
q
n
d

3Jut
¢ ()
T
R
U
T
W
I
S
L
O
L
S
O
W
R
N
S
A
I
S
I
S
Y
S
T
T
A
N
d

T
T
Y
3
n
d
3
n
o

o
7

T
I
I
v
Y
S
T
T
I
N
d

A
T
T
e
r
j
u
s
n
b
e
s
/
/

}
(
(
p
o
u
a
s
w
o
r
a
s
b
i
)
3
t

¢
(wau)utautad:3no

w
e
3
s
i
s

S
N

s
x
0
3
s
j
o
o
g

s
s
e
r
d

o
r
T
a
n
d

s
s
e
I
p

d
x
o
j
s
x
o
o
d
/
/

! K
e
x
a
y
g
e
o
a
n
o
s
a
x

u
a
n
i
a
x

!
(
)
e
n
e
n
b
e
p

- s
e
o
a
n
o
s
e
x

(
b
u
t
a
y
g
)

=
[
T
]
4
e
a
z
a
y
s
o
a
n
o
s
s
x

}
(++T

‘
y
a
b
u
e
t

A
e
x
a
y
e
o
a
n
o
s
s
x

>
T

/0
=

T
JUT)

IOF

/[
(
)
o
z
T
s

' s
e
o
a
n
o
s
e
x
]
b
u
t
a
l
z
s

m
o
u

=
K
A
e
a
x
a
y
s
o
a
n
o
s
e
x

[
]
B
u
t
a
z
s

{
{

=j
s
e
o
i
n
o
s
s
y
e
i
o
w

33
,U,

=

S
O
O
I
N
O
S
S
O
Y
L
I
O
W

3¥
,X,

=|
S
e
d
I
n
o
s
e
y
e
x
o
w

33
A
,

=]
s
e
d
a
n
o
s
e
Y
S
I
O
W
)
S
T
T
U
M

{

(
0
)
3
g
x
e
y
o
-

(
,

¢&(u)
OoN

I0
(K)

seox
‘
o
o
a
n
o
s
s
a

I
d
Y
j
o
U
E
R

B
I
B
Y
I
F

ST
4
)
3
n
d
u
t

-0I
=

S
e
o
a
n
o
s
a
y
¥
s
I
o
W

}
op
}

o
s
T
1
®

{,u,
=

S
o
D
I
N
O
S
S
Y
s
I
o
W

(j
<

W
N
N
S
D
I
N
O
S
S
I
)
I
T

‘
S
O
D
I
N
O
S
O
I

p
U
B
Y
J

O
I
O
W

D
A
R
Y

jou
ued

s
u
r
z
e
b
e
u
w

ev//

/ T
H
U
N
N
S
O
I
N
O
S
S
O
T

=
W
N
N
S
O
I
N
O
S
S
I

!
(
9
0
a
n
o
s
e
x
)

s
n
a
n
b
u
s

' S
E
D
I
N
O
S
S
I
T
 {

(
4

.

+
u
n
N
e
O
I
N
O
S
®
I

+
,
9
0
I
N
O
S
D
I
,
)
3
n
d
u
T

Q
I

=
S
O
I
N
O
S
L
I

{
(
,
s
T
9
3
0
e
I
R
Y
D

Gz
u
E
y
}

o
F
o
w

sey
xo

A
j
d
w
e

Sem
P
O
I
S
I
U
S

9
O
I
N
O
S
S
I

OYL
:
I
O
I
I
H
,
)
u
T
3
u
T
a
d
-
i
n
o
-
w
e
l
s
i
s

}
(g2

<
(
)
y
a
b
u
s
t
'

(
)
w
r
t
x
3

s
o
a
n
o
s
a
x

||
==
(
)
y
3
z
b
u
e
T
’

(
)
W
T
I
3

9
D
I
N
O
S
D
I
)
D
T
T
U
M

(
,

.
+

U
M
N
®
D
I
N
O
S
®
I

+
,
©
0
I
N
O
S
S
I
,
)
3
n
d
u
r

Q
I

=
S
O
I
N
O
S
S
I
X

}
(
,
X
,

=
=

s
s
o
a
n
o
s
s
o
y
s
a
o
w

||
,&,

=
=

s
e
o
a
n
o
s
s
y
s
z
o
u
)
d
T
T
Y
M

{1
=

W
N
N
®
D
I
N
O
S
S
I

JUT
!
K,

=
s
e
p
a
n
o
s
o
y
s
I
o
w

IBYD

!
o
o
a
n
o
s
a
x

b
u
t
a
l
s

!/ (
)
o
n
e
n
d

meuU
=

S
9
O
I
N
O
S
B
I

SNdBNY

T
e
u
t
u
x
®
l

°Y3}
I
E
S
I
D

O3
p
e
s
n
/
/

opop
o
r
z
i
o
e
d
s

p
o
n
T
d

sxx//
}

(
)
n
u
s
k
m
o
y
s

proa
o
r
r
a
n
d

/% ¥

- p
e
u
T
w
z
e
y

9Y3
UT

nuSW
I
S

SYI
s
A
e
t
d
s
T
p

-
P
O
Y
I
S
W

D
U
D
H
M
O
U
S

x

xx/ {
1

()
n
u
s
M
o
y
s

}

()
®
@
a
0
3
s
3
o
0
d

o
t
t
q
n
d

7

o
z
0
3
8
3
0
0
g

SseTO
O

s
3
0
8
[
g
e

IOF
F
O
3
O
N
I
F
S
U
C
D

x

k.x.\ {

!
(
)
®
a
0
3
s
y
0
0
g

M
d
U

}

(
s
b
x
e

[
]
H
B
u
t
a
l
s
)
u
T
r
e
u

P
T
O
A

o
t
3
e
a
s

o
r
r
a
n
d

/%
poy3ew

UTeH
x

x
x
/

iosTes
=

S
T
T
I
S
S
O
O
O
Y
W
O
P
U
R
¥
U
I
T
M

U
B
S
T
O
O
Q

TBUTZ
otje3s

/%

-
K
r
n
g
s
s
e
o
o
n
s

p
e
i
e
T
d
u
o
o

useq
84BU

S
O
S
T
O
I
D
K
S

o
y

usym
ATuo

onal
=

S
T
T
I
S
S
O
D
O
Y
W
O
P
U
R
N
U
I
T
A

oyew
‘yons

SY

*

-s00q
sy3

uT
z
e
3
d
e
y
d

STYR
FO

S
O
S
T
R
I
S
A
D

oy3
yo

a
e
d

se
pegerduwoo

‘utebe
®ouO

‘ST
SSBTD

STUL
~o7TF

AxeuTlq
B

O3

u233TIMA
pue

peSa
oq

O3
s
x
o
y
s
t
r
a
n
d

2y3
I0F

I9PIO
UT

poajeTduon

oq
03

peou
OSTR

TTTM
A
V
I
S
T
T
I
I
S
U
S
T
I
A
N
G

®
{ p
x
O
W
I
D
Y
I
A
N
I

X ok ok X K X

%

‘yooq
eoyz

ut
z
o
j
d
e
y
p

STUF
JO

S
I
S
T
D
I
D
K
S

syy
go

gaed
se

p
e
j
e
r
d
w
o
o

ST
SSBTR

STUL
-
p
o
g
e
t
d
w
o
o

oq
S

SSETD

I
P
M
O
T
T
A
T
R
T
I
S
I
T
R
O
U
T
P
E
S
Y

SUI
P
N
}

=
S
T
T
A
S
S
S
O
O
V
U
O
P
U
R
N
U
I

T
ou3

UITH

A
7
3
0
®
I
I
0
0

U
O
T
A
O
N
F

O3
w
e
z
b
o
z
d

Byl
I0F

I
S
P
I
O

UT
D
N
I
N
I
Y
M
 *

X oK k¥ ~
x

{yesaq

{ ()
zoysSTTANIAG

TR T
I
S
I
B
H
O
U
T
P
E
S
U
I
S
T
T

,
osed

{yesxq

{()
T
e
T
a
o
3
e
N
O
U
T
P
E
S
Y
T
T
Y
I
S
T
T

:
,P,

©SED
{yesaq

!
(
)
a
o
y
s
T
I
q
n
g
S
A
O
W
S
I
T

o
s
e
d

Iyesaq
! (
)
x
s
y
s
T
T
O
N
g
P
P
E

:
,q,

9
S
B
D

!yes1q

{
(
)
s
a
9
Y
S
T
T
I
A
N
A
T
I
Y
I
S
T
T

:
,®,

Ssed
}

(uot3osres)
yo3Tms

'
{(,L,

=i
uoT3OST®S

3%
,T,

=|
UOTIOSTOS

3%
\4,

=i
uot3oeTes

3%
,b,

=
uoT3OeTSS

33
,F,

=]
UOTIDSTSS

3%
,®,

=]
UOTIDSTSS

3%
,P,

=i
U
O
T
3
D
9
[
d
S

¥%
,D,

=|
U
O
T
I
D
S
T
S
S

33
,J,

=

U
O
T
I
D
S
[
S
S

I3
,®,

=]
U
O
T
I
D
D
[
S
S
)
S
T
T
U
M

{

f
(
0
)
3
¢
x
e
y
o

(
,

c
u
x
o
g
a
e
d

o3
j
u
e
m

n
o
k

op
u
o
r
i
o
e

U
Y
S
T
U
M
,
)
3
I
n
d
u
T

Q
I

=
U
O
T
I
O
S
T
S
S

}
op

/{uoT309T3s
IByYD

!
(
w
u
)
u
T
a
u
t
a
d
-

3
n
o

‘
w
e
l
s
i
s

!
(
u
w
u
)
u
T
a
u
t
a
d
:

3no
w
e
3
s
i
s

f
(
4
3
t
x
E

(
L
,
)
u
r
3
u
r
a
d
-
j
n
o

uwelsis
/(.

(
®
T
3
T
3

70
QI)

T
E
T
a
o
3
z
e
w

H
u
t
p
e
s
a
x

I07
y
o
x
e
s
s

(
T
,
)
u
r
3
z
u
t
a
d
-
y
n
o

w
e
i
s
i
s

(.,

(
b
u
t
p
u
s
o
s
e
p

1o
b
B
u
r
p
u
e
o
s
e
)

osotad
Aq

s
T
e
r
a
s
i
z
e
w

H
u
r
p
e
s
a

3
x
0
8

(
Y
,
)
u
r
r
u
t
a
d
-
i
n
o

w
e
i
s
i
g

!
(
,
@
x
0
3
5
3
)
0
0
q

9Y3
w
o
x
y

T
e
r
i
s
j
e
w

H
u
r
p
e
s
x

e
s
s
o
w
e
y

(
6
,
)
u
r
j
u
t
a
d
-
i
n
o
-
w
e
i
s
i
g

!
(
,
®
3
0
3
8
3
0
0
q

8yl
03

T
e
T
I
o
j
E
w
W

B
u
r
p
e
s
x

®
pPpY

(
3
,
)
u
r
i
u
t
a
d
-
i
n
o
-
w
e
l
s
i
A
g

!
(
,
a
o
y
s
t
T
g
n
d

o
T
z
T
o
e
d
s

o

s
T
e
r
a
o
j
z
e
w

H
u
r
p
e
e
x

9y3
TTE

I
S
T
T

(
°
,
)
u
r
i
z
u
t
a
d
-
i
n
o

w
e
i
s
i
s

!
(
,
®
1
0
3
8
}
0
0
q

@Yz
uT

s
T
e
r
a
s
j
r
e
w

H
u
r
p
e
s
s

Syl
ITe

I
S
T
T

(
P
.
)
u
r
3
z
u
t
a
d
-
i
n
o

w
e
i
s
i
s

! (
,
3
9
y
s
T
T
q
n
d

®
S
A
0
w
R
y

(
0
,
)
u
r
z
u
T
t
a
d
’
3
n
o
-
w
s
l
i
s
i
s

! (
u
x
o
y
s
t
r
q
n
d

®
PPY

(
g
,
)
u
T
r
j
u
t
a
d
-
i
n
o
-
u
w
e
y
s
i
s

{
(
,
s
a
o
y
s
t
r
a
n
d

Sy3z
TTe

3ISTT
(
®
.
)
u
T
3
u
T
a
d

3
n
o

w
e
l
s
i
s

{
(
,
:
s
u
o
r
3
o
e

B
U
T
M
O
T
T
O
F

©Y3
IO

d
u
o

3
0
9
7
9
8
,

)
u
T
3
u
T
t
a
d
’

3
n
o

w
e
l
s
i
s

!
(
w
w
)
u
T
r
u
t
a
d
-

3
n
o
 ‘
w
e
3
s
i
s

!
(=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
,
)

U
T
3
u
T
a
d
"

3
n
o

‘
w
e
3
s
i
s

! (
,
9
x
0
3
5
3
0
0
g

9Yy3
03

S
W
O
D
T
S
M
,
)
u
T
3
i
u
t
a
d
-
3
n
o

w
e
l
s
i
s

!
(
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
,
,
)

u
T
3
u
T
a
d

" 3
N
0

'
W
S
3
S
A
S

spoo
o
t
y
r
o
e
d
s

C
o
n
T
g

xxx//
£
{
,
3
\
)
u
t
j
u
r
a
d
-
3
n
o

‘weisis

S
I
U
S
W
U
O
I
T
A
U
D

I
S
Y
I
C

UT
P
O
S
N

JT
N
0

P
I
J
j
U
S
W
W
O
D

8
¢

p
r
n
o
y
s
/
/

xx/ {
!
(
)
s
n
u
t
j
u
o
p
o
r
s
s
a
a
d
 {

{
()
T
R
U
T
W
I
S
L
O
L
S
I
B
Y
S
T
T
A
N
A
T
T
Y
I
N
d
I
N
O
0

A
V
H
S
T
T
A
I
S
Y
S
T
T
A
N
G

s
s
9
d
D
e

w
o
p
u
e
x
/
/

}
este

{
{ ()
T
R
U
T
W
I
S
L
O
L
S
I
O
Y
S
T
T
A
N
G

T TYINdINO
* ST TIABYSTTANG
A
t
r
e
r
j
u
e
n
b
e
s
/
/

}
(
(
)
p
o
u
r
s
w
o
I
a
s
b
i
)
3
T

}
()
S
I
9
Y
S
T
I
G
N
A
T
I
V
I
S
T
T

PTOoA
oTTqnd

\
*

‘Teutwzel
syl

o3
saeystrand

Syl
TT®

SISTT
-

POYISW
S
A
O
O
H
T
T
V
I
S
T
T

«
xx/ {

!
O
T
T
I
S
S
S
O
O
Y
W
O
P
U
R
Y
Y
I
T
M

U
I
N
F
D
I

}
(
)
p
o
u
r
s
n
o
I
a
z
e
b

u
e
s
y
o
o
q

or3e3ds
o
r
r
q
n
d

/x
‘
a
n
d
a
n
o

p
u
e

j
n
d
u
t

0
3

s
s
o
o
o
e

f
e
r
j
u
s
n
b
s
g

I0
S
T
T
J
I
s
s
o
o
O
y
w
o
p
u
r
y

H
u
T
s
S
n

S
a
R

OM
I
9
Y
l
o
y
u
m

u
U
I
N
I
D
I
P

o *
P
o
Y
3
S
u

P
O
Y
I
S
H
O
I
I
e
h

4
xx/

fyesxq
:

3Tnegyep
!yesaq

!
(
0
)
3
T
t
x
o
-
w
e
3
s
k
s

:
,[,

s
s
e
o

{yesaq
4()

T
e
T
I
o
3
e
W
O
U
T
P
E
R
S
Y
P
U
T
T

:
,T,

OseDd
{yesaq

!
(
)
e
o
t
a
g
h
g
T
e
r
a
s
j
e
n
b
u
r
p
e
s
y
i
i
o
s

:
,y,

o
s
e
d

{jesxq
! ()

T
e
t
a
s
j
z
e
w
b
u
t
p
e
s
y
s
a
o
c
w
a
x

:
,H,

s
s
e
o

!yesaq
! ()

T
e
t
a
s
j
e
y
b
u
r
i
p
e
s
y
p
p
e

:
,J,

°oseD

{ ()
T
R
U
T
W
I
S
L
O
L
S
P
W
E
N
S
Q
I
S
I
S
Y
S
T
T
A
N
A
T
T
¥
I
N
d
I
N
o

" A
V
Y
S
T
T
I
I
S
Y
S
T
T
A
N
G

s
s
s
o
p
e

w
o
p
u
e
x
/
/

}
esT®

{
£ ()
9
T
T
I
T
O
Y
S
T
I
I
N
G
P
E
S
I

" S
T
T
A
T
O
Y
S
T
I
A
N
G

=
s
a
s
y
s
T
T
a
n
d

¢
()
T
R
U
T
W
I
S
L
O
T

S
O
W
E
N
S
Q
I
S
I
S
Y
S
T
T
A
N
A
T
T
Y
F
n
d
I
n
o

8T T
4
I
S
Y
S
T
I
A
N

K
i
r
e
r
a
u
e
n
b
e
s
/
/

}
(
(
)
p
o
u
a
s
w
o
r
a
s
b
i
)
z
t

{1Tnu
=

sasystrand
[]asysTrand

(
.
9
,

=j
UOT3}DOTSS

B3
,B,

=]
U
O
T
I
D
S
T
I
S
)
S
T
T
u
M

{
£
(
0
)
3
v
x
e
y
o

"
(
,

é
¢
m
x
o
g
x
a
d

o3z
j
u
e
m

n
o
k

op
u
o
T
3
d
E

Y
O
T
Y
M
,
)
I
n
d
u
T
r

Q
I

=
U
O
T
I
D
S
T
S
S

}
op

{
u
o
T
3
o
e
T
e
s

IRYD

!
(
u
w
u
)
u
t
3
u
t
a
d
-
3
n
o

w
e
3
s
i
s

!
(,oureN

(
q
,
)
u
r
3
u
t
a
d
-
3
n
o

- w
e
3
s
i
s

{(.a1
(
e
,
)
u
t
3
z
u
r
a
d
-
j
n
o

w
e
l
s
i
s

!
(4 :

R
q

@
a
o
w
e
x

o3
x
a
y
s
T
t
I
g
n
d

®
I
0
F

Y
o
x
e
s
s
,
)
u
r
i
j
u
r
a
d
-
i
n
o

w
e
l
s
i
s

!
(
w
u
)
u
T
r
u
t
a
d
:

n
o

-
w
e
3
s
i
g

}
()
z
9
y
s
T
T
q
n
g
s
s
o
c
w
s
x

p
r
o
a

o
T
T
q
n
d

/*
T
e
u
T
w
x
®
)

8yl
y
b
n
o
x
y
y

xoysTtignd
B

S
A
C
W
S
I

O]
ISSN

BY]
S
M
O
T
I
E

-
P
O
Y
I
S
W

I
S
Y
S
T
T
G
N
I
D
A
O
U
S
I
T
 xx/ {

¢
(
)
s
n
u
t
j
u
o
p
o
r
s
s
e
o
a
d
 {

{(d)
®
o
T
T
A
I
O
Y
S
T
T
A
N
I
O
L
O
F

TAM
' I
O

T TATISYSTTANG
s
s
e
o
o
R

w
o
p
u
e
x
/
/

}
s
t

{

! (d) ®
T
T
A
I
S
Y
S
T
T
I
N
A
O
L
O
F

T
N

ST TAISYSTIAN
A
f
T
e
r
j
u
s
n
b
e
s
/
/

}
(
(
)
p
o
u
a
s
n
o
r
a
s
h
-
s
x
o
g
s
i
o
o
d
;
)
F
T

!
()
K
x
q
u
m
a
s
y
s
t
I
g
n
d

- T
e
u
t
w
i
s
r
i
n
d
u
r

=
d

a
9
y
s
T
I
q
n
d

}
() x9ysTTangpPPe

PToA
OTTAnd

/%
T
e
u
t
u
z
s
l

sy3
y
b
n
o
a
y
z

z
s
y
s
t
i
q
n
d

B
ppe

03
I9sSn

9Y3
S
M
O
T
T
E

-
P
O
Y
I
S
W

I
S
Y
S
I
T
A
N
A
P
P
R

»

‘9
=

€
3qur

/
[
T
-
y
a
b
u
e
T

- s
x
s
y
s
t
T
a
n
d
]
z
o
y
s
T
T
n
d

Mou
=

dwel
[
]
a
v
y
s
T
I
A
R
d

}
(.,

==
u
o
t
3
o
e
r
e
s

||
&,

==
u
O
T
I
O
S
T
®
S
)
J
I
T

{
(
,
N
,

=j
U
O
T
3
I
O
S
T
®
S

3%
,U,

=

U
O
T
I
D
I
T
S
S

3%
,X,

=j
U
O
T
3
D
S
T
9
S

3%
K
,

=j
u
o
t
a
o
e
r
e
s
)
a
T
T
u
m

{ £ (
0
)
3
g
T
e
u
R
”

(.

&¢(u)
oN

zo
(K)

sex
‘Axzjus

3}ooq
S
A
0
q
e

IYF
S
A
o
u
L
T

03
a
u
e
m

noXk
s
a
n
s

n
o
k

2
1
y
,
)
3
n
d
u
T

O
I

=
U
O
T
I
D
S
T
S
S

}
op

¢
(yu)uTdurad

3
n
o
-
w
e
3
s
i
s

!
(

================================= W) u
t
a
u
t
a
d
-

ano

w
e
3
s
i
s

{(93TSQPA
+ .

:
E
I
I
S
E
E
M
,
)
u
T
3
U
T
I
d

N0
u
S
3
s
i
s

!
(
o
u
o
y
d
e
T
e
3

+
. :
E
N
O
H
A
E
T
E
L
,
)
u
T
3
u
T
a
d

3
n
o
-
w
e
i
s
i
s

!
(
s
s
9
a
p
p
e

+
=
”
m
m
m
m
a
n
fl
=
v
G
fl
u
fl
fl
n
m
.
u
fi
o
.
fi
m
u
m
h
m

!
(
s
u
r
e
u

+
:
“
H
Z
«
Z
:
v
:
H
u
a
fl
n
m
.
u
n
o
.
E
w
u
m
h
m

{(owreu
+

,
:
Q
I
,
)
u
T
3
u
t
a
d
-
3
n
o
-
w
e
l
s
i
s

)
u
t
3
u
t
a
d
:
a
n
o

- u
a
y
s
k
s

y
u
t
j
u
t
a
d
-
3
n
o

w
e
3
s
i
s

f

N
fi
v
m
u
fl
m
A
m
B
u
m
m
.
m
0
>
o
E
m
m
o
u
H
m
u
0
£
m
fl
H
n
¢
m

=
@
3
T
s
g
e
m

b
u
t
a
i
s

u
A
v
m
n
o
fl
m
m
fi
w
a
u
m
m
.
H
m
>
o
E
w
m
0
u
u
m
u
m
n
m
fl
H
n
fi
m

=
s
u
o
y
d
a
T
®
3

3UT

u
A
u
m
m
w
u
u
v
m
u
o
m
.
H
w
>
o
E
w
m
o
u
u
m
u
m
n
m
fl
H
A
=
m

=
s
s
a
a
p
p
e

b
u
t
a
a
s

N
n
v
w
E
M
Z
u
m
m
.
H
w
>
o
E
m
M
O
u
u
m
n
m
a
n
H
n
u
m

=
sureu

H
B
u
T
I
3
s

:
(
)
p
1
3
e
b

- [
e
a
o
u
w
s
y
o
z
]
s
a
s
y
s
t
r
a
n
d

=
PT

3UT }
ostT®

! (,
x
o
y
s
t
r
q
n
d

y
o
n
s

ou
ST

s
x
o
y
g
,

) u
T
a
u
t
a
d

3
n
o

- w
e
i
s
i
s

(T-
==

°
2
a
0
w
a
y
o
l
)
I
T

!
(
s
a
s
y
s
t
T
a
n
d

/ 157
9
U
r
R
I
R
I
U
O
I
R
D
S
)

U
D
I
L
S
S
I
R
D
U
T
T

" Y
O
I
B
S
S
I
L
S
U
T
T

=
S
A
O
U
S
Y
O
R

/
(
,
:
y
o
a
e
s
s

o3
s
u
w
e
N
,
)
3
n
d
u
r
’

Q
I

=
I
9
I
B
W
E
I
R
I
U
D
I
E
L
S
S

b
u
t
a
a
s

}
estT®

{

¢
(
s
z
o
y
s
t
i
a
n
d

‘
I
9
3
S
W
R
I
R
I
Y
D
I
E
S
S
)
U
O
I
E
S
S
I
B
S
U
T
T

" Y
O
I
B
S
S
I
B
O
U
T
T

=
[
A
0
U
S
Y
O
R

f
(
)
e
n
t
e
a
z
u
T
”

(
(
J
w
r
a
l
y

-
(,

:
y
o
I
e
d
s
S

03
Q
H
:
q
u
m
fl
fl
.
O
H
v
M
o
w
u
n
>
.
n
w
m
m
u
n
H

=
I
9
j
9
W
R
I
B
g
U
O
I
R
S
S

J
U
T

}
(,®,

==
U
O
T
3
D
O
T
®
S
)
I
T

{1-
=

s
A
o
w
s
y
o
3

3UT

¢ (
)
o
T
T
a
T
o
U
S
T
T
A
N
A
P
E
S
T

* ATHOTTATISYSTIANG
=

sIoystand

A
1
T
e
T
3
U
S
n
b
e
s

/7

}
(
(
)
p
o
u
a
s
w
o
r
a
z
e
h
;
)

st
}

(,®.
==

u
o
t
z
o
e
r
e
s
)
z
t

(
.
9
,

=i
u
o
t
z
o
e
T
e
s

3%
1By

=j
U
O
T
3
D
a
T
®
S
)
a
T
T
y
m

{
‘
(
0
)
3
v
r
e
y
o
-

(
,

¢
w
r
o
z
r
e
d

03
j
u
e
m

noi
op

u
o
r
j
o
e

U
P
T
U
M
,
)

3InduT

0
1

=
u
o
r
j
o
e
T
e
s

}
op

{
u
o
t
3
o
e
T
e
s

zeyo

{
(wu)
u
T
d
u
T
a
d
-

3n0
‘
w
e
3
s
i
s

!
(
u
s
o
u
T
Z
R
b
E
Y
R

A
A
_
.
v
fl
.
n
u
fl
.
.
_
.
.
u
m
.
u
a
o
.
E
m
u
m
h
m

!
(., s

3
o
o
g

A
m
:
v
u
.
_
u
u
n
.
.
n
u
m
.
u
:
o
.
s
w
u
m
h
w

‘
{
u
:
o
d
k
3

3o
s
T
e
T
I
E
R
E
W

B
u
t
p
e
s
a

TTR®
I
S
T
T
,
)

u
T
3
u
t
a
d
-

3
n
o

‘
w
e
3
s
i
s

A

)
u
T
3
u
T
a
d

 3no ‘
w
e
y
s
i
s

}
()
T
e
T
T
o
3
e
R
b
U
T
P
R
O
Y
T
T
Y
I
S
T
T

PTOA
o
t
T
q
n
d

/%
T
T
R
U
T
W
I
D
]

SY3
UT

9
I
0
3
S
Y
0
O
q

Y
3

FO
TeTao3eun

Burpesxz
e
y

TTe
SASTT

-
poyzswm

T
R
T
I
S
I
e
R
B
U
T
P
R
S
N
T
T
V
I
S
T
T

«

*x/ {
!

()
e
n
u
t
j
u
o
p
o
g
r
s
s
a
z
d

!
(u'Po3oTSpP

Axa3us
I
S
Y
S
T
I
A
N
G
,

) u
T
3
u
T
a
d

3
n
o

w
e
y
s
i
s

u
A
m
E
o
u
v
w
a
fl
h
n
w
g
m
fi
fl
n
u
m
o
a
w
u
fl
u
z
m
g
.
m
g
m
w
fl
w
m
n
m
:
m
fl
fl
n
s
m

S
$
S
9
0
D
®

w
o
p
u
r
z
/
/

}
este

{
u
A
m
E
m
u
v
m
a
fi
m
u
o
n
m
fl
fl
n
u
m
o
s
m
u
m
n
m
fl
fl
n
n
m
w
u
fl
u
s
.
m
fl
fi
h
u
w
a
m
fl
fl
n
s
m

h
fl
fi
m
fi
u
c
w
z
w
w
m
\
\

}
(
(
)
p
o
u
r
s
o
r
a
e
h
i
)

3t

‘140
=

€
‘
[
T
]
s
a
e
y
s
t
i
g
n
d

=
[[]dmeq

}
(T

=i
s
a
o
w
e
y
o
s
)
z
t

}
(++T

‘
y
a
b
u
e
t
-
s
a
z
o
y
s
t
r
a
n
d
s
T

{0=T
3
u
T
)
I
0
3
z

s
(
y
e
n
T
e
A
3
u
T

(
(
)
w
r
a
a
-

(,
&(QI)

x
o
y
s
T
r
A
n
d

Y
D
T
U
M

IO
S
T
E
T
I
S
I
E
W

p
u
t
p
e
s
x

TT®
3
5
T
I
.
)
a
n
d
u
t

O
r
)
F
o
e
n
T
e
a

I
e
b
s
j
u
l

=
PT

f
(
,
3
o
q
u
m
u

pt
1
o
d
o
a
d

®
j
o
u

S
e
M

p
a
x
d
A
U
S

n
o
k

prt
°yIL

:
x
0
1
x
9
,

) u
T
3
u
t
a
d

 3no

w
e
i
s
i
s

}
(0

==7PpT
|l

0
>
P
p
P
T
)
e
T
T
U
n

s (
y
e
n
T
e
a
z
u
T

(
(
)
w
r
x
3
-

(,
&(ar)

x
e
u
s
T
r
a
n
d

Y
D
T
U
M

FO
S
T
E
T
I
S
I
E
W

H
u
t
p
e
e
x

TTE
3
S
T
T
.
)
3
n
d
u
r

O
I
)
F
o
e
n
T
e
s

I
0
b
s
3
U
I

=
PT

IUT

(un)
u
T
a
u
T
a
d
-

3
n
o
 ‘
w
e
3
s
i
s
 {

!
()
T
R
U
T
W
I
S
L
O
L
S
O
W
E
N
S
A
I
S
I
S
Y
S
T
T
A
R
A
T
T
Y
A
N
d
I
N
O
0

" IYHSTTITIYSTTIAN
s
s
e
o
d
e

w
o
p
u
e
l
/
/

}
osT®

{

£
()
T
R
U
T
W
I
S
I
O
L
S
O
W
E
N
S
A
I
S
I
S
Y
S
T
T
A
N
G
T
T
Y
I
N
d
I
N
0

S
T
T
I
I
S
Y
S
T
T
A
N

K
y
t
e
r
a
u
s
n
b
s
s
/
/

}
(
(
)
p
o
u
r
e
w
o
i
a
s
b
i
)

3T

{
(
u
u
)
u
T
a
u
T
I
d

3
0
0

‘
W
O
3
S
A
S

}

()
z
o
y
s
T
T
a
n
a
k
a
r
e
T
x
e
r
e
p
b
u
t
p
e
s
y
d
s
T
T

PToa
o
T
T
a
n
d

/x
* T
R
U
T
W
I
S
]

SYI
UT

B
x
0
3
1
S
H
O
O
q

JYF
FO

‘
z
o
y
s
T
t
T
a
n
d

»

u
T
e
3
I
8
0

B
JO

‘
I
E
T
I
S
I
R
W

B
u
t
p
e
e
x

8
y
3

T
T
®

S
I
S
T
T

-~
p
P
o
y
i
s
u
w

n
w
n
m
fl
H
n
n
m
h
m
fl
M
fl
u
m
u
m
z
m
n
fl
v
a
M
#
M
A
fi

%

*
k
.
\
 {

()
e
n
u
T
j
u
o
p
o
g
s
s
e
a
d
 {

{

K
fi
v
H
m
c
a
E
u
c
h
B
m
w
a
fl
N
m
m
m
S
H
a
m
u
fi
m
u
z
o
.
m
m
M
m
A
M
w
fl
M
fl
n
w
u
m
z
w
n
fi
n
m
w
m

sse9Doe
w
o
p
u
e
a
/
/

}
esta

{

N
A
u
H
m
c
H
E
M
w
a
o
a
m
W
Q
H
N
m
m
m
z
fl
fl
m
u
n
m
u
s
o
.
w
a
a
m
a
m
a
u
m
u
m
fl
m
fl
fi
v
m
w
m

A
t
t
e
r
a
j
u
s
n
b
a
s
/
/

}
(
(
)
p
o
u
a
e
n
o
I
a
=
b
i
)

It
}

osto
{

{

! ()
T
R
U
T
W
I
S
I
O
L
S
Y
O
O
H
T

T
Y
A
N
A
I
N
O

" I
T
I
S
T
 T
I
T
E
T
I
S
F

B
R
O
U
T
P
E
S
Y

s
s
o
o
o
e

w
o
p
u
e
x
/
/

}
esT®

{

/()
T
e
u
T
w
I
S

F
O
I
S
Y
o
o
a
T
T
Y
a
N
d
n
0

" S
T
T
A
T
R
 T
S

B
R
B
U
T
P
R
R
Y

! (
u
:
p
p
e

03

T
e
u
t
w
i
a
l

°y3z
y
b
n
o
a
y
y

f
e
t
x
s
i
e
w

b
u
r
p
e
s
z

e

!
(
w
u
)
u
t
a
u
r
a
d
-
a
n
o

¢
(,outzebeny

(qg,)urjutad-ino’

!
(u¥oog

(
e
,
)
u
r
3
z
u
r
a
d
-
3
n
o

T
e
t
a
e
j
e
u
w

B
u
r
i
p
e
s
x

yo
a
d
h
3

j
e
y
M
,
)
u
r
j
u
t
a
d
-
3
n
o

!
(
u
u
)
u
t
3
u
t
a
d
-
3
n
o

()
T
e
t
a
e
z
e
R
b
u
t
p
e
S
y
p
p
e

pPTOA
o
T
I
g
n
d

Ppe
03

I9sSn
SY3

S
M
O
T
T
R

-
P
O
Y
I
s
W

T
e
T
I
S
I
e
H
O
U
T
P
e
P
P
E
e
 xx/

‘
w
e
3
s
k
s

w
e
3
s
k
s

-
u
e
3
s
i
s

‘
u
e
3
s
h
s

‘
w
e
3
s
i
s

!
(
)
s
n
u
t
j
u
o
p
o
r
s
s
a
a
d

!
(PT)

I9YS
T
T
A
N
d
I
O
T
R
U
T
W
I
S
I
O
L
S
O
U
T
Z
e
S
e
N
T

TYINd3Nno
" A
V
N
S
T
 T
A
T
e
 T
I
9
3
e
R
b
u
T
P
p
R
S
Y

s
s
a
0
o
e

w
o
p
u
e
x
/
/

}
o
s
T
o

{

{
(PT)

I
9
Y
S
T
T
A
N
A
F
O
T
R
U
T
W
I
S
L
O
L
S
S
u
T
Z
R
B
b
e
N
T
T
Y
3
n
d
3
n
o

*STTATe T
I
o
F
e
R
b
U
T
P
R
S
Y

A
T
r
e
r
j
u
s
n
b
e
s
/
/

}
(
(
)
p
o
u
z
s
n
o
r
a
s
h
i
)

s
t

w
)
u
r
3
u
t
a
d
-
3
n
o
-

!
(
y
s
e
u
t
z
e
b
e
R
,
)

u
t
u
t
a
d
-
3
n
o
-

!
(
y
u
)
u
t
z
u
t
a
d
-
a
n
o
-

w
a
3
s
i
s

w
a
3
s
k
s

w
e
3
s
k
s

!
(PT)

I
9
Y
S
T
T
I
N
G
I
O
T
R
U
T
W
I
S
L
O
L
S
H
O
O
F
T
T
Y
I
N
d
I
N
O

* AYYS T T
A
T
R
 T
I
O
3
B
H
O
U
T
P
E
S
Y

s
s
9
0
0
®

w
o
p
u
e
x
/
/

}
a
s
T
1
o

{

{
(PT)

2I9YS
T
T
A
N
d
F
O
T
R
U
T
U
I
D
L
O
L
S

o
I

T
Y
I
N
d
3
N
0

T TATR T
I
O
I
R
H
O
U
T
P
R
S
Y

A
1
T
e
T
3
U
S
n
b
A
S
s
/
/

}
(
(
)
p
o
u
a
s
r
o
r
a
=
s
b
j
)
s
t

u
)
u
T
3
u
T
a
d
:

g
n
o

‘
w
e
a
s
i
s

!
(
u
s
y
0
0
g
,

) u
T
3
u
t
a
d
-

3no ‘

w
e
3
s
i
s

{
(
u
w
u
)
u
T
3
u
t
a
d
-
3
n
o
-

w
e
g
l
s
i
s

}

! (
,
o
u
t
z
e
b
e
n

(
q
,
)
u
r
3
i
u
r
a
d
-
j
n
o

w
e
l
s
i
s

{
(
u
3
o
o
g

(
e
,
)
u
r
3
r
u
t
a
d
-
3
n
o

u
e
3
s
i
s

! (
,
:
o
a
0
w
e
z

o3
T
E
T
I
o
j
R
W
w

b
u
r
t
p
e
s
a

yo
odhk3

j
e
u
M
,
)
u
r
i
u
t
a
d
-
i
n
o

w
e
l
s
i
s

¢
(wu)utaurad-3no

weasis
)

()
T
e
T
a
o
r
e
b
u
T
p
e
s
y
s
s
c
w
a
x

p
r
o
a

o
T
T
q
n
d

/%
T
e
u
t
w
I
o
)

oy3
y
b
n
o
a
y
z

JOOJ
B

D
A
O
W
S
I

O3
IDST

DYJ
S
M
O
T
T
R

-
P
o
y
l
s
w

T
e
r
r
s
j
e
j
b
u
T
p
e
o
g
o
A
c
u
R
x

xx/ {
!
(
y
e
n
u
t
j
u
o
p
o
g
s
s
a
a
d

¢
(u)
©
T
T
A
P
U
T
Z
R
H
R
H
O
L
O
F

TIM * I
V
U
S
T
T
A
 TR TAS3 e

R
O
U
T
P
R
S
Y

s
s
s
p
o
R

w
o
p
u
e
x
/
/

}
esta

{
!

(u)
oY
T
I
o
U
T
Z
E
B
E
R
O
L
O
]

TaIM
" S
T
T
I
T
R
T
I
S
I
B
R
O
U
T
P
R
S
Y

A
t
t
e
r
t
a
u
s
n
b
a
s
/
/

}
(
(
)
p
o
u
r
s
w
o
I
l
=
b

s
x
o
3
s
y
o
o
d
i
)

3T

!
()

A
z
q
u
z
g
s
u
t
z
e
b
e
w

T
e
u
t
u
r
s
r
i
n
d
u
l

=
w

s
u
t
z
e
b
e
r

}
esTe

{
{

¢
(q)

©
T
T
A
N
O
O
H
O
L

O
TIM

I
V
U
S
T
T
A
T
E

TI23

BHOUTPERDY
$s9DDE®

w
o
p
u
e
x
/
/

}
s
t

{
¢

(q)
®
T
T
A
N
O
O
H
O
L
P
I

TIM ‘
D
T
 TATR T

S
}

B
N
O
U
T
P
R
S
Y

A
r
t
e
t
a
u
e
n
b
e
s
/
/

}
(
(
)
p
o
y
a
s
R
o
I
a
L
b

- e
x
0
3
s
j
o
o
d
|
)
 FT

!
()

K
x
a
u
m
g
y
o
o
q
-

T
e
u
t
w
r
a
g
i
n
d
u
l

=
q

j
o
o
g

}
(,®,

==
u
o
T
3
D
O
T
I
S
)
I
T

{(,q,
=i

U
O
T
3
D
S
T
S
S

3%
,B,

=|
U
O
T
3
I
D
I
T
3
s
)
S
T
T
U
m

{

1
(
0
)
3
¥
x
e
y
o

- (,
c
w
x
o
g
x
a
d

o3
j
u
e
m

nok
op

u
o
r
3
i
d
e

Y
o
T
y
M
,
)
3
I
n
d
u
r

Q
I

=
U
O
C
T
3
I
O
S
T
S
S

}
op

/{UoOT309T9S
IBYD

!
(
w
u
)
u
r
T
a
u
r
a
d
-
3
n
o
-
w
e
3
s
i
s

{
u
=
=

w
)
u
T
3
u
T
a
d
-

3
n
o
-
u
e
l
s
i
s

¢/ (
(
)
s
u
w
r
e
N
3
o
b

- x
o
y
s
t
T
a
n
d

+
,
1
W
E
H
S
I
T
E
N
G
.
)
U
T
I
U
T
I
d

3
n
0

w
e
i
s
i
s

{([F]saoyane
+
,
:
(
S
)
W
O
H
I
N
Y
.
)
U
T
I
u
T
a
d

3
0
0

W
e
3
s
i
s

(
(
(
u
u
)
s
t
e
n
b
s
-

(Jurtay - [[]saoyane)
)
3
T

}
(++L

‘
y
a
b
u
s
t
-
s
z
o
y
a
n
e
>
l

‘o=[
3urt)zoz

!
()
s
a
o
y
a
n
y
3
a
b
-

[
s
a
o
c
w
s
y
o
l
]
s
i
y
o
o
q

=
s
x
o
y
a
n
e

[
]
b
B
u
t
a
a
s

!
(
s
a
e
3
d
e
y
o

+
,
:
S
Y
A
I
A
V
H
O
.
)
U
T
I
u
T
I
d

3
n
o

w
e
l
s
i
s

{
(
o
o
T
a
d

+
,:($)

F
O
I
¥
A
.
)
u
T
z
u
t
a
d
-
3
n
o
-
w
e
i
s
i
s

{(sebed
+
,
:
s
H
A
9
V
E
.
)
u
T
i
u
T
a
d

3
n
o

w
e
y
s
i
s

S
(
9
T
3
T
3

+
.
E
T
L
I
L
.
)
u
T
3
u
T
a
d

3
n
o

w
e
j
s
i
s

{(PT
+
u
:
Q
I
.
)
u
T
3
u
t
a
d

-3no
w
e
l
s
i
s

2

)
u
r
T
3
u
t
a
d
-
3
n
o
-
w
e
g
s
i
s

!
(
w
u
)
u
r
3
z
u
r
a
d
-
3
n
o
-
w
e
g
s
i
k
s

! (
)
a
o
y
s
T
T
a
n
g
l
e
b

- [
e
a
o
c
w
s
y
o
l
]
s
y
o
o
q

=
z
a
y
s
t
i
a
q
n
d

I
S
Y
S
T
I
Q
N
g

! (
)
s
a
s
3
y
d
e
y
p
i
e
b

-
[
s
a
c
w
s
y
o
l
]

s
)
y
o
o
q

=
s
z
o
j
z
d
e
y
o

j
u
t

!
(
)
o
0
1
I
g
3
9
6
"
°

[
9
A
0
w
e
y
0
o
]
]
s
o
o
q

=
s
o
t
a
d

jur
!

()
s
e
b
e
g
y
e
s
b
-

[
s
a
c
w
s
y
o
l
z
l
s
y
o
o
q

=
s
a
b
e
d

jutr

£
(
)
o
T
3
T
L
3
®
6

" [eaocweyol] syooq
=

o
3
t
y

bBuraas
!
()p13eb’

[
@
a
c
w
e
y
o
z
]
s
j
o
o
q

=
PT

JuUT
}

esTe
{
{
,
"
®
I
0
3
S
}
0
0
Q

BY3
UT

O
O
Q

Y
O
N
S

OU
ST

B
I
d
Y
L
,
)
u
T
3
u
r
t
a
d

3
n
o
-
u
w
e
i
s
i
s

(I~
==

S
a
o
w
s
y
o
l
)
I
T

! (ena3
‘s3j00q)

T
R
T
I
S
I
E
R
O
U
T
P
E
O
Y
I
O
I
Y
O
I
L
S
S

=
S
A
O
U
S
H
O
F

JUT

¢ ()
syoogpeoT

=
syooq

[]3joog

}
(
e
,

==
u
o
t
3
0
9
T
8
s
)
I
T

(.9,
=i

UOT3}DS[®S
33

,®,
=|

U
O
T
J
O
D
T
O
S
)
S
T
T
U
M

{
(
0
)
3
v
a
e
y
o
’

(
,

¢
w
r
o
g
z
e
d

o3
j
u
e
m

n
o
k

op
u
o
r
3
l
o
e

Y
O
T
U
M
,
)
3
n
d
u
r

Q
I

=
U
O
T
3
O
S
T
S
S

}
op

{
u
o
T
3
o
e
T
e
s

IBYOD

! (
w
u
)
u
T
a
u
t
a
d
-
3
n
o

‘
u
e
j
s
i
s

“
A
v
u
o
n
m
fl
fl
n
s
m
u
w
m
.
H
w
>
o
E
w
m
o
v
u
m
m
=
fi
N
m
m
m
E

=
z
o
y
s
t
T
a
n
d

a
o
y
s
T
T
A
n
d

!/
(
)
e
o
1
a
g
a
e
h
'

[
e
s
o
w
e
y
o
y
]
s
s
u
r
z
e
b
e
w

=
@
o
t
a
d

Jut

!
()
s
e
b
e
g
y
e
b
’

[
a
a
o
w
e
y
o
y
]

s
s
u
r
z
e
b
e
u

=
s
o
b
e
d

jur

:
(
)
o
T
3
T
1
3
9
6
"

[
0
A
c
u
m
y
o
l
]

s
o
u
r
z
e
b
e
w

=
971313

b
u
t
a
z
s

! (
)
p
I
1
3
°
b

'
[
9
A
c
u
w
E
y
o
]
]

s
e
u
t
z
e
b
e
w

=
pT

J
u
T

}
os1®

£ (
,
-
@
3
0
3
5
3
0
0
q

9y3
uT

S
u
r
z
e
b
e
w

y
o
n
s

ou
ST

s
a
9
y
g
,

) u
T
r
u
t
a
d

- 3
n
o

w
e
l
s
i
s

(1-
==

®
A
0
W
S
¥
O
3
)
I
T

!
(
e
n
a
y

‘
s
p
u
t
z
e
b
e
u
)

T
R
T
I
S
}
E
R
O
U
T
P
R
S
Y
I
O
I
Y
D
I
L
D
S

=
S
A
O
W
S
Y
O
Z
F

J
U
T

/()
s
e
u
t
z
e
b
e
y
p
e
o
T

=
s
e
u
t
z
e
b
e
w

[
]
a
u
r
z
e
b
e
q

}
os1e

{
{

{
(
,
p
o
3
e
T
e
p

A
a
j
u
e

o
o
g
,
)
u
r
3
j
u
r
a
d
-
3
i
n
o
-
w
e
l
s
i
s
 {

!
(dwe3)

O T
T
A
N
O
O
H
O
L
O
I
T
I
M
G
I

*
V
I
S
 T T

A
T
R
T
I
O
F
B
H
O
U
T
P
E
S
Y

s
s
e
o
D
e

w
o
p
u
e
x
/
/

}
esTo

{

!
(duwe3)

®
T
T
I
H
O
O
F
O
L
S
H
O
O
H
G
S
F

TIM
D
T

T
I
T
R
T
I
O
I
B
R
O
U
T
P
E
S
Y

A
r
T
e
r
a
u
s
n
b
e
s
/
/

}
(
(
)
p
o
y
z
s
w
o
r
a
=
b
i
)
3
t
 {

‘140
=

€
‘
[
t
]
s
y
o
o
q

=
[[]due3y

}
(T

=i
®Aowe¥ol)3T

}
(++T

{u3bueT
s
y
0
o
q
>
T

{0=T
JUT)IOF

‘0
=

[
3ur

!
[
1
-
y
3
b
u
e
T

- s
y
o
o
q
]
o
c
g

m
o
u

=
d
w
e
z

[
]
o
o
d
g

}
(,&x,

==
u
o
t
3
o
e
r
e
s

||
,&,

==
u
O
T
3
O
S
T
S
S
)
I
T

{
(
,
N
,

=j
U
O
T
3
D
S
T
®
S

%%
,U,

=j
U
O
T
I
D
S
T
S
S

33
,X,

=i
U
O
T
I
O
S
T
S
S

3I¥
K
,

=j
u
o
t
y
o
e
r
e
s
)
o
T
T
y
M

{

s (
0
)
a
w
a
e
y
o
-

(
.

&(u)
oN

xo
(K)

sex
‘
K
z
q
u
e

JOoOq
S
A
O
Q
e

SU3}
S
A
O
W
S
I

03
J
U
e
M

n
o
k

a
a
n
s

nok
e
a
y
,
)
3
a
n
d
u
t

0
l

=
U
O
T
3
O
S
T
S
S

}
op

“
A
m
E
m
u
g
m
fl
fl
h
m
c
fl
u
m
m
m
S
O
H
m
u
fl
n
z
w
u
.
h
fl
M
W
H
fi
h
H
M
fl
u
m
u
m
E
m
n
fl
u
m
m
m

s
s
e
o
d
e

w
o
p
u
e
x
/
/

}
ost1e

{
N
A
m
e
u
v
w
H
fl
h
w
:
fl
u
m
m
m
z
o
a
m
o
a
fl
N
m
m
m
z
m
u
a
n
z
.
W
A
fi
h
H
M
H
n
w
u
m
z
m
c
fl
v
m
w
m

A
i
r
e
r
a
u
s
n
b
e
s
/
/

}
(
(
)
p
o
u
r
s
n
o
r
i
a
e
b
i
)

st {
{

‘140
=

C
!
{
[
t
T
]
s
o
u
t
z
e
b
e
w

=
[
{
]
d
w
s
g

}
(T

=i
saowsyol)zt

}
(+4T

‘y3buesT
s
s
u
r
z
e
b
e
w
>
T

!(g=T
3uT)

x03

‘0
=

€
qur

!
[
T
-
y
3
b
u
s
T

- s
e
u
t
z
e
b
e
w
]
s
u
r
z
e
b
e
y

m
o
u

=
d
w
e
y

[
]
e
u
t
z
e
b
e
r

}
(LXK,

==
u
o
t
3
o
e
r
e
s

||
,&,

==
u
o
t
j
o
e
T
e
s
)
z
T

(
\
N
,

=i
U
O
T
3
D
S
T
®
S

3%
,U,

=
U
O
T
I
O
S
T
S
S

3%
(X,

=i
U
o
T
3
o
a
T
S
s

33
,&,

=
u
o
r
j
o
a
T
e
s
)
°
T
T
U
M

{
£
(
0
)
3
¢
a
e
y
D
"

(,
¢(u)

oN
xo0

(&)
sex

‘
K
a
j
u
s

s
u
t
z
e
b
e
w

s
a
o
q
e

Y
3

s
a
o
w
d
x

o3
j
u
e
m

n
o
k

a
a
n
s

nok
s
a
y
,
)
3
n
d
u
r
-
o
r

=
U
O
T
3
0
9
T
9
S

}
op

!
(
w
u
)
u
T
3
z
u
r
a
d
-
3
n
o
-
w
e
3
s
i
s

o

===,)
u
T
a
u
t
a
d
-
3
n
o
-
w
e
3
s
i
g

¢
(
(
)
s
w
e
N
3
s
b
-
x
o
u
s
T
T
I
a
n
d

+
,
I
W
A
H
S
I
T
E
N
G
.
)
u
T
3
u
t
a
d

3
n
0
-

w
e
g
s
i
s

{
(
[
C
l
s
e
o
a
n
o
s
s
x

+
,: (
S
)
E
D
¥
N
O
S
H
Y
,
)

u
T
3
u
T
a
d

3
n
o

woysisg

(
(
(
u
u
)
s
T
e
n
b
a
"

()wray - [
[
]
s
e
o
a
n
o
s
a
x
)

i) FT

}
(+4C

‘
y
3
b
u
e
t
-
s
e
d
a
n
o
s
e
a
>
l

o
=
C

3ut)
I03

u
A
v
m
@
U
H
fl
O
m
@
fi
H
fl
fl
O
fl
u
fl
U
U
4
p
w
m
.
h
m
b
o
E
m
m
o
u
u
m
w
n
fl
u
m
m
m
E

=
s
a
d
a
n
o
s
s
x

[
]
b
u
t
a
z
s

{(®0t1ad
+

,:($)
E
O
T
W
A
.
)
u
r
3
u
t
a
d

3
n
o
’
u
e
i
s
k
s

!
(
s
e
b
e
d

+
,:

E
O
Y
d

.) U
T
3
u
T
a
d

3
n
o

w
e
3
s
i
s

(
9
7
3
7
3

+
, 1
W
I
L
I
L
.
)
u
T
d
u
r
a
d
-
3
n
o

w
e
a
s
i
s

‘(PT
+

.
:
Q
I
.
)
u
T
3
u
t
a
d

3
n
o
-
w
e
3
s
i
s

‘
w
e
3
s
i
g

‘uwe3sig

e

—

==

1 ()
s
j
j
o
o
g
p
e
o
T

=
s
)
o
o
q

[]3jood

}
(
i
,

==
u
O
T
3
0
O
T
a
S
)
I
T

f(,q,
=j

2
d
A
1
3
x
0
s

3%
e
,

=

=
d
A
r
i
z
o
s
)
e
r
T
u
m

{

i (
0
)
a
y
x
e
y
o
-

(
,

é
w
x
o
g
z
z
a
d

o3
j
u
e
m

n
o
k

op
u
o
r
3
z
o
e

Y
o
T
y
M
,
)
3
n
d
u
r

o
I

=
a
d
i
r
3
z
o
s

}
op

!
e
d
&
1
3
a
0
s

x
e
y
d

!
(
w
a
u
)
u
T
3
u
t
a
d
-

3
n
o

‘
w
e
3
s
i
s

!
(
,
B
u
t
p
u
s
o
s
e
q
g

(
q
,
)
u
r
3
u
r
a
d
-
3
n
o

w
e
l
s
i
s

!
(
,
b
u
t
p
u
s
o
s
y

(
e
,
)
u
r
3
z
u
t
a
d
-
3
n
o

w
e
l
s
i
s

! (
,
:
b
u
t
3
z
z
o
s

go
a
d
h
3

j
e
y
m
,
)
u
r
z
u
t
a
d
-
i
n
o
-
w
s
3
s
i
s
g

!
(
w
u
)
u
T
3
u
t
a
d
-
a
n
o

‘ue3siAs

/
(
,
9
,

=j
U
O
T
3
I
D
S
T
S
S

3%
,®B,

=|
U
O
T
I
D
S
D
T
S
S
)
S
T
T
U
A

{

‘
(
0
)
3
¢
x
e
y
o

-
(
,

c
w
r
o
g
z
x
e
d

o3
j
u
e
m

n
o
k

op
u
o
r
i
o
e

Y
O
T
Y
M
,
)
3
I
n
d
u
r

O
I

=
U
O
T
I
O
S
T
S
S

}
op

{
u
o
T
3
0
9
T
9
s

IBYD

!
(
w
u
)
u
t
d
u
t
a
d
-
3
n
o

‘we3sis

!
(,outzeber

(q.)ur3zurad-3no
w
e
l
s
i
s

{
(
,
q
o
0
g

(
e
,
)
u
r
a
u
t
a
d

j
n
o
-
w
e
l
s
i
s

¢ (
,
:
9
0
1
a
d

&q
3
x
0
s

o3
T
e
T
x
s
j
e
w

B
u
r
p
e
s
x
z

o

=odA3
j
e
u
y
m
,
)
u
r
3
z
u
r
a
d
-
i
n
o
-
u
e
l
s
i
s

!
(wu)uT3utad

3no
‘we3sis

}
C
O
O
H
M
m
\
n
M
H
m
.
fl
N
W
U
M
E
U
G
.
«
.
U
M
O
M
U
.
H
O
M

p
P
T
O
A

U._.u._nnfl_nm

/% ¥*

o
o
t
a
d

Aq
p
e
3
x
o
s

T
e
t
y
o
j
e
w

S
u
r
p
e
e
x

oyl
s
i
e
T
d
s
T
a

-
p
o
y
l
s
w

S
0
T
a
g
A
Q
T
R
T
I
I
S
I
B
H
O
U
I
P
E
S
Y
I
I
O
S

«

xx/

!
(
)
s
n
u
t
j
u
o
p
o
r
s
s
a
a
d

! (,
p
e
3
o
T
o
p

A
x
j
u
s

s
u
r
z
e
b
e
y
,
)
u
r
i
u
t
a
d
-

i
n
o

w
e
l
s
i
s

o

W)
u
T
3
a
u
t
a
d
-
a
n
o

w
o
l
s
i
s

!
(()suweN3eb

z
o
y
s
T
T
a
n
d

+
,
I
W
A
H
S
I
T
E
N
G
,
)
u
T
I
u
T
a
d

3
n
o

w
e
3
s
i
s

{
(
[
C
]
s
z
o
y
a
n
e

+
,:
(
S
)
Y
O
H
I
A
Y
.
)
U
T
3
I
u
T
a
d

3
n
o

w
e
3
s
i
s

(
(
(
u
u
)
s
T
e
n
b
s
"

(Jutag- [[]szoyane)
;)3T

}
(++C

‘
y
3
b
u
s
T
-
s
a
o
y
a
n
e
>
l

‘
=
L

j
u
t
)
z
o
z

!
(
)
s
a
o
y
a
n
y
a
y
e
b
-

[
T
]
s
y
o
o
q

=
s
x
o
y
z
n
e

[
]
B
u
t
a
z
s

!
(
s
a
e
z
d
e
y
d

+
:
S
Y
E
L
A
Y
H
D
.

) u
T
3
u
t
a
d

a
n
o
-
w
e
l
s
i
s

f
(
e
o
t
a
d

+
,:($)

E
D
I
¥
A
.
)
u
T
3
u
r
a
d
-
3
n
o
-

ws3zsis

{
(
s
e
b
e
d

+
,
:
5
E
H
V
d
.
)
u
T
3
u
T
a
d

3
n
o

w
e
3
s
i
s

{(9T3T3
+

F
I
L
I
L
.
)
u
T
3
u
t
a
d

3
n
o

w
e
l
s
i
s

{(PT
+
.
:
Q
I
.
)
u
r
3
d
u
r
a
d

3
n
o

w
e
l
s
i
g

J
)
u
r
t
a
u
t
a
d
:

3
n
o

- w
e
i
s
i
s

‘u

J
J
u
r
3
u
t
a
d
-
a
n
o
-
w
e
3
s
i
s

{
(
)
a
e
y
s
T
I
q
n
g
3
=
b
-

[
T
]
s
y
o
o
q

=
a
e
y
s
t
i
q
n
d

I
B
Y
S
T
I
G
N
d

!
(
)
s
z
e
q
d
e
y
p
y
s
b
-

[
T
]
l
s
y
o
o
q

=
s
a
z
e
j
d
e
y
o

jut

!
(.

:
(
b
u
t
p
u
s
o
s
e
p
)

o
o
t
a
d

Aq
sjyooq

peo3zIo;

!
(
)
@
o
T
x
a
3
9
b
"

[
T
]
S
j
o
o
q

=
@
o
t
a
d

j
u
T

! (
)
s
o
b
e
g
z
e
b
’

[
T
]
s
y
o
o
q

=
s
a
b
e
d

jut

{
(
)
e
T
3
T
I
3
8
6

" [
T
]
s
j
0
0
q

=
®T3T3

B
u
r
a
z
s

}
£
(
)
p
1
3
e
b
-

[
T
]
s
y
o
o
q

=
PT

3uT
(-~T

{0=<T
!T-y3bueT

s3y00g=T
JuT)IOF

u)
U
T
3
U
T
I
d

3
N
0

w
e
x
s
i
s

y
u
T
3
u
t
a
d

3
n
o

w
e
3
s
i
s

)
u
t
j
u
t
a
d
-
3
n
o

w
e
l
s
i
s

!
(
9
s
T
e
3

’
‘
S
3
0
0
q
)
3
1
I
O
S
U
O
T
I
O
S
T
O
S

"
J
I
O
S
U
O
T
I
O
S
T
I
S

=
S
H
O
O
q

}
osTe

{
s
)
u
r
3
a
u
t
a
d
-
3
n
o
-
w
e
3
y
s
i
s

)
y
u
r
j
u
t
a
d
-
3
n
o
-
w
o
3
s
i
s

!
(
9
n
a
3

‘
s
)
0
0
Q
)
3
I
I
O
S
U
O
T
F
O
S
T
S
S

"
J
I
O
S
U
O
T
I
O
S
T
S
S

=
S
Y
0
o
q

}
(.®,

==
a
d
A
z
3
z
o
s
)
3
T

}
estTo

{
,*3IO0S

O3
©
I
0
3
S
O
O
Q

dY3
UT

SYOOQ
OU

SIe
d
I
d
Y
L
,
)
u
r
3
z
u
t
a
d

3
n
o
-
w
e
l
s
i
s

}
(0

==
uy3bust-syooq

||
TTAU

==
s300q)FT

! (
[
C
]
s
e
o
a
n
o
s
e
x

+
,:
(
S
)
H
O
Y
N
O
S
H
I
,
)
u
T
3
u
T
a
d

3
n
o

w
s
3
s
i
s

(
(
(
u
u
)
s
T
E
N
D
b
®
"

(Jwtay - [(]sedanosax)
{)IT

}
(+4C

!
y
a
b
u
e
t
-
'
s
e
o
a
n
o
s
a
a
>
l

{o=L
j
u
r
)
a
x
o
z

!
()
s
o
o
a
n
o
s
s
y
¥
T
e
U
C
T
I
T
P
P
Y
I
S
h

" [
T
]
 s
o
u
r
z
e
b
e
w

=
s
o
d
a
n
o
s
s
a

[
]
B
u
t
a
j
s

!
(
e
o
T
a
d

+
,:(§)

F
O
I
¥
4
.
)
u
r
i
u
r
a
d
-
j
n
o
-
w
e
3
s
i
s

! (
s
o
b
e
d

+
,
:
s
E
9
V
d
,
)
u
r
3
z
u
t
a
d
-
3
i
n
o
-
u
e
i
s
i
s

{
(
9
T
3
T
3

+
o E
T
L
I
L
.
)
u
T
3
u
T
a
d
-
3
n
o

w
e
3
s
i
s

{(PT
4

u
:
d
I
u
)
u
T
3
u
T
x
d

3
n
o
-
w
e
l
s
i
s

(0
w
)
u
T
3
u
t
a
d
-
3
n
o

w
e
3
s
A
s

!
(
w
u
)
u
r
T
3
u
t
a
d
-
3
n
o
-
w
a
3
s
i
s

{()
z
o
y
s
T
T
q
n
d
a
o
b
-
’

[
T
]
s
s
u
t
z
e
b
e
w

=
x
a
y
s
t
T
q
n
d

I
S
Y
S
T
I
A
N
d

! (
)
o
0
T
a
g
3
9
b

" [
T
]
s
o
u
t
z
e
b
e
w

=
s
o
t
a
d

jut

! ()
s
o
b
e
g
a
e
b

[
T
]
s
o
u
T
z
e
b
e
w

=
s
o
b
e
d

jut

{
(
)
a
1
3
1
I
3
9
6
"

[
T
]
s
s
u
t
z
e
b
e
u

=
o73713

b
u
t
a
l
s

{
(
)
p
r
3
s
b
-

[
T
]
s
e
u
t
z
e
b
e
n

=
pT

JuT
}

(
-
-
T

!
{
0
=
<
T

‘
T
-
u
3
z
b
u
s
a
t
-

s
s
u
r
z
e
b
e
w
=
T

j
u
T
)
I
O
3
F

!
(
w
u
)
u
t
3
u
t
a
d
-
3
n
o

w
e
l
s
i
s

! (,:
(
B
b
u
t
p
u
s
o
s
e
p
)

o
o
t
a
d

Aq
s
s
u
t
z
e
b
e
w

p
e
j
3
x
o
s
,
)
u
r
3
z
u
t
a
d
-
i
n
o

w
e
l
s
i
s

!
(
w
u
)
u
t
d
u
r
a
d
-
j
n
o

w
e
l
s
i
s

!
(
o
s
T
e
g

‘
s
o
u
r
z
e
b
e
w
)
3
I
0
S
U
O
T
I
O
O
T
O
S

J
I
O
S
U
O
T
I
O
S
T
O
S

=
s
S
s
u
t
z
e
b
e
w

}
e
s
t
®

{

!
(
w
n
)
u
r
3
z
u
t
a
d
-
3
n
o
-
w
e
l
s
i
s

!(.:
(
B
b
u
t
p
u
s
o
s
e
)

o
o
t
a
d

Aq
s
s
u
t
z
e
b
e
w

p
s
3
z
o
s
,
)
u
r
i
u
t
a
d
-
i
n
o

w
s
l
s
A
s

!
(
w
u
)
u
T
a
u
t
a
d
-

- 3
n
o
-
w
e
l
s
i
s

!
(
e
n
a
3

‘
s
s
u
r
T
z
e
b
e
w
r
)
3
I
0
S
U
O
T
I
O
S
T
S
S

J
I
O
S
U
O
T
I
O
S
T
I
S

=
S
s
u
t
z
e
b
e
w

}
(.,

==
a
d
A
z
3
z
o
s
)
3
T

}
e
s
t
e

{
!(,

3
I
0
s

03
2
I
0
3
S
3
0
0
q

9Y3
UT

s
o
u
r
T
z
e
b
e
w

ou
o
I

S
I
9
Y
L
,
)
U
T
3
u
T
I
d

3
n
o
-

w
e
l
s
i
s

}
(0

==
y
a
b
u
s
t
-

s
e
u
r
z
e
b
e
w

||
TTnuU

==
s
a
u
r
z
e
b
e
u
)
z
T

!
()
s
e
u
t
z
e
b
e
y
p
e
o
T

=
s
s
u
t
z
e
b
e
u
w

[
]
s
u
r
z
e
b
e
y

}
sste

{
{

!
(
w
u
)
u
T
3
u
t
a
d

3
n
o

-
w
e
l
s
i
s

£
()
x
9
y
s
T
T
a
n
g
3
e
b

- [
s
a
c
w
s
y
o
3
]
s
y
o
o
q

=
x
s
y
s
t
r
q
n
d

I
o
y
s
T
I
a
n
d

“
A
v
m
n
m
u
m
m
n
u
u
m
m
.
H
w
>
o
s
m
m
o
u
u
m
x
o
o
n

=
s
z
o
j
d
e
y
o

jut
u
A
V
W
U
H
H
m
u
w
m
,
H
m
b
o
E
w
M
O
u
H
m
M
o
o
n

=
®ot1ad

jut
¢

()
s
e
b
e
g
3
e
b

' [
s
a
o
c
u
s
y
o
y
]
s
y
o
o
q

=
s
e
b
e
d

q
u
T

£ (
)
°
T
3
T
L
3
°
6

" [
e
a
o
w
e
y
o
3

] s
j
o
o
q

=
oT3T3

b
u
T
a
a
s

{()p138b-
[er0owayo3]Sj00q

=
PT

3uT
}

ostTe
T
S
I
0
3
S
3
0
0
Q

S
Y
3

UT
Y
O
O
q

Y
o
n
s

ou
ST

®
a
9
Y
y
,

)
u
r
3
u
r
a
d
-
3
n
o

- w
e
3
z
s
i
s

(I-
=
=

s
a
A
o
w
e
y
o
l
)
z
T

i

! (
s
n
x
3

\
m
M
o
o
A
V
H
M
fi
k
u
m
S
m
a
fl
u
m
w
m
u
0
h
n
u
u
m
0
m

=
S
A
O
W
S
Y
O
3

J
U
T

!
()
s
y
o
o
g
p
e
o
T

s
j
o
o
q

[
]
x
o
o
g

}
(ie,

==
u
o
t
3
o
e
T
e
s
)
z
T

(
.
9
,

=i
u
o
t
r
3
j
o
e
T
a
S
s

3%
1B,

=j
U
O
T
I
D
S
T
S
S
)
S
T
T
U
M

{
{
(
0
)
3
¢
a
e
y
o
-

(,
c
w
x
o
g
z
a
a
d

o3
j
u
e
m

nok
Op

u
o
T
3
d
®
e

y
o
s
T
y
M
,
)
3
n
d
u
r

Q
I

=
u
o
r
3
z
o
e
T
e
s

}
op

{uor3joeTes
xeYD

!
{uu)
u
T
a
u
t
a
d
-

3no ‘weysis
!
(
u
S
u
T
z
E
b
e
R

(
q
,
)
u
t
3
z
u
t
a
d
:
3
n
o
-
w
e
q
s
i
s

¢ (
u
3
o
o
g

(
e
,
)
u
r
i
u
t
a
d

g
n
o
-
w
e
i
s
i
s

(
4

:
P
U
T
F

03
T
e
r
a
e
g
z
e
w

B
u
t
p
e
s
x

o

=
d
i
z

3
e
Y
M
,

) u
T
3
u
t
a
d
-

3no

‘
w
e
3
s
i
s

!
(
u
u
)
u
T
3
u
T
a
d

3
n
o

w
e
3
s
i
s
g

}
()
T
e
t
z
s
3
e
n
b
u
r
p
e
s
y
p
u
t
s

proa
orrqnd

/%
T
e
t
x
o
n
e
w

B
u
r
p
e
s
x

e
s
p
u
r
g

-
P
o
y
l
e
w

y
e
r
i
s
l
e
b
u
t
p
e
s
u
p
u
t
y

!
(
)
e
n
u
t
j
u
o
p
o
r
s
s
e
x
d

!
(
w
u
)
u
T
3
u
r
a
d
-
3
n
o

- weasisg
Hil{r—

)
u
T
3
u
t
a
d
-

3
n
o
-
w
e
3
s
i
s

{
(
(
)
s
u
e
N
3
e
h
-
z
o
y
s
T
T
q
n
d

+
,
‘
N
E
H
S
I
T
E
A
G
.
)
u
T
3
u
t
a
d

3
n
o

w
e
s
s
i
s

x
x
/

!
()
s
o
0
I
N
O
S
9
Y
T
R
U
O
T
I

T
P
P
Y
I
S
D

' [
s
A
o
w
e
y
o
q

]
s
o
u
T
z
e
b
e
w

=
s
s
o
a
n
o
s
s
x

[
]
B
u
t
a
z
s

{(eotad
+

,:(¢$)
F
D
O
I
¥
d
.
)
u
r
z
u
r
a
d

3
n
o

uwelsis

{
(
s
s
b
e
d

+
,
:
5
m
9
¥
d
.
)
u
r
3
i
u
r
a
d
-
3
n
o

w
e
l
s
i
s

(
9
7
3
7
3

+
4
E
I
L
I
L
.
)
u
T
3
u
T
a
d

3
n
o

w
o
3
y
s
i
s

{(PT
+

u
:
Q
I
.
)
u
r
j
u
r
a
d
-
3
n
o

w
e
3
s
i
s

o

===,)
u
r
3
u
t
a
d

3
n
o
-
w
e
3
s
i
s
g

!
(
w
u
)
u
r
a
u
t
a
d

a
n
o
-
w
a
3
s
i
s

! ()
a
o
y
s
T
I
q
n
g
3
e
b

- [
s
a
c
w
s
y
o
i
]
s
a
u
r
z
e
b
e
w

=
g
e
y
s
t
T
q
n
d

I
9
Y
S
T
T
A
N
d

{
(
,
"
2
7
0
3
5
3
0
0
q

9Yy3
UT

SutzZebew
yons

ou
ST

d
x
d
Y
L
,
)
u
r
j
u
r
a
d
"

¢
(enag

u

!
(
)
o
o
T
a
g
3
o
b
’

[
e
a
c
w
s
y
o
3
]

ssuTtzebeuwr

! ()
s
e
b
e
g
a
e
b

- [
e
a
o
c
w
s
y
o
l
]
s
s
u
T
z
e
b
e
w

s
o
t
a
d

j
u
t

s
a
b
e
d

jqut

!
(
)
o
1
3
T
I
3
o
b
"

[
o
a
o
c
m
e
y
o
]
]
s
a
u
t
z
e
b
e
w

=
o
T
3
T
3

B
u
t
a
a
g

!
(
)
p
I
3
e
b
-

[
s
a
c
w
e
y
o
l
]
s
a
u
t
z
e
h

(1-

R
W

=

3no-

PT
3ut }

este
w
3

siks

==
S
A
O
W
S
Y
O
3
)
I
T

‘
s
s
u
t
z
e
b
e
u
)

T
e
T
I
9
3

B
H
O
U
T
P
R
O
Y
I
O
I
Y
D
I
L
D
S
S

=
S
A
C
W
S
Y
O
]

JUT

!
(
)
s
o
u
t
z
e
b
e
p
y
p
e
o
T

=
s
o
a
u
t
z
e
b
e
w

[
]
s
u
r
z
e
b
e
y

£
(
w
u
)
u
T
a
u
r
a
d
-
3
n
o
-
w
e
3
s
i
s

=
=
=
,

) u
T
3
u
t
a
d
-
3
n
o

- w
s
3
s
i
s
g

¢ (()
s
w
e
N
3
s
b

- zoysTTand
+

, 1
M
E
H
S
I
T
E
N
G
.
)
U
T
I
U
T
I
d

3
0
0

wo3sis

{([C]szoyane
+ ,

:
(
S
)
¥
W
O
H
L
A
V
.
)
u
T
3
a
u
t
a
d

j
n
o
-
w
e
3
s
i
s

(
(
(
u
u
)
s
T
e
n
b
a
"

(Juraa - [C]szoyane)
) IT

}
(++C

‘
y
a
b
u
s
t
-
s
a
o
y
a
n
e
>
l

(0=C
jur)aoz

(
=
=
=

!
()
s
z
o
y
a
n
y
a
o
b
-

[
s
s
o
w
s
y
o
3
z
]
s
y
o
o
q

=
s
x
o
y
a
n
e

[
]
B
u
t
a
a
s

¢ (sze3deyo
+

, :
S
Y
A
I
A
V
H
O
.
)
u
T
I
u
T
I
d
"

{(ooTad
+

,:($)
HOI¥d.,)ur3urad:

¢! (sobed
+

,
:
s
E
O
V
d
.
)
u
T
3
u
T
a
d
"

£(®13T3
+

u
E
I
I
I
L
.
)
u
T
3
u
T
a
d
"

{(PT
+

w:QI.)uT3utad:

3no

3no
w
)
u
r
3
z
u
t
a
d
-
a
n
o
-

{ (uwn)urdurad:
ano

ano- -
w
a
3
s
i
s

3no*
3no- -

w
e
3
s
i
s

w
o
3
s
i
s

w
o
3
s
i
s

w
3

s
i
g

w
o
3
s
i
s

‘
u
e
l
s
k
s

}
esTs

{
{

!(,q,
=i

U
O
T
3
O
O
T
O
S

33
B, !

(
u
n
)
u
T
a
u
t
a
d
-
3
n
o
:

{(,®T3TL
(qu)uT3zurad

3no-
{(aa1x

(
e
,
)
u
r
z
u
t
a
d
-
3
n
o

!

(.:&q
s
a
o
c
w
e
x

03
j
o
o
q

®
I0F

y
o
x
e
s
s
g
,
)
u
r
i
u
r
t
a
d
-
3
z
n
o

!
(
w
u
)
u
r
a
u
t
a
d
-
a
n
o
:

J

(
s
y
o
o
g
r
T
v
A
e
T
d
s
T
P
)

I
T

!
(
J
u
t
3
z
u
t
a
d
-

3
n
o

‘
w
e
3
s
i
g

{1-
=

S
A
O
W
S
Y
O
]

JUT

=i
u
o
T
3
o
s
T
I
s
)
S
T
T
Y
M

{
f
(
0
)
a
y
a
e
y
o
-

(,,
c
w
r
o
y
x
e
d

o3
j
u
e
m

nok
op

u
o
r
3
z
o
e

Y
S
T
Y
M
,
)
3
n
d
u
T

Q
I

=
U
O
T
3
I
O
S
T
S
S

}
op

{
u
o
T
3
l
D
8
T
S
s
S

I
R
Y
D

w
e
3
s
i
s

w
e
3
s
k
s

‘uwe3sis

‘uwe3skg

w
e
g
y
s
i
s

}
(
s
y
o
o
d
r
T
v
A
e
T
1
d
s
T
p

u
e
s
T
O
o
O
q

‘
s
y
o
o
q

[
]
y
o
o
d
)

T
e
r
I
i
o
j
e
r
b
u
r
p
e
s
y
I
o
g
y
o
r
e
d
s

j
u
r

o
3
e
a
t
a
d

/%
‘punojy

}ooq
ou

ST
T~

°AeIIe
S$YOOY

SYJ
UT

IOF
POYDIBRSS

O
O
g

Oyl
JO

¥°9puT
oy3

HBurhAryTubrs
a
s
b
e
j
u
r

ue
uanjlaxp

x

e
T
g
q
e
T
T
R
A
R

S
j
o
o
q

TTe
A
e
r
d
s
T
p

03
jou

o

xauyjzsym
H
u
t
d
y
T
u
b
r
s

u
e
s
r
o
o
q

®

A

sjooq
S
T
g
e
i
T
R
A
R

JO
ARixR

UR

{
(wu)UuTaUT

s
y
o
o
g
T
T
v
A
e
T
d
s
T
p

w
e
x
e
d
y

syjooq
w
e
x
e
d
p

‘
T
e
u
t
w
a
d
y

oyz
y
b
n
o
a
y
z

300G
B

IOF
Y
D
I
E
S
S

O3
ISSn

Y
3

S
M
O
T
T
E

-
P
O
Y
I
S
W

T
e
T
I
e
l

e
H
b
u
T
p
e
e
y
I
o
f
y
o
I
e
s
s

!
(
)
o
n
u
t
j
u
o
p
o
g
s
s
a
a
d

ad
- 3
n
o

- w
e
3
s
i
s
g

w
)
u
r
3
u
t
a
d
-
a
n
o
-
w
e
3
s
i
s

¢
(
(
)
s
u
w
r
e
N
3
®
b

- a
z
o
y
s
T
T
a
n
d

+
,
:
M
E
H
S
I
T
E
N
d
.
)
u
T
3
u
t
a
d

a
n
o

w
e
l
s
i
s

! (
[
L
]
l
s
e
o
a
n
o
s
e
x

+
,
:
(
S
)
E
D
Y
N
O
S
H
Y
,
)
u
T
a
u
t
a
d

j
n
o

-
w
e
l
s
i
s

(
(
(
u
u
)
s
T
e
n
b
a
-

(
J
u
r
a
y
-

[
(
]
s
e
d
a
n
o
s
a
a
)

) 3IT

}

(++C
!
‘
y
a
b
u
s
T
'
s
s
o
a
n
o
s
a
a
>
l

¢0=C
3jut)aoz

* ok ok ok X ¥

x
x
/

{uoT3oeTe9s
IBYD

!
(
w
u
)
u
T
a
u
r
a
d

 3no w
e
3
s
i
s

!
(4w®T3TL

(
9
.
)
u
t
r
u
t
a
d
:
 3
n
o
-
u
w
e
l
s
i
g

{
(
.
d
I

(
®
.
)
u
r
3
z
u
t
a
d
'
3
n
o

w
e
z
s
i
s

!
(
,
:
&
q

s
a
o
w
s
a

o3
s
u
t
r
z
e
b
e
w

®
I03

y
o
x
e
s
s
,
)
u
r
i
j
u
r
t
a
d
-
i
n
o
-
w
e
l
s
i
s

!
(
w
u
)
u
r
3
u
r
a
d
-
3
n
o
-
w
e
3
s
i
s

}
(
s
s
u
t
z
e
b
e
n
i
T
v
A
e
T
d
s
T
p

u
e
s
T
o
o
q

‘
s
s
u
t
z
e
b
e
w

[
]
s
u
r
z
e
b
e
y
)

r
e
t
a
i
o
z
e
n
b
u
r
p
e
s
y
i
o
g
y
o
r
e
s
s

juTt
o
3
e
a
t
a
d

/x
‘punog

jooq
Ou

ST
T-

x
- K
e
a
z
e

s
o
u
r
z
e
b
e
w

oyjl
ur

I03I
p
o
y
o
x
e
e
s

o
s
u
t
z
e
b
e
w

syj
3o

x
o
p
u
r

oyl
D
u
r
t
d
y
r
u
b
r
s

z
e
b
e
j
u
r

ue
wUINIDIAP

i ¥

e
T
q
e
T
T
R
A
R

s
o
u
t
z
e
b
e
w

TTe
A
e
r
d
s
i
p

03
jou

1o
x
e
y
l
s
y
m

H
B
u
r
t
A
y
T
u
b
r
s

u
e
s
T
o
o
q

®
s
o
u
r
z
e
b
e
q
r
r
v
A
e
r
d
s
t
p

w
e
x
e
d
p
y

i

s
o
u
t
z
e
b
e
w

a
T
q
e
T
T
E
A
R

JO
A
e
a
a
e

ue
s
s
u
t
z
e
b
e
w

w
e
x
e
d
p

x %
‘TeutwI®e]

oyl
y
b
n
o
a
y
l

s
u
r
z
e
b
e
w

e
I0F

Y
O
I
B
S
S

O}
ISSND

BY]
S
M
O
T
T
R

-
P
O
U
l
S
W

T
e
T
I
S
I
e
H
B
U
T
P
R
S
Y
I
O
I
U
Y
D
I
B
S
S

%%/ {
!sAcwSY¥oO3

u
I
n
l
o
x
 {

!
(syo0q

‘
I
S
]
O
W
R
I
B
R
J
Y
O
I
L
O
S
)
Y
D
I
L
S
S
I
B
O
U
T
T

"
Y
O
I
B
S
S
I
B
O
U
T
T

=
S
A
O
W
S
Y
O
F

! (
,
:
y
o
a
e
s
s

03
S
T
3
I
T
L
,
)
3
I
n
d
u
r

Q
I

=
I
9
3
s
W
e
a
e
g
y
o
a
e
s
s

b
u
t
a
l
y
s

}
este

{
!
(
s
j
o
o
q

‘
I
9
3
°
8
W
R
I
B
R
J
U
O
I
R
S
S
)

Y
O
I
B
S
S
I
B
D
U
T
T

'
Y
O
I
B
S
S
I
B
O
U
T
T

=
S
A
O
W
S
Y
O
]

{
(
)
o
n
T
e
A
3
u
T
”

(
(
)
w
t
a
3

-’
(,

:‘yoxess
o3
g
I
,
)
a
n
d
u
r

' o
I
)
g
o
s
n
i
e
a

x
s
b
s
j
u
l

=
I
9
3
S
W
R
I
L
U
O
I
B
S
S

JUT

}
(i,

==
u
o
T
3
0
9
1
9
S
)
I
T

! ()
T
R
U
T
W
I
S
L
O
L
S
O
T
I
T
I
S
A
I
S
Y
O
O
H
d
T
T
Y
I
n
d
I
N
o

" a
V
y
S
T
T
A
T
R

TI83 e

R
b
U
T
P
R
S
Y

S
s
9
0
0
®

w
o
p
u
e
x
/
/

}
est®

{
¢

()
T
R
U
T
W
I
B
I
O
L
S
S
T
I
T
I
S
A
I
S
H
O
o
A
T
T
Y
I
N
d
3
I
N
o

ST T
A
T
R
T
I
S
3

RO U
T
P
R
S
Y

A
t
t
e
r
a
u
s
n
b
e
s
/
/

}
(
(
)
P
o
y
a
s
W
O
I
I
=
b
i
)
I
T

K
r
t
e
t
a
u
e
n
b
e
s
/
/

}
(
(
)
p
o
u
a
s
w
o
r
a
e
b
i
)
z
t

!
I
T
n
u

=
s
y
o
o
q

[]3joog

}
(
)
s
y
o
o
d
g
p
e
o
r

[
]
3
o
o
g

s
j
e
a
t
a
d

/*
-
s
j
o
o
q

o

A
e
x
i
e

ue
u
a
n
l
d
I
P

x ¥

“
S
T
T
I

9Y3
W
O
X
I

S
H
O
O
Q

S
P
R
O
T

-
P
O
U
I
S
U

S
H
O
C
H
P
R
O
T

»

%x/ {
{
s
A
0
c
W
S
Y
O
]

U
I
N
}
D
I
 {

!
(
s
s
u
T
z
e
b
e
w

‘
I
9
]
0
W
R
I
R
I
U
D
I
E
L
S
S
)
Y
O
I
L
S
S
I
R
S
O
U
T
T

‘
'
Y
O
I
L
S
S
I
B
S
U
T
T

=
S
A
O
W
S
Y
O
]

!
(
4
:
y
d
a
e
e
s

03
S
T
3
I
T
L
,
)
3
n
d
u
t

O
I

=
I
9
j
z
s
w
e
x
r
e
g
y
o
r
e
s
s

b
u
r
i
l
s
g

}
e
s
t
8

{
!
(
s
s
u
T
z
e
b
e
w

‘
I
9
]
°
W
E
R
I
B
R
J
Y
O
I
E
L
O
S
)
Y
O
I
R
O
S
I
B
O
U
T
T

‘
Y
O
I
L
S
S
I
B
O
U
T
T

=
S
A
C
W
D
Y
O
F

!
(
)
e
n
T
e
A
3
z
u
T
"

(
(
)
w
r
a
3

" (,
:
y
d
a
e
s
s

o3
[
I
,
)
3
n
d
u
t

0
I
)
F
o
e
n
T
e
a

I
9
H
S
j
U
I

=
I
9
3
S
W
R
I
R
J
U
D
I
E
S
S

J
U
T

}
(
e
,

==
u
o
T
3
o
9
T
S
s
)
3
I
T
 {

{
/()
T
R
U
T
W
I
S
L
O
L
S
S
T
A
I
T
L
I
S
A
I
S
O
U
T
Z
R
E
R
R
T
T
Y
I
N
d
R
N
O

' VYR TTATE TI93 B
R
B
U
T
P
R
S
Y

s
s
e
o
o
®

w
o
p
u
r
R
i
/
/

}
s
t

{
{

()
T
R
U
T
W
I
D
L
O
L
S
O
T
I
T
I
S
A
I
S
O
U
T
Z
R
b
R
R
T
T
Y
I
N
d
3
n
o

"
I

T
A
T
e
 TI9])

B
R
B
b
U
T
P
E
S
Y

A
r
t
e
r
a
u
s
n
b
e
s
/
/

}
(
(
)
p
o
u
3
z
s
w
o
r
a
s
b
i
)
z
t

}
(seutzebewriyAerdstTp)3IT

!
(
Y
u
t
a
u
t
a
d
-
3
a
n
o

-we3lsis

{1~
=

S
A
O
W
R
Y
O
]

IJUT

(
.
9
,

=j
U
O
T
3
D
O
[
®
S

33
,B,

=|
U
O
T
I
D
D
[
S
S
)
S
T
T
Y
M

{

{
(
0
)
3
y
a
e
y
o
-

(
,

cwzogzaed
o3

juem
nok

op
u
o
T
I
O
®

Y
O
T
Y
M
,
)
3
n
d
u
r

O
I

=
U
O
T
I
O
S
T
S
S

}
o
p

!
()
n
u
s
p
M
o
y
s

!
(
)

u
T
a
u
T
a
d
-

3
n
o

w
e
3
s
i
s

1 (,
o
n
u
T
3
u
o
d

03
NOLLOH

ANY
S
5
9
d
,
)
3
n
d
u
t

OI

!
(
w
u
)
u
T
a
u
t
a
d
-
3
n
o

w
e
l
s
i
s

}
A
v
m
fl
a
fl
u
n
o
o
o
a
m
m
w
n
m

p
r
o
a

s
j
e
a
t
a
d

*

-
n
u
s
w

o3
s
e
n
u
T
j
u
c
d

p
u
e

o
b
e
s
s
e
u

s
A
e
y
d
s
T
p

-
P
o
u
l
S
w
W

w
s
c
fl
v
G
O
U
O
E
m
m
w
u
m
\
*

wx/ {
!
g
o
u
t
z
e
b
e
w

u
a
n
i
e
x
 {

m
h
v
w
a
a
&
w
a
fl
n
m
m
m
z
v
m
o
u
.
h
@
d
fl
fi
fl
h
d
fl
fl
u
w
u
m
z
m
n
fl
v
m
m
m

=
s
e
u
t
z
e
b
e
w

$
S
2
0
0
R

W
O
P
U
R
I
/
/

}
este

{

u
A
v
w
fl
fl
h
w
n
fi
u
m
m
m
z
v
m
w
u
.
m
fl
fl
h
H
M
fi
u
w
v
a
m
c
fl
fi
m
m
m

=
s
o
u
t
z
e
b
e
w

K
t
T
e
r
a
u
e
n
b
s
s
/
/

}
(
(
)
p
o
u
z
e
w
o
r
a
e
b
i
)

st

{7Tnu
=

s
e
u
t
z
e
b
e
u

[
]
s
u
r
z
e
b
e
n

}
(
)
s
s
u
t
z
e
b
e
w
p
e
o
l

[
1
o
u
t
z
e
b
e
n
y

o
z
e
a
t
a
d

/%
-
g
o
u
t
z
e
b
e
u
w

Jo
A
e
a
z
e

ue
u
I
N
I
B
I
Y

x *

‘o713
°y3

woxy
s
s
u
r
z
e
b
e
w

speoy
-

p
o
y
l
s
W

s
o
u
T
z
e
b
e
H
P
E
R
O
T

»

*
x
/

/§}00q
U
I
N
I
S
I
 {

u
A
w
0
fl
fl
h
&
o
o
m
v
m
w
u
.
h
m
&
m
fl
fl
w
fl
m
fl
u
m
u
m
z
m
c
fl
n
m
w
m

=
s3jo0q

S
s
e
0
D
R

W
O
p
u
U
R
I
/
/

}
este

{

N
A
v
m
fl
fl
h
x
o
o
m
v
m
m
u
‘
N
A
A
M
H
M
fl
k
u
m
E
m
n
fi
v
m
m
m

=
s
j
o
o
q

(pT
aaystiond

‘eotad
‘sebed

‘pT)
SIUT

b
o« *

1
o

dn

spew
ST

Ing
SEIAE

Q
Y
O
O

MOOH
O3

IRTTWES
ST

SHEIAY
QUOOEM

ENIZVSVH
x x/

/GxSEIAE
ONINIS

+
G+SAIAE

INI
=

SHIXE
QUODEM

MOOH
IUT

TBRUTI
OT3E3S

/%
‘jooq

Aue
xoz

j
u
e
s
s
i
d

8q
UED

SIOYINE®
INOF

JO
WNWTXEBUW

B
JBYJ

P
O
U
N
S
S
T

ST
3T

x *

$
0
3
4
q

GpT
=

GBI
+

9T
=

GxGZ
+

Gxb

:
d
r

9
3
e
3

P
T
N
O
M

B
T
T
J

UT
P
O
I
0
1
S

P
I
O
D
B
I

H
O
O
Q

U
d
E
D

(y
zoyzne

‘g
zoy3ane

‘g
xoyjne

‘T
Foyzme

‘®©1313)
sburiys

g
(pT

a
s
y
s
t
i
q
n
d

‘
s
a
e
i
d
e
y
o

‘
e
o
t
a
d

‘
s
s
b
e
d

‘pr)
s
q
u
r

g

:30
dn

spew
ST

P
I
O
D
B
I

Y
O
O

B
SOUTS

‘®TTF
®

UT
P
O
I
0
3
S

p
i
o
d
e
x

jooq
e

s
j
u
s
s
e
x
d
e
x

SAIAY
(QHOIMY

M
O
O
H

X K X Kk X X kK %k Kk
x
~

!y
=

SELXE
INI

3UT
TEUTF

OTIe3s
‘
s
e
1
T
y

3
n
d
a
n
o

oyl
UT

J
U
T

UB
B
I
O
I
S

03
p
s
p
e
s
u

s
e
r
h
g

sy3
s
j
u
e
s
e
a
d
s
a

S
E
I
A
E

I
N
I
/
/

!GZ
=

SHIAY
O
N
I
M
I
S

IUT
TeUTI

OT3Ie3S
/*

‘
a
s
q
u
n
u

A
u
r

u
s
e
q

s
a
r
y

P
T
n
o
d

31
‘
x
s
u
m
e
i
b
o
x
d

syz
Aq

p
e
p
I
o
S
p

ST
STYUL

x
*
s
e
T
T
y

3
n
d
a
n
o

ay3z
ur

s
e
3
h
q

gz
dn

e
y
e
s

T
T
T
m

w
e
x
b
o
x
d

S
T
Y
3

UT
p
e
s
n

BQ
x

T
T
T
#

3
e
y
y

H
B
u
r
x
l
s

Axzsao
‘Kem

STYJL
'
U
D
E
D

S
I
S
I
D
R
I
B
Y
D

GZ
x

Fo
u
m
u
T
x
e
w

e
2
a
v
y

A
e
w

‘
(
°
D
3
®

‘
s
I
o
y
i
n
e

‘
s
S
O
T
3
T
]

‘'X9)
S
T
T
L
I
O
P

S
N
O
T
I
R
A

4

@
x
0
3
s

03
‘
w
e
a
b
o
x
d

s
T
y
z

ut
p
e
s
n

s
b
u
r
a
l
s

syl
e
y
l

u
e
s
w

s
o
3
h
g

Gz
x

.
m
m
u
h
n
c
fi
‘
u
n
m
a
fi
m
c
fl
n
u
m
»
q
m
m
o
n
»
m
a
m
fi
m
s
u
m
u
c
m
m
m
u
m
m
u
m
m
a
u
m
|
W
s
z
a
m
«
 *\

}
A
v
g
e
T
T
A
T
e
T
I
S
}
e
H
P
b
U
T
P
R
™
®
Y

sserd
ot1Tqnd

{
u
o
t
3
d
e
o
o
x
g
O
I

‘
o
1

'
e
A
R
L

j
x
0
d
u
r
t

!
T
T
d
s
s
e
o
o
y
u
w
o
p
u
e
y

‘
o
t

‘
e
a
e
l

j
z
o
d
u
r
t

AvYeTTATeTI93eRbuTPERY/ /

!
(
p
e
o
y
o
L
A
I
j
u
s
)
p
r
o
D
a
y
S
T
T
A
N
O
O
g
P
E
®
I

=
[
T
]
S
e
T
I
3
U
E
}
0
0
q

{SELAE
Q
Y
O
D
E
Y

M
O
O
H
x
T

=
p
e
s
y
o
r
i
i
j
u
e

3ut
}

(+4T
!SOTIIUFFOISQUNMUST

{(Q=T
JUT)IOF

o
T
T
y
e
3
e
p

°y3
y
b
n
o
a
y
y

d
o
o
r
/
/

}Ka3
!
[
s
e
T
a
j
u
g
I
o
r
s
q
u
n
u
]
y
o
o
d

M
S
U

=
S
O
T
I
F
U
A
N
0
0
q

[
]
3
o
o
d

{SHIAY
QUODMY

M
O
O
H

/
9
Z
T
S
O
T
T
I
N
0
0
q

=
SOTIFJUHIOISCUNU

{
(
J
y
a
b
u
s
t
-
S
T
T
A
N
O
0
E
S
Y
I

(IUT)
=

S
Z
T
S
I
T
T
I
N
0
O
Q

JUT

{(uMT,
‘ENYNITIA

MOOH)
S
T
T
I
S
S
S
O
O
V
W
O
P
U
R
Y

MSU
=

STTJY00HSUR
}&x3

{0
=

S
9
T
I
F
U
F
I
O
I
S
q
U
N
U

J
U
T

{oTTAy00gSY]
S
T
T
I
S
S
S
D
O
Y
W
O
p
U
R
Y

(
)
e
o
T
T
a
y
o
o
g
p
e
a
x

[]joog
o
T
3
e
3
S

o
a
fi
n
n
w

S
T
T
A
N
C
O
Q

9
Y
3

JO
S
3
U
S
I
U
C
D

S
Y
3

T
R

y
a
t
a

A
e
x
a
e

c
h
s
u
m
n
w
\
”

D
I
O
J
S
H
O
O
G

B
Y
J

W
O
I
A
F

S
O
T
I
J
U
D

O
O

T
I
®

S
P
E
I
X

-
B
T
T
I
H
O
O
H
P
E
R
I
I

H

k.&.\

- s
p
o
y
l
e
w

pejlerea
H
O
o
H
/
/

{
L
A
v
g
e
T
T
I
s
u
T
Z
R
b
R
W
,

=
d
e
Z
E
A
t
h
m
Z
H
m
fl
w
fl
z

b
u
t
a
z
s

TeUuTy
O
T
3
E
}
S

{
W A
Y
M
O
T
T
I
N
0
0
q
,

=
F
W
U
N
I
T
I
I

M
O
O
"

B
u
T
t
a
z
s

T
e
u
r
z

o
r
3
e
3
s

!
G
x
S
A
L
X
E

O
N
I
N
L
I
S

+
p
x
S
H
E
I
A
E

I
N
I

=
S
H
I
A
E

Q
M
O
D
T
Y

E
N
I
Z
V
O
W
W

J
U
T

TRBUTF
O
T
I
E
3
s

/%
-
s
u
t
r
z
e
b
e
w

Aue
x0T

«

q
u
e
s
s
x
d

8

uUBD
S
V
D
I
N
O
S
S
I

T
R
U
O
T
I
T
P
P
R

I
N
O
J

JO
W
N
B
W
I
X
R
W

©
3
B
Y
3

P
O
U
M
S
S
E

ST
3T

s934&q
T§T

=
GxGZ

+
bxb

* * * *

:
d
n

9
3
]

P
I
N
O
o
M

B
T
T
I

U
T

P
H
I
O
J
S

P
I
C
O
S
I

W
E
H
N
N
U
M
E

y
o
e
s

* *
(p

®
o
a
n
o
s
e
x

‘g
L
o
x
n
o
s
e
x

‘z
s
o
a
n
o
s
e
a

‘]
e
o
a
n
o
s
e
x

‘
e
a
r
a
)

s
b
u
r
a
l
s

g

{
(
)
3
u
i
p
e
s
x

- e
T
T
a
y
o
o
g
o
y
l

=
s
a
b
e
d

j
u
t

!
(s®3AgeT1313)

b
u
t
a
y
s

meu
=

o731y
B
u
r
a
z
s

_
(
s
°
3
4
g
e
T
3
7
3
)

A
T
T
n
I
p
E
e
I

 STTANOOHSYSF

!
[sELAE

ONI¥WLS]e3Aq
meu

=
soihgeT3ty

[]eadq

!
(
)
3
u
I
p
e
s
a

O
T
T
A
N
0
0
E
S
Y
I

=
PT

3JUT
!
(
p
e
e
y
o
L
A
z
j
u
s
)

y
o
e
s

o
T
T
I
N
O
O
G
S
Y
F

{SAIXE
Q
U
O
O
E
Y

MOOH
/

S
Z
T
S
S
T
T
I
A
O
O
Q

=
S
O
T
I
I
U
F
F
O
I
O
q
U
A
U

{
(
J
y
a
b
u
s
T

o
T
T
a
Y
O
O
g
O
Y
F

(IUT)
=

S
Z
T
S
S
T
T
A
N
O
O
G

IUT
{(uMZ,

E
W
Y
N
E
T
I
A

MOOH)
®
T
T
I
S
S
O
O
O
Y
W
O
P
U
R
Y

M
U

=
STTIN0OHSY3

}&ag

{0
=

S
S
T
I
J
U
F
F
O
I
S
q
U
M
U

FUT
/
{
e
T
T
A
d
0
0
g
a
Y
]

O
T
T
J
S
S
e
D
O
T
W
O
p
U
R
Y

uoT3deoXdOI
SMOIY3

(PesyolAIjue
J
U
T
)
p
P
I
O
D
S
Y
S
T
T
I
N
O
O
G
P
E
S
I

YOOg
OTIEBIS

ofiflnsw

STTaAcOq
oy3

woxy
peex

o3
Arjue

jo
zequmu

 pesgorhizue
Emnmmw\w

®2038300q
BY3

woay
AIjUS

YOOQ
B

SPESI
-

PIOOSUSTTIHOOHPESIT
H

xx/ {
/TTnU

u
x
n
y
s
x

)
{

u
"
®
T
T
3

9
x
0
3
s
5
%
0
0
q

°yj3
u
s
d
o

o3
H
u
t
k
i
z

x
o
x
x
m
,
)
u
r
3
z
u
r
z
d
-
a
n
o

w
s
y
s
i
s

}
(ot

u
o
t
3
d
e
o
x
m
o
I
)

yozeo
{

!
{
$
9
T
I
3
U
E
N
O
O
q

U
I
N
J
D
I

!
(
u
u
)
u
T
3
u
t
a
d
-
3
n
o
-
w
e
3
s
i
s

{
(.,

'
P
®
3
E
O
I
D

©Q
3
0
U

UBD
IO

3ISTXD
3
0
U

S
0
P

S
T
T
F

F
O
O
q

8yl ,)
u
r
T
a
u
t
a
d

 3no

- w
a
3
l
s
i
s

!
(
w
u
)
u
r
z
u
r
a
d
-
y
n
o

w
e
3
s
i
s

{
(
)
b
u
t
r
a
z
s
o
z
 e

=
z
a
e

HButazsg
‘
P
e
3
E
S
I
D
d

Bq
3
0
U

UBD
IO

I
S
T
X
D

J
0
U

S
I
0
P

S
T
T
I
Y
0
O
q
/
/

}
(®

u
o
t
a
d
e
o
x
m
)
y
o
j
e
o

{

!
e
T
T
a
N
0
O
g
e
Y
3

S
T
T
I
S
S
S
0
O
y
W
o
p
u
R
y

}
(Az3us

300g)
ST
T
I
N
O
O
H
O
L
S
I

T
I
M

u
e
s
T
o
o
g

o
T
3
e
3
s

o
T
T
q
n
d

/x
I
N
F
S
S
S
O
O
N
S

SeM
D
I
T
I
M

DYJ
I
D
Y
I
D
Y
M

uInNIVdAY
x

S
T
T
A
N
O
O
T

Byl
031

9
3
T
I
M

03
A
z
j
u
s

A
x
y
u
s

w
e
x
e
d
p

y *

2
x
0
3
8
x
0
0
q

2Yy3
03

AIJULD
Y
O
O

B
S
O
I
T
I
M

-
D
T
T
A
Y
O
C
O
H
O
L
D
I
T
I
M

x

*x/

/7TNU
uIn3eax

/
(
.

9
T
T
3

@
x
0
3
8
y
0
0
o
q

oay3
u
a
d
o

o3
b
u
t
d
x
y

z
o
z
a
g
,
)
u
r
z
u
r
a
d
-
3
n
o
-
w
e
l
s
i
s

}
(ot

uoradeoxzmoIr)
uyozeo

{
{
(
x
o
y
s
t
T
a
n
d

‘
s
z
o
y
z
n
e

‘
s
a
s
z
d
e
y
o

‘
o
o
T
a
d

‘
s
e
b
e
d

‘
9
7
3
1
3

‘
P
T
)
Y
O
O
H

M
O
U

u
U
A
N
I
D
I

¢
(
a
r
a
s
y
s
t
r
a
n
d
)

AIY3 TMISYS TTANGPEST " S
T
T
A
I
S
Y
S
T
I
I
n
d

=
Ioystiqnd

I9YsTIANd

/{
p
a
o
y
a
z
n
e

‘
g
a
o
y
z
n
e

‘
z
a
o
y
i
n
e

‘
T
a
o
y
z
n
e

}
=

s
a
o
y
z
n
e

[
]
B
u
r
t
a
z
s

!
(
s
e
a
k
g
p
a
o
y
a
n
e
)

b
u
t
a
z
s

m
s
u

=
p
r
o
y
a
n
e

H
B
u
t
i
l
s

!
(
s
e
3
d
g
p
a
o
y
a
n
e
)

A
T
T
n
a
p
e
s
x

S
T
T
I
H
O
O
I
S
Y

!
[sSELAY

O
N
I
N
I
S
]
®
3
&
q

meu
=

s
e
j
h
g
p
a
o
y
a
n
e

[]e3hq

!
(
s
e
3
h
g
g
a
o
y
a
n
e
)

b
u
t
a
l
s

meu
=

g
a
o
y
a
n
e

DButalsg

!
(
s
e
3
h
g
g
a
o
y
a
n
e
)

A
T
T
n
I
p
e
S
I

S
T
T
I
H
0
0
E
I
Y
T

!/
[sEIAD

O
N
I
¥
I
S
]
®
3
&
q

meu
=

s
e
j
h
g
g
a
o
y
s
n
e

[]o3hq

!
(
s
o
3
h
g
z
a
o
y
a
n
e
)

b
u
t
a
i
l
s

m
s
u

=
g
i
o
y
a
n
e

B
u
t
a
j
s

!
(
s
e
3
h
g
z
a
o
y
s
n
e
)

A
T
T
N
I
P
E
D
I

S
T
T
I
N
O
C
H
S
Y
T

/
[
s
E
L
X
E

O
N
I
M
I
S
]
®
3
&
q

meu
=

s
e
j
i
g
g
a
o
y
a
n
e

[]e3hq

!
(
s
o
3
h
g
r
a
o
y
a
n
e
)

b
u
t
a
l
s

m
a
u

=
T
I
o
y
z
n
e

HBurtaas

!
(
s
e
3
h
g
r
a
o
y
z
n
e
)

A
T
T
N
I
P
e
S
I

S
T
T
I
H
O
O
H
S
Y
S

!
[SHILAE

O
N
I
¥
I
S
]
1
®
3
&
q

msu
=

s
o
j
h
g
r
r
o
y
i
n
e

[]e3iq

! (
)
3
u
r
p
e
s
a

o
T
T
a
Y
o
o
d
e
y
s

=
g
I
r
x
e
y
s
t
i
q
n
d

Jut
! (
)
3
u
r
p
e
s
a
x
-
o
T
T
a
d
y
o
o
g
s
y
s

=
s
a
a
z
d
e
y
d

j
u
t

{
(
)
3
u
I
p
e
a
x
-
S
T
T
a
N
o
o
g
s
y
z

=
9oTad

Jut

]

 {SEIXE

Q
I
O
D
M
I

M
O
O
H

/
S
Z
T
S
S
T
T
I
A
O
O
Q

=
S
O
T
I
F
U
F
I
O
I
S
q
U
N
U

¢
(JyabusT

oTTANCOCESYI
(IUT)

=
S
Z
T
S
S
T
T
I
N
O
O
]

FUT
{(WMZ,

H
W
Y
N
E
T
I
A

MOOH)
9
T
T
I
S
S
e
D
d
y
w
o
p
u
e
y

Meu
=

o
T
T
I
o
o
g
e
y
l

}Aag

!0
=

S
9
T
I
J
U
A
I
O
I
S
q
U
N
U

JUT
/
B
T
T
I
N
0
0
g
S
I
Y
3

ST T
I
S
S
I
0
O
O
y
U
w
o
p
u
r
y

}
(
s
s
T
a
j
u
s

[
]
3
j
o
o
g
)
S
T
T
A
N
0
O
g
O
L
o
I
T
I
M
S
I

u
e
a
T
o
o
d

o
T
3
e
l
s

o
r
r
q
n
d

/*
INISSE00NS

Ses
DITIN

SUJ
ISYIOYA

uIniexy
i

STTIN0OQ
BY3

03
SITIA

03
SOTIJUD

setajue
uexedy

i x
870383000

SY3
03

SOTIFUS
JOOU

SOITAH-BX
-

S
T
T
A
N
O
O
F
O
L
O
I
T
I
M
O
T

xx/

{TTnu
u
i
n
j
e
x
 {

!
(
4
"
®
T
T
F

®
x
0
3
s
y
0
0
q

8y3z
u
s
d
o

o3
bButhijy

z
o
x
a
d
m
,
)
u
r
z
u
t
a
d
:
j
n
o
-
w
s
i
s
i
k
s

}
(ot

uoradeoxmor)
yozeo

{
{

/9STeI
uInNlex

., '
9
7
0
3
s
)
0
0
q

9Yy3
03

H
B
U
T
3
T
I
M

S
T
T
Y
M

I
0
x
a
d
,
)
u
T
3
z
u
t
a
d
-
i
n
o
-
w
s
i
s
i
s
g

}
(ot

u
o
t
a
d
e
o
x
m
o
I
)

yo3zed
{

/
e
n
x
3

u
a
n
i
s
x

{
T
+
S
®
T
I
J
U
I
F
O
I
S
q
U
O
U

=
S
S
T
I
F
J
U
H
F
O
I
S
Q
U
N
U

!
(
A
z
3
u
e

‘
8
3
T
I
M
O
L
A
I
3
U
S
)

P
I
O
D
S
Y
S
T
T
I
N
O
O
H
S
F
T
I
M

{SHEIAE
QUODHEY

M
O
O
H
x
S
S
T
I
F
U
I
I
O
I
O
M
U

=
93 TIMOLAIFUS

FUT 1}
&a3

{SHEIAE
QUODEY

MOOH
/

©
Z
T
S
O
T
T
I
N
O
O
Q

=
SOTIFIUTFOISqUAU

{
(
J
y
a
b
u
s
T
-
S
T
T
I
Y
O
O
H
S
O
Y
I

(JUT)
=

S
Z
T
S
S
T
T
A
N
O
O
Q

JUT
f (M2,

EWYNITIZ
YOOH)®TTISSOOOYWOPURY

MSU
=

STTIYOOHSUS
}Ax3

{0
=

S
O
T
I
Z
U
I
F
O
I
S
q
U
N
O
U

J
U
T

!
(
)
p
1
r
3
e
b
-
L
i
j
u
s

=
pt

JuUT

!SEIAE
QUOOTd

M
O
O
H

/
©
Z
T
S
O
T
T
A
N
O
O
q

=
S
O
T
I
F
U
F
F
O
I
S
q
U
N
U

¢
(
)
y
3
b
u
s
T

S
T
T
A
Y
O
O
H
S
Y
I

(IUT)
=

O
Z
T
S
S
T
T
I
Y
O
O
Q

3JUT

¢
(uMZ,

‘HAUNITIA
MOOH)

S
T
T
I
S
S
S
O
O
V
U
O
p
U
R
Y

MSU
=

STTJIioogsyl
}Ax3

{0
=

S
9
T
I
Z
U
F
F
O
I
D
q
U
I
N
U

JUT

!
9
T
T
d
Y
o
o
g
s
y
l

O
T
T
I
S
S
e
D
D
Y
F
W
o
p
U
R
Y

}
u
o
t
3
d
e
o
x
m
o
I
l

s
m
o
a
y
z

(
A
x
j
u
e

y
o
o
g

‘
©
3
T
I
M
O
L
A
I
I
U
S

J
U
T
)
P
I
O
O
S
Y
S
T
T
I
N
O
O
H
S
I
T
I
M

P
T
O
a

DT3ie3ds
o
r
i
q
n
d

/%
S
T
T
A
N
O
O
Q

Y
l

03
«
3
T
a
m

03
A
x
j
u
s

A
z
j
u
e

w
e
x
e
d
p

x

B
T
T
I
N
O
O
G

oYz
03

3
T
a
m

03
A
x
j
u
s

yo
I
a
q
u
m
u

o
3
T
a
M
o
r
A
a
j
u
e

w
e
x
e
d
y

x

x
B
I
0
3
S
H
O
O
G

BYJF
03

A
I
J
U
S

O
O

B
S
O
I
T
I
M

-
P
I
O
O
S
Y
S
T
T
I
A
O
O
H
D
I
T
I
M
 xx/

{1Tnu
u
a
n
z
o
x

*
®
T
T
3

®
@
x
0
3
s
j
o
o
q

=y3
u
s
d
o

o3
H
B
u
t
d
a
y

z
o
x
x
m
,
)
u
T
i
u
t
a
d
-
i
n
o

w
e
l
s
i
s

}
(ot

u
o
t
3
d
e
o
x
m
O
I
)

uyd3ed
{

{

{9s8TR3F
U
I
N
3
S
I

! (
,
®
@
x
0
3
8
y
0
0
q

OYy3
03

H
B
u
T
l
T
I
M

S
T
T
Y
M

I
0
I
1
x
H
,
)
u
T
3
u
t
r
a
d

3
n
o

w
e
l
s
i
s

}
(ot

u
o
r
3
z
d
e
o
x
m
O
I
)

y
o
z
e
o

{

/
e
n
a
3

u
a
n
i
s
a
 {

! (
[
T
]
s
e
T
a
3
u
s

‘
9
3

T
I
M
O
L
A
I
F
I
U
S
)

P
I
O
O
S
Y
S
T
T
I
N
O
O
H
S
I
T
I
N

{
S
E
I
X
E

Q
Y
O
D
E
I

M
O
O
€
x
T

=
®
3
T
a
M
o
r
i
z
i
u
e

3ut

}
(++T

‘
y
z
b
u
e
r
-
s
e
T
I
z
U
S
>
T

{0=T
J
U
T
)
I
O
F

!{yzbust
s
e
T
I
I
U
S

=
S
S
T
I
F
U
F
F
O
I
S
2
q
U
N
U

{
(0)
y
a
b
u
s
a
e
s

ST T
A
N
O
O
H
S
Y
Z
 }

&x3

!
 (u

u
)
p
u
s
d
d
e
-
e
q
s

}
(SEIxg

O
N
I
¥
I
S

>
(
)
u
z
b
u
s
t

e
q
s
)
e
r
r
y
m

! (
u
u
)
I
0
F
3
n
g
P
U
T
I
I
S

MOU
=

Q
S

a9FINgGDOUTIIS

}
(+4T

{p>T
‘yzbueT’ s

a
o
y
z
n
e
=
T

3UT)
I0F

£
(
(
)
B
u
t
a
y
s
o
s

- eqs) senkgeatam’
oTTAYoOHEIYT

(.
u
)
p
u
s
d
d
e
-
e
q
s

}
(SEIxg

O
N
I
M
I
S

> ()uyabuer
eqgs)oTTUM

!
(
[
t
]
s
a
o
y
a
n
e
)

z
o
z
y
n
g
b
u
T
i
l
s

M
U

=
e
g
s

I
9
F
I
n
g
b
u
T
t
i
I
z
s

}
(++T

‘uy3zbusT‘'saoyiane>T
{Q=T

3JUT)I03F

! (
)
s
a
o
y
a
n
y
a
r
s
b
-
K
k
i
j
u
e

=
s
a
o
y
z
n
e

[
]
B
u
t
a
z
s

¢
(
a
T
a
o
y
s
T
T
q
n
d
)

JUISI TIM
S
T
T
I
H
O
O
H
I
Y
I

!
(
s
z
o
3
d
e
y
s
)

q
u
I
s
l

T
I
M

S
T
T
I
N
O
O
H
S
Y
]

!
(eot1ad)qure3Tas

 STTINo0ogSYUS
!
(
s
e
b
e
d
)

q
u
r
e
l
T
a
m

S
T

T
A
N
O
C
O
H
O
Y
S

£ (
(
)
s
e
3
h
g
3
e
b

o
3

T3)

@3 T
a
m

ST T

I
N
C
C
E
S
Y
D

{
(PT)

J
U
I
S
I
T
I
M

S
T
T
I
N
O
O
H
S
Y
I

!
(@3
T
a
M
o
z
L
a
3
u
s
)

3
9
S

S
T

T
A
N
O
O
H
S
Y

{
(
)
p
r
a
s
b
’

() a
s
y
s
t
T
q
n
g
d
i
e
b
 -
K
a
j
u
e

=
g
r
a
s
y
s
t
i
q
n
d

3utr
! (
)
s
a
s
a
d
e
y
n
i
y
e
b
-

L
x
q
u
s

=
s
a
e
s
a
d
e
y
d

jut

! (
)
o
o
T
a
g
3
9
b
6

 A3jqus

=
s
o
t
a
d

jur

!
()
s
o
b
e
g
y
s
b
-
A
i
j
q
u
s

=
s
e
b
e
d

jur

¢ ()butrazsoz-3ags
=

ST3IT3 {
‘(s

u)pusdde-3qgs
}

(SEIXE
ONI¥LIS

>
(
)
y
3
b
u
s
T

3
q
s
)
s
T
T
y
m

! (®T13713)
a
9
z
g
n
g
b
u
t
a
z
s

meu
=

3qs
a
e
g
y
n
g
b
u
t
a
z
s

{()°13TI396"
Aaque

=
°13T3

b
u
t
i
a
s

! ()
s
z
o
y
a
n
y
a
a
b
-
d
u
e
y

=
s
x
o
y
z
n
e

[
]
b
B
u
r
a
z
s

!
(
s
z
o
g
d
e
y
o

+ ,
:
S
Y
A
I
I
V
H
O
,
)
u
T
3
u
t
a
d

3
a
n
o
-
w
e
l
s
i
s

‘(eot1ad
+

,:($)
F
O
I
¥
A
.
)
u
T
z
u
t
a
d

3
n
o
-
w
e
l
s
i
s

¢ (
s
e
b
e
d

+
,
:
5
E
O
V
d
,
)
u
T
r
u
T
a
d
-
3
n
o
-
w
e
l
s
i
s

{
(
8
T
3
T
I

+
4
F
I
L
I
L
.
)
u
T
3
u
T
a
d

3
n
o

w
e
3
s
i
s

{(PT
+

,
:
Q
I
.
)
u
r
j
u
r
a
d
-
3
n
o

w
o
l
s
i
s

a
W) u

r
z
u
t
a
d
-
a
n
o

w
e
l
s
i
s

!
(
w
u
)
u
t
a
u
t
a
d
-
a
n
o
-
w
e
3
s
i
s

¢
()
x
o
y
s
T
1
q
n
g
3
a
s
b
-
d
w
e
y

=
z
a
y
s
t
i
q
n
d

x
9
Y
S
T
I
A
N
g

! (
)
s
a
e
3
z
d
e
y
p
i
a
b
-
d
u
e
y

=
s
a
x
e
j
d
e
y
o

j
u
t

! (
)
o
o
1
a
g
3
9
b

d
w
e
y

=
s
o
t
a
d

jutr

!
()
s
e
b
e
g
y
a
b
-
d
w
e
y

=
s
e
b
e
d

j
u
r

{
(
)
o
T
3
T
I
3
9
6

d
w
e
y

=
1
3
7
3

bButaas
{
(
)
p
1
3
e
b
-
d
w
e
y

=
pT

3uUT

1

! [
t
]
s
y
o
o
q

=
d
w
e
3

j
o
o
g

}
(++T

‘
y
a
b
u
s
T
-
'
s
j
y
o
o
q

>
T

Q
=
T

J
u
T
)
I
O
F

}
(
T
I
n
u

=i
s3jooq)3zT

! (
)
e
T
T
a
Y
o
O
o
g
p
e
S
I

=
S3}00q

!{TTnu
=

s
j
o
o
q

[
]
s
o
o
g

}
()
T
R
U
T
W
I
D
L
O
L
S
Y
O
O
H
T
T
Y
a
I
N
d
3
I
N
O

P
T
O
A

D
O
T
3
®
3
S

O
T
T
q
n
d

/% *
B
u
T
i
a
o
s

3
N
O
Y
l
T
M

TBRUTWISY
SY3

O3
9
I
0
Y
S
H
O
O
]

9y}
UT

syooq
oyl

TTe
s
i
n
d
i
n
o

-
T
e
u
T
W
I
D
L
O
L
S
H
o
o
g
T
T
y
a
n
d
i
n
o

x

»x/ {
{

!
(
,
"
9
T
T
3

o
x
0
3
s
y
o
o
q

=y3z
u
a
d
o

o3
H
B
u
t
d
z
j

z
o
z
a
d
,
)
u
T
j
z
u
t
i
d

z
n
o

w
e
l
s
i
s

}
(ot

uoradeoxzoI)
yozeo

{
{

£
(
(
)
B
u
t
a
z
s
o
s

' eqgs) s
e
j
h
g
e
l
T
a
m

S
T

TANOCOTSYT

}
(++7

‘y3buey-sjyooq
>

T
{0=T

3IUT)I0ZF

lelele
«)
u
T
3
u
T
a
d

3
n
o

w
e
3
s
i
s

{ (.
S300q

STQeTTRAVY,)uT3uTid
3no-we3sis

!
(
,
u
)
u
T
3
u
t
a
d

- 3
n
o

- w
e
3
s
i
s

}
s
t

{
!
(
w
u
)
u
r
3
z
u
t
a
d
-
a
n
o

w
e
y
s
i
s

*
A
a
d
w
e

st
®
x
0
3
s
j
0
0
q

I
9
Y
J
,
)
u
r
z
u
r
a
d
-
i
n
o
-
w
e
3
l
s
i
s

!
{
w
u
)
u
r
3
z
u
t
a
d
-
q
n
o
-
w
e
3
s
i
s

}
(0

==
y
a
b
u
s
1
-
s
j
y
o
o
q
)
F
T

}
(TTnu

=j
s3ooq)3FT

! (
)
e
T
T
d
y
o
o
d
g
p
e
a
x

=
syjyooq

!
1
T
n
u

=
s
j
o
o
q

[]s3joog

}
()
T
e
u
T
W
a
a
L
O
L
S
O
T
I

T
I
S
A
I
S
H
o
o
g
T
T
Y
I
n
d
I
n
o

proa
o
r
3
e
3
s

o
r
1
q
n
d

/+ *

B
u
t
j
a
o
s

3
n
O
Y
3
T
M

T
R
U
T
W
I
S
]

BYJ
O3

S
I
0
I
S
H
O
O
H

BYJ
UT

S9T3T3
pue

6QI
,5300q

®Y3
TTe

s3ndlno
-

T
R
U
T
W
I
D
L
O
L
S
S
T
I
T
L
S
A
I
S
H
O
O
H
T
T
Y
I
N
A
I
N
O

4
xx/ {

!
(
y
u
)
u
t
a
u
t
a
d
-

3
n
o

w
e
3
s
i
s

! (,
®
7
0
1
5
j
0
0
q

OY3
UT

SY0Oq
OuU

BIR
B
I
Y
L
,
)
u
T
a
u
t
a
d
:
3
n
o
w
e
3
s
i
s

w
)
u
T
3
i
u
t
a
d
-
a
n
o
-
w
e
g
s
i
s

}
esT®

{

!
(
w
u
)
u
t
3
j
u
t
a
d
-
g
n
o
-
w
a
3
s
i
s

!
(
y
=
=
=
=
=
=
=
=
=

w
)
u
T
3
u
t
a
d
-
3
n
o
-
w
e
y
s
i
s

{
(
(
)
s
w
e
N
3
o
b
-
a
o
y
s
t
T
q
n
d

+
,

:
Y
E
H
S
I
T
E
N
G
,
)
u
T
3
u
T
a
d

3
n
o
-
w
e
j
s
i
s

{
(
[
C
]
s
z
o
y
a
n
e

+
,: (

S
)
™
U
O
H
I
A
Y
,
)
U
T
I
u
T
a
d

3
n
o

w
e
l
s
i
s

(
(
(
u
u
)
s
T
e
n
b
a
"

(Jutay - [[]szoyane)
) FT

}
(++C

‘
y
a
b
u
s
t
-
s
a
o
y
z
n
e
>
l

!o=L
j
u
t
)
a
o
z

}
este

{
!
(
u
u
)
u
r
T
3
u
r
a
d
-

3
n
o
-
w
e
l
s
i
s

! (.
K
3
a
d
w
e

st
®
z
0
3
S
j
y
0
O
Q

B
Y
L
,
)
u
T
3
u
t
a
d
-
3
n
o

u
w
e
3
s
i
s

¢
(
w
u
)
u
T
3
a
u
r
a
d
-
3
n
o
-
w
e
3
s
i
s

}
(0

==
yabueT

s
x
0
0
q
)
I
T

}
(TTnu

=

sjooq)3zT

!
(
)
e
T
T
d
y
o
o
g
p
P
E
D
X

=
S
)
0
O
q

{
T
T
n
u

=
s
y
o
o
q

[]sjoog

}
(3°2bae3

3UT)
I
B
Y
S
T
I
A
N
I
F
O
T
R
U
T
W
I
S
L
O
L
S
H
O
O
E
T
T
Y
I
N
d
I
n
o

pToa
o
T
3
e
3
s

o
r
T
q
n
d

/%
B
u
t
y
z
o
s

j
n
o
y
l

T
T
R
U
T
W
I
D
I

d
y
j

o3
‘
z
o
y
s
T
r
a
n
d

U
T
e
3
I
S
O

B
JO

1
3
2
0
3
8
3
0
0
¢

Y
3

UT
S
Y
0
o
q

Y
3

TTe
s
3
n
d
i
n
o

-
I
S
Y
S
T
T
U
N
I
F
O
T
B
R
U
T
U
I
D
L
O
L
S
H
O
O
H
T
T
Y
I
N
d
A
N
O

#
x
/
 {

{
!
(
w
u
)
u
t
d
u
r
a
d
-
a
n
o

- welsis
! (,

©
I
0
3
S
3
¥
0
0
q

SY]
UT

S
Y
O
O
q

Ou
SIB

9
I
S
Y
L
,
)
u
r
3
u
t
a
d
-
i
n
o
-

w
s
i
s
i
s
g

¢
(
w
u
)
u
t
a
u
r
a
d
-
3
n
o
-
w
e
3
s
i
s

}
est1e

{

!
(
w
u
)
u
r
a
u
t
a
d
-
3
n
o

-uwe3sis

)
u
T
3
u
T
a
d

-
3no-welsis

£
(
2
T
3
T
3

+
4
i
F
I
I
I
T

»
+

PT
+
,
:
Q
I
,
)
u
r
3
u
r
a
d

j
n
o

w
e
l
s
i
s

! (
)
x
o
y
s
t
T
a
n
d
a
s
b

-
d
w
e
y

=
x
a
y
s
T
t
r
q
n
d

z
o
y
s
T
I
q
n
d

!
(
)
s
a
o
a
d
e
y
p
3
s
b
-
d
u
w
e
y

=
s
a
s
i
z
d
e
y
d

3ut

! (
)
o
o
T
a
g
3
e
b
-
d
w
e
y

=
s
o
t
a
d

j
u
r

!
()
s
e
b
e
g
i
e
b
-
d
w
e
y

=
s
e
b
e
d

j
u
r

{
(
)
o
1
3
1
I
3
9
6

d
w
e
y

=
13713

B
u
t
a
z
s

{()p13sb-dwey
=

PT
3UT

!{[T]s3yooq
=

d
w
e
3

3yoog

(
-

a
e
y
s
T
T
q
n
d

STY3
WOIF

PUNOI
SY0oq

O
N
,
)
u
r
3
i
u
r
t
a
d
-
3
n
o

w
e
l
s
i
s

}
(0

==
punogs3jooq)FT

A

¢
(4u)

u
T
a
u
t
a
d
-
3
n
o
-
w
e
y
s
i
s

w)
u
T
3
u
T
a
d
-
g
n
o

w
o
e
3
s
i
s

! (
(
)
s
u
w
e
N
3
o
b

z
o
y
s
T
i
a
n
d

+
,
W
A
H
S
I
T
E
A
G
.
)
u
T
3
u
t
a
d

3
n
o

w
a
l
s
i
s

{
(
[
C
l
s
a
o
y
a
n
e

+
,
:
(
S
)
Y
O
H
I
A
V
,
)
u
T
3
u
T
a
d

3
n
o

w
e
3
s
i
s

(
(
(
u
u
)
s
T
E
n
b
e
"

(Juray-'
[C]saoysne)

)
3
T

A

}
(++C

‘
y
3
b
u
e
T
-
s
a
o
y
z
n
e
>
l

!g=C
3jut)zoz

!
(
)
s
x
o
y
a
n
y
a
z
e
s
b
-
d
u
s
y

=
s
z
o
y
a
n
e

[
]
B
u
r
t
a
s
s

{
(
s
a
e
a
d
e
y
o

+
,
:
S
W
A
I
A
Y
H
D
,
)
u
T
r
z
u
t
a
d
:

{(ootad
+

,:(¢)
=OI¥4E.)ur3lurad-

{
(
s
e
b
e
d

+
,:

a
n
o
-
w
e
j
l
s
i
s

gno
‘wej3sis

FOVd
.) u
T
3
u
t
a
d

3
n
o

w
e
l
s
i
g

{
(
9
T
3
T
3

+
.,
F
I
L
I
L
.
)
u
T
I
u
T
I
d

3
n
o

- w
e
i
s
i
s

{(PT
+

.
:
Q
I
,
)
u
T
3
u
t
a
d

3
n
o
-
w
e
l
s
i
s

J
)
u
r
3
d
u
t
a
d
-
a
n
o
-
w
e
j
z
s
i
s

!
(
w
u
)
u
r
3
u
t
a
d
-
3
n
o
-
w
e
3
y
s
i
s

/1
+

p
u
n
o
g
s
j
o
o
q

=
P
U
N
O
I
S
H
O
O
]

}
(()p13eb-asystriand

==
39bae])IT

! (
)
a
o
y
s
T
T
a
n
d
i
e
b

-
d
w
e
y

=
a
o
y
s
t
T
a
n
d

I
o
Y
s
T
T
A
N
g

!
()
s
z
o
3
d
e
y
p
y
s
b
-
d
w
e
y

=
s
z
o
z
d
e
y
s

3ut

e
o
t
a
d

jut
! (
)
@
o
T
I
g
3
9
b

" duren

!
()
s
e
b
e
g
y
e
b
-

d
u
s
y

{
(
)
®
T
3
T
I
3
9
6

d
w
e
y

!
[
T
]
s
y
o
o
q

=
d
w
e
3

3
o
o
g

}
(++T

‘yabusT-sjyooq
>

T
{0=T

JUT)IOF

{0
=

p
u
n
o
g
s
j
y
o
o
q

3ut

seobed
jut

=
®13713

b
u
t
a
a
s

{()p13sb-duwey
=

pT
3UT

!
(
w
u
)
u
T
a
u
r
a
d
-
3
n
o
-
w
e
3
s
i
s

{
(
)
b
u
t
a
a
s
o
l
 s

=
z
a
s

B
u
t
a
j
s

‘
p
e
j
e
@
I
D

99
30U

URD
IO

I
S
T
X
O

30U
S
0
P

S
y
T
A
S
u
T
z
E
b
e
w
/
/

}
(®

u
o
t
r
i
d
e
o
x
m
)
y
o
l
z
e
o

{

{
!
(
p
e
s
y
o
r
i
r
j
u
s
)

p
r
o
o
s
y
s
T
T
g
o
u
T
t
z
e
b
e
y
p
e
s
a

=
[
T
]
s
e
r
a
j
u
g
s
u
r
z
e
b
e
w

{SHIAE
QUODAM

E
N
I
Z
Y
O
V
H
x
T

=
P
e
s
y
o
r
i
i
j
u
s

jut
}

(44T
!
s
e
T
a
j
u
E
F
o
I
S
q
U
M
U
S
T

Q
=
T

J
U
T
)
I
O
F

oTTFeRIRp
Oyl

y
b
n
o
a
y
y

d
o
o
t
/
/

}&a3

!
[
s
e
T
a
j
u
m
F
o
r
o
q
u
n
u
]
a
u
t
z
e
b
e
y

M
s
u

=
s
s
T
i
j
u
m
g
s
u
r
z
e
b
e
w

[
]
s
u
r
z
e
b
e
n

!
S
E
L
A
E

Q
Y
O
O

E
N
I
Z
Y
O
U
W

/
©
2
T
S
e
T
T
d
o
u
r
z
e
b
e
w

=
S
O
T
I
J
U
R
F
O
I
S
q
U
M
U

“
A
v
n
u
w
m
w
a
.
m
a
fl
h
w
c
fl
u
m
m
m
z
w
n
u

(3uT)
=

®
z
T
g
o
T
T
I
o
u
T
z
e
b
e
W

JUT

{(uM3,
'EAYNITIZ

ENIZVOYW)
O
T
T
I
S
S
S
0
0
y
u
o
p
u
e
y

Msu
=

S
o
T
i
s
u
t
z
e
b
e
n
s
y
s

}&a3

/{0
=

s
o
T
I
j
U
¥
F
o
I
S
q
U
N
U

JUT

!
o
T
T
g
o
u
T
Z
z
E
b
E
R
O
Y
]

O
T
T
I
S
S
o
O
O
Y
w
o
p
u
e
y

}
()
o
T
T
a
s
u
T
z
e
b
e
y
p
e
a
x

[
]
s
u
r
z
e
b
e
y

o
1
3
e
l
s

o
T
T
q
n
d

/* *
©I038Y00q

DY3
WOIF

SSTIJUS
duTzebew

T
R

SPESI
-

O
T
T
I
O
U
T
Z
R
D
E
R
P
E
S
X

y
xx/

‘
o
s
T
D
I
O
N
®

se
p
o
j
o
r
d
w
o
o

9q
of

-
‘
S
p
o
y
l
s
w

p
s
y
e
y
a
x

s
u
r
z
e
b
e
n
/
/

!
(
w
u
)
u
T
3
u
t
a
d
-
a
n
o

w
e
3
s
i
s

! (,
®
7
1
0
3
5
3
0
0
q

9Y3
UT

SY0OJ
OuU

8
1

B
I
9
Y
J
,
)
u
T
j
u
t
a
d
’

3
n
o

w
e
l
s
i
g

!
(
w
a
)
u
T
3
u
t
a
d
-
a
n
o

w
e
3
s
i
s

}
est8

{

 !
[
s
H
I
A
E

O
N
T
H
M
I
S
]
®
1
A
q

Mou
=

s
a
o
j
k
g
r
e
o
a
n
o
s
s
x

[
]
e
3
&
q

{
(
)
3
u
i
p
e
s
a

e
T
T
g
o
u
t
z
e
b
e
y
e
y
s

=
g
r
a
s
y
s
t
r
g
n
d

jut
{
(
)
3
u
r
p
e
s
a
x
’

s
T
T
d
o
u
T
z
e
R
b
E
R
e
Y
3

=
°
0
T
a
d

JuTt

{
(
)
3
u
r
p
e
a
x
’

a
T
T
d
o
u
T
Z
R
b
R
R
A
Y
S

s
e
b
e
d

jut

!
(
s
o
3
A
g
e
T
3
1
3
)

b
u
t
a
z
s

meu
=

°7373
HBuraas

!
(
s
e
3
A
g
o
1
3
T
3
)

A
T
T
n
a
p
e
s
a

ST T
J
o
U
T
Z
R
E
R
K
O
Y
3

{
[
s
=
L
X
d

O
N
I
¥
L
S
]
1
®
3
&
q

meu
=

s
e
3
i
g
e
r
3
T
a

[]o3dq

{
(
)
3
u
I
p
e
s
a

o
T
T
d
o
u
T
z
e
b
E
N
o
U
l

=
PT

3JUT
!
(
p
e
o
g
o
r
A
a
j
u
s
)

y
o
9
s

9
T

T
I
S
U
T
Z
R
E
R
R
A
Y
Y

{
S
E
I
A
E

Q
Y
O
O

E
N
I
Z
V
O
V
W

/
©zZTSoTTJouTzebew

=
S
O
T
I
J
U
F
F
O
I
S
q
U
O
U

! (
)
y
a
b
u
e
T

-
o
T
T
a
s
u
T
z
e
b
e
R
s
y
s

(3ur)
=

o
z
T
g
e
T
T
I
o
u
r
z
E
b
E
W

juUT

{
(.M,

‘ENYNITIA
E
N
I
Z
V
O
Y
W
)

®TTISSe0Oyuwopury

Meu
=

o
l
T
i
s
u
t
z
e
b
e
n
s
y
i

YKa3

{0
=

s
o
T
A
Z
U
F
F
O
I
S
U
M
U

JUT

!
o
T
T
d
o
u
T
z
R
b
R
R
e
Y
]

O
T
T
I
S
S
o
D
O
y
w
o
p
u
e
y

}
u
o
T
3
d
e
o
X
H
O
T

s
m
o
x
y
y

(
p
e
e
w
o
g
A
i
j
u
e

j
u
T
)
p
a
o
o
s
y
s
T
T
d
s
u
r
z
e
b
e
y
p
e
s
x

s
u
r
t
z
e
b
e
l

oT3ie3ls
o
r
i
g
n
d

/x
e
T
T
g
o
u
T
z
e
b
e
u

oy3
w
o
x
y

pesax
03

A
z
q
u
s

JO
I
a
q
u
m
u

p
e
a
y
o
r
i
z
j
u
s

w
e
x
e
d
p
y

s x

ox018)00q
Y
3

wozy
AIajue

surzebew
B

SpPESX
-
P
I
O
D
S
Y
S
T
T
I
S
U
T
Z
E
O
E
N
P
E
D
I

i«
xx/

{TInuU
u
a
n
l
e
x

/(.
®
T
T
3

2
x
0
3
8
y
0
0
q

2y3z
u
e
d
o

o3
B
u
t
h
i
z

z
o
a
a
g
,
)
u
r
r
u
r
a
d
-
3
n
o
-
w
e
l
s
i
s

}
(ot

u
o
T
a
d
e
o
x
m
O
I
)

yo3led
{

!
s
e
T
a
j
u
g
s
u
t
T
z
e
b
e
w

uInjlex

!
(
w
u
)
u
r
3
u
r
a
d
-
a
n
o

w
e
3
s
i
s

/(,
P
o
9
3
®
2
I
D

®Q
30U

UBD
IO

JSTXD
JOU

SSOP
STTF

d
u
r
z
e
b
e
w

o
y
r
,
)
u
r
j
u
r
i
d
-
3
n
o

w
e
l
s
i
s

¢ (
)
u
a
b
u
e
t

- e
T
T
I
S
U
T
Z
E
O
E
N
A
Y
Y

(3ur)
=

e
z
t
g
e
r
r
g
s
u
t
z
e
b
e
u

jut

/(2MT,
‘EWYNETII

ENIZVOVW)
©
T
T
A
S
S
O
O
O
W
W
O
p
U
R
Y

meu
=

S
T
T
g
e
u
r
z
e
b
e
n
s
u
l

Y&a3

{0
=

s
O
T
I
j
U
F
F
O
I
S
q
U
A
U

JUT

!
o
T
T
i
o
U
T
Z
R
b
R
R
S
Y
]

S
T
T
I
S
S
e
D
O
Y
W
O
P
U
R
Y

}

(Kx3ue
s
u
t
z
e
b
e
R
)

o
T
T
I
O
U
T
Z
E
O
E
R
H
O
L
O
F

TIM

U
B
S
T
O
O
H

O
T
I
E
I
S

o
r
T
a
n
d

/%
T
n
F
S
S
e
D
O
O
N
s

Sesm
9
3
T
I
M

BY}
I
B
Y
I
d
Y
M

u
I
n
N
I
D
I
Y

x

o
y
T
g
a
u
t
z
e
b
e
w

oyl
03

°
3
T
I
M

03
K
z
a
u
s

K
x
a
u
e

w
e
x
e
d
)

x *

oz038%00q
Byl

03
SuUTzEHEW

¥0OQ
B

SOITIM
-

V
T
T
I
S
U
T
Z
E
O
R
H
O
L
I
I
T
I
A

»
%
/
 {

/TTnu
uIN3SIT

!
(4" 9

T
T
3

°
3
0
3
8
5
1
0
0
q

SY3
u
e
d
o

03
bBbuthiz

z
0
z
x
F
,

)
u
r
j
u
t
a
d
-
3
n
o

w
e
3
s
i
s

}
(oT

uot3deoxd0I)
uoIEd

{

!
(
z
a
y
s
t
I
g
n
d

‘
s
e
d
a
n
o
s
s
a

‘
o
o
t
a
d

‘
s
e
b
e
d

‘
o
T
3
T
3

‘
P
T
)
o
u
T
z
R
b
E
W

MSU
u
I
n
l
e
x

¢
(
a
r
x
e
y
s
T
T
q
n
d
)

A
I
Y
3

T
M
I
S
Y
S

T
T
A
N
A
P
E
S
I

' S

T
T
I
T
I
B
Y
S
T
I
A
N
d

=
z
s
y
s
t
i
a
n
d

x
e
y
s
T
I
A
N
d

{{
p
e
o
a
n
o
s
s
x

’
‘
g
e
d
a
n
o
s
a
x

’
z
e
9
o
a
n
o
s
s
x

/
1
9
0
I
N
0
S
3
I

}
=

S
$
9
2
I
N
0
S
S
I

[
1
b
u
t
a
z
s

!
(
s
o
3
A
g
p
o
o
a
n
o
s
a
x
)

S
u
t
a
l
s

M
O
U

=
y
O
D
I
N
O
S
S
I

B
u
t
a
a
s

N
A
m
w
u
h
m
q
w
o
u
s
o
m
m
u
v
m
a
a
u
&
fi
m
o
u
.
w
fi
fl
h
m
n
fl
u
m
m
m
z
w
n
n

!
[smIxg

O
N
T
H
I
S
1
®
3
h
q

meu
=

s
o
r
d
g
p
e
o
a
n
o
s
a
x

[]o3Aq

!
(
s
e
y
h
g
g
o
o
a
n
o
s
e
x
)

b
u
t
a
l
s

M
U

=
£
O
O
I
N
O
S
S
I

b
u
t
a
a
s

N
A
m
w
u
m
m
m
w
o
u
a
o
m
w
u
v
h
fi
fl
s
h
u
m
m
n
.
w
fl
fl
h
m
n
fl
u
m
m
m
z
w
n
u

!
[sEIAg

O
N
I
¥
I
S
]
®
3
h
q

meu
=

s
s
3
k
g
g
e
o
a
n
o
s
e
x

[]e34q

!
(
s
e
3
h
g
g
e
o
a
n
o
s
e
x
)

b
u
t
a
l
s

m
o
u

=
g
®
O
I
n
o
s
s
a

b
u
t
a
a
s

u
A
m
m
u
h
m
m
m
o
u
5
0
m
w
u
v
h
fl
fl
fl
h
v
m
o
u
.
m
fi
fl
h
w
c
fl
n
m
w
m
z
w
n
u

!
[
S
E
L
A
E

O
N
I
N
I
S
]
o
3
A
q

m
e
u

=
s
o
j
i
g
g
e
o
a
n
o
s
s
x

[
1
9
3
4
q

!
(
s
o
q
A
g
r
e
o
a
n
o
s
a
x
)

b
u
t
a
l
s

M
O
U

=
[
9
D
I
N
O
S
S
I

b
u
t
a
a
s

N
A
m
o
u
m
m
fl
m
u
H
s
O
m
O
h
v
h
a
a
n
h
v
m
m
u
.
a
fl
fl
h
w
n
fl
n
m
w
m
z
m
n
u

/
y
a
b
u
s
T

s
e
T
I
j
U
S

=
S
O
T
I
F
U
I
I
O
I
S
q
U
A
U

! (
0
)

y
a
b
u
e
r
r
y
e
s

‘
a
1

T
a
o
U
T
Z
R
O
R
R
A
Y
Y
 }

Ax3

{
S
H
I
A
E

Q
U
O
D
E
M

A
N
I
Z
V
O
Y
H

/
®
z
T
g
e
T
T
d
s
u
T
z
E
b
R
W

=
S
®
T
I
J
U
F
F
O
I
I
q
U
M
U

!
(
)
y
a
b
u
e
t

-
e
T
T
A
s
U
T
Z
R
B
E
N
S
Y
]

(
3
U
T
)

=
S
z
T
S
S
T
T
I
S
u
T
z
Z
E
b
P
W

J
U
T

{
(
u
M
I
,

‘
I
W
Y
N
T
T
I
I

E
N
I
Z
U
O
V
K
)

O
T
T
I
S
S
O
O
O
Y
W
O
P
U
R
Y

M
S
U

=
ST

T
J
o
u
t
z
e
b
e
r
s
y
a

}Axy

{0
=

S
9
T
I
J
U
F
F
O
I
S
Q
U
N
U

JUT
!
o
T
T
a
o
u
T
Z
R
b
R
R
O
Y
]

O
T
T
J
I
S
S
e
D
O
Y
U
O
p
U
R
Y

}
(
s
e
T
a
j
u
s

[
]
s
u
r
z
e
b
e
y
)
o
T
T
I
o
u
T
z
e
b
E
R
O
L
9
3

T
I
M
S
I

uESTOoOg
OT3iels

or1Tqnd

1
T
N
I
S
S
O
D
O
N
S

SEBM
SJTIM

Y
3

I
S
U
I
S
Y
M

u
I
n
N
B
I
P

»
a
T
T
g
o
u
t
z
e
b
e
w

syl
03

SITIMA
O]

S
I
T
I
J
U
S

s
o
t
x
u
e

w
e
x
e
d
y

x x*

2
1
0
3
8
3
0
0

SY}
03

SOTIZUS
ouTzebew

SOITIA-8X
-

S
T
T
I
S
U
T
Z
R
H
E
H
O
L
S
I
T
I
M
S
I
 xx/ {

{TInu
u
I
n
y
e
x

! (
,
"
®
T
1
3

°
x
0
3
s
)
y
0
0
o
q

oYz
u
a
d
o

o3
H
B
u
t
h
a
y

z
o
x
x
g
,
)
u
r
z
u
t
a
d
-
3
n
o

w
s
l
s
i
s

}
(ot

u
o
t
3
d
e
o
x
m
O
o
I
)

uyo3eo
{

{
{9sTRI

uINl°IT

! (,
®
3
1
0
3
5
3
)
0
0
q

@Yl
03

H
U
T
I
T
I
M

S
T
T
Y
M

I
0
x
x
d
™
,
)
u
T
i
z
u
r
i
d

3
n
o

w
s
l
s
A
h
s

}
(ot

uot3deoxmOI)
yojeo

{

/
o
n
x
3

u
a
n
i
e
x

{
1
+
S
9
T
I
Q
U
I
I
O
I
B
Q
U
N
U

=
S
S
T
I
F
U
F
I
O
I
S
q
U
I
N
U

!
(
A
z
q
u
e

‘
e
3
T
a
M
o
r
L
A
i
j
u
s
)
p
r
o
o
s
y
s
T
T
I
s
u
U
T
Z
e
b
R
H
e
3

T
I
M

{SEIXE
QUODEI H

E
N
I
Z
V
O
V
W
x
S
O
T
I
J
U
Z
I
O
I
S
Q
U
N
U

=
9
3
T
I
M
O
L
A
I
I
U
S

JuUT }
&x3

{SEILAE
QUODTI

A
N
I
Z
Y
O
V
W

/
®zTISoTTdourzebeu

=
s
e
T
a
j
u
g
z
o
r
s
q
u
m
u

=
!

(4
u
)
p
u
s
d
d
e
-
3
q
g
s

}
(SHLAE

ONINILS
>

()u3abusT
a
q
s
)
s
T
T
y
m

!
(973

T3)
2
9
7
I
n
g
b
u
T
a
l
s

MeU
=

3qs
a
o
7
I
n
g
b
u
T
I
i
s

{
(
)
o
T
3
T
L
3
e
b

A
a
j
u
e

=
°13T3

B
u
T
I
a
s

/
(
)
p
1
r
a
s
b
-
A
x
j
u
s

=
pPT

3JUT

!
S
E
I
A
E

Q
Y
O
O

E
N
I
Z
Y
O
V
W

/
©
z
T
S
e
T
T
d
s
u
r
z
e
b
e
w

=
s
e
9
T
I
j
u
g
y
o
I
o
q
u
m
u

2
(
)
y
a
b
u
s
T

‘
o
T
T
I
2
U
T
Z
R
O
R
N
R
Y

(
3
U
T
)

=
o
z
T
g
o
T
T
g
a
u
T
Z
z
e
b
e
w

JuUT

£
(.M,

‘EWUNITIZ
INIZYOVH)

O
T
T
A
S
S
9
0
O
Y
W
O
p
u
R
y

MOU
=

S
T
T
I
s
u
T
z
e
b
e
n
s
u
s

}&a3

{0
=

S
O
T
I
I
U
F
F
O
I
S
q
U
N
U

JUT

!
a
T
T
a
s
u
T
z
E
b
E
R
e
Y
]

S
T
T
I
S
S
o
D
D
Y
W
o
p
U
R
Y

}

u
o
t
a
d
e
o
x
m
O
I

s
m
o
x
y
l

(
A
x
j
u
s

s
u
r
z
e
b
e
n

‘
S
3
T
a
m
o
r
i
i
j
u
s

3uT)
p
r
o
D
S
Y
S
T
T
d
o
u
U
T
Z
R
E
b
R
R
O
3

T
I
M

P
T
O
A

D
T
3
e
3
s

O
T
T
q
n
d

\
¥

o
r
T
g
o
u
t
z
e
b
e
w

syz
o3

S
3
T
I
M

03
A
r
j
u
d

K
a
q
u
e

w
e
z
e
d
p

»

o
r
T
g
e
u
T
z
R
b
E
W

DYz
03

9
3
T
I
M

03
A
I
j
u
s

FO
ISQqUNU

o3
T
a
M
o
r
A
a
q
u
s

w
e
x
e
d
y

i ¥

@
1
0
3
8
5
3
%
0
0
q

2y3
03

A
x
j
u
e

S
u
r
z
R
b
E
W

B
S
O
Q
T
I
M

-
P
I
O
O
Y
S
T
T
I
S
U
T
Z
R
O
H
E
N
O
R
I
T
I
M

x

xx/

{TTnU
u
I
N
3
S
I

1 (,
9
T
T
F

°
7
0
3
8
3
0
0
q

8y3
u
e
d
o

o3
Butdkail

z
o
z
a
m
,
)
u
r
3
r
u
r
a
d
-
a
n
o
-
u
e
l
s
i
s

}
(ot

u
o
r
3
d
e
o
x
m
O
I
)

yo3IEd
{

{
/9sTez

u
I
n
i
e
x

! (,
@
z
0
3
5
)
0
0
q

9y3
03

b
u
r
3
a
T
I
M

S
T
T
U
M

z
0
x
a
d
,

) u
r
3
a
u
t
a
d

3
n
o

w
a
i
s
i
s

}
(or

uotadeoxmOI)
yo3ed

{

/
e
n
a
3

u
a
n
j
a
x
 {

!
(
[
T
]
s
e
T
a
z
u
s

‘
g
3
T
I
M
o
T
A
I
3
u
s
)

p
r
O
D
S
Y
S

T
T
I
S
U
T
Z
R
b
R
H
e
I

T
I
M

{SELAE
QUOOTY

HENIZVOWWxT
=

9
3
T
I
M
O
L
A
I
Z
U
S

3ut
}

(++T
‘
y
3
b
u
e
r
-
s
e
T
I
U
S
>
T

{0=T
J
U
T
)
I
0
F

{
{
(
u
"
®
T
T
F

®
a
0
3
s
y
0
0
q

sy3z
u
s
d
o

o3
Hurtha3z

z
o
z
x
m
,
)
u
T
z
u
t
a
d
-
3
n
o

w
e
z
s
i
s

}
(ot

uor3deoxmoI)
uojeo

{
{

!
(
(
)
B
b
u
t
a
z
s
o
l

‘eqs)
s
e
n
h
g
e
a
t
a
m

s
T
T
I
o
U
T
Z
R
O
E
R
O
Y
]
 {

“(u
u)pusdde-eqgs

}
(sELxg

O
N
I
¥
I
S

>
()yabuer'eqgs)eTTum

!
(un)x93Fngbutrads

meu
=

eqs
z
e
z
g
n
g
b
u
r
a
a
s

}
(++T

{
p
>
T

‘
y
z
b
u
e
T
’
'
s
s
o
a
n
o
s
s
a
=
T

3
u
T
)
a
0
3
F

¢
(()

B
u
t
a
3
s
o
y

‘eqs)

s
e
3
h
g
e
3
T
a
m

o
1

T
a
s
u
T
Z
R
O
R
R
O
Y
T
 {

{(u
u
w
)
p
u
a
d
d
e
-
e
q
s

}
(SEIXE

O
N
I
N
I
S

>
(
)
u
3
b
u
s
t

e
q
s
)
e
T
T
y
m

!
(
[
t
]
s
o
o
a
n
o
s
a
a
)

z
e
3
3
n
g
b
u
t
a
z
s

m
e
u

=
e
g
s

I
8
3
F
n
g
b
u
T
I
y
S

}
(++T

‘
y
3
b
u
s
T
‘
s
e
o
a
n
o
s
s
a
>
T

!(Q=T
3Jut)I03F

!
()
s
e
o
a
n
o
s
e
u
T
R
U
O
T
I
T
P
P
Y
3
I
®
h

" A
1
j
u
s

=
s
e
o
a
n
o
s
e
x

[
]
B
u
r
t
a
y
s
g

!
(
g
r
x
s
y
s
t
1
q
n
d
)

j
u
r
e
3
T
a
m

' s
T
T
A
o
u
U
T
Z
E
E
E
N
O
Y
T

!
(
e
o
1
a
d
)

j
3
u
r
e
3
T
a
M

o

T
I
o
U
T
Z
R
E
R
R
A
Y
]

!
(
s
o
b
e
d
)

q
u
r
e
y
T
a
m

o
]

T
a
o
u
T
Z
E
b
E
R
O
Y
]

{
(
(
)
s
e
3
4
g
3
r
e
b

o713 13) 93 TaM
S
T

TASUTZREEHOYT

{
(
P
T
)
3
u
I
e
3
T
I
M

T T
I
S
U
T
Z
R
O
E
R
S
Y
Y

!
(
®
3
T
a
m
o
r
i
a
j
u
e
)

y
o
o
s

o

T
I
o
u
T
Z
R
b
R
K
O
Y

{1 (
)
p
1
3
9
6
°

() 7
9
y
s
T
I
g
n
g
l
e
b
 -Kajus

=
g
r
a
s
y
s
t
r
g
n
d

jut
! (
)
e
o
T
a
g
3
s
b
-
A
z
q
u
s

=
s
o
t
a
d

jut
! ()

s
e
b
e
g
a
e
b
-
K
x
q
u
s

=
s
e
b
e
d

jur

{
(
)
b
u
r
a
3
s
o
z
-
3
q
s

=
9
1
3
1
3

(
)

u
T
a
u
T
a
d

3
n
o

w
e
3
s
i
s

}
este

{

¢
(
w
u
)
u
T
a
u
t
a
d
-
3
n
o

w
e
l
s
i
s

!
y====

—=,)
u
r
j
u
t
a
d
-
3
n
o
-
w
e
l
s
i
s

¢ (()ouren3ob-
zousTIand

+
W

:gEHSITENd,)
uT3utad

3no
we3isis {

{
(
[
C
]
s
o
0
a
n
o
s
s
x

+
.1

()
E
0
¥
N
O
S
E
Y
,

) u
T
3
u
T
a
d

3
n
o

w
e
3
s
A
s

(
(
(
u
w
u
)
s
T
e
n
b
e
"

()wrxa
- [

[
]
s
e
o
a
n
o
s
a
a
)
 i) IT

b}
o(++C

‘
y
a
b
u
e
T

' s
e
o
a
n
o
s
a
a
>
L

‘o=C
3
u
t
)
z
o
z

u
A
v
m
m
u
u
s
o
m
m
m
H
N
G
O
fl
u
fi
n
v
fl
u
w
m
.
m
E
m
u

=
s
e
o
a
n
o
s
e
a
x

[
]
B
u
t
a
a
s

{
(
e
o
t
a
d

+
,: (%)

N
U
H
m
m
z
v
c
fl
u
u
fl
u
m
.
p
s
o
.
fi
m
u
m
h
m

!
(sebed

+
, :
S
E
O
V
A
.
)
u
T
F
u
T
a
d

3
n
o

w
e
3
s
i
s

(
9
7
3
7
3

+
\
{
E
T
L
I
L
,
)
u
T
a
u
T
a
d

3
n
o

w
e
3
s
i
s

/(PT
+

.
:
Q
I
.
)
u
r
3
u
r
a
d
-
3
n
o
u
e
i
s
i
s

e

—
—
=
=
m
=
=
—
s
=
=
=
=
=
=
=
=
=
=
=
=
=

:
v
u
fl
u
u
fl
u
m
.
u
n
o
.
E
m
u
m
m
m

4

:
v
n
fl
u
a
fl
u
m
‘
u
fi
o
.
fi
w
»
m
h
m

¢
()
z
o
y
s
t
T
a
n
g
a
s
h
-
d
w
e
3

=
o
y
s
T
T
I
n
d

I
S
Y
S
T
T
A
N

:
(
)
o
o
T
x
g
a
e
h

d
w
e
l

=
s
o
t
a
d

j
u
t

/()
s
e
b
e
g
a
e
b
-
d
u
e
y

=
s
o
b
e
d

j
u
t

{
(
)
e
T
a
T
I
a
e
h

d
w
e
y

=
oT3T3

B
u
r
i
i
s

! (
)
p
r
a
e
b
-
d
w
e
a

=
PT

3IUT

:
[
t
]
s
s
u
t
z
e
b
e
w

=
d
w
e
l

s
u
t
z
e
b
e
r

}
(++T

‘
u
y
a
b
u
e
-
s
e
u
t
z
e
b
e
w

>
T

{0=T
IUT)IOZF

}
(TInUu

=i
s
o
u
t
z
e
b
e
u
w
)
I
T

/()
o
T
T
a
o
u
T
Z
R
b
E
R
P
E
S
T

=
s
e
u
t
z
e
b
e
u

{
{
T
n
u

=
s
o
u
t
z
e
b
e
u
w

[
1
s
u
t
z
e
b
e
r

}

A
u
H
m
d
fl
E
u
m
B
O
w
a
c
fi
N
m
m
m
s
fi
fl
m
u
n
m
u
u
o

p
T
O
A

D
T
3
E
3
S

o
t
t
a
n
d

/%
H
U
T
I
T
O
S

I
N
O
Y
I
F
T
M

T
R
U
T
W
I
S
I

SYF
OF

2
I
0
Q
S
Y
O
O
Y

BYF
UT

s
s
u
t
z
e
b
e
w

a2yl
1
1

s
a
n
d
a
n
o

-
H
m
a
fl
i
u
w
h
o
a
w
m
u
w
N
m
m
m
z
fl
fi
d
u
s
m
u
s
o

®

‘n

(
9
T
3
T
3

+
L
E
I
I
I
L

.
+

PT
+

u
i
Q
I
s
)
u
T
j
u
t
a
d
-
3
n
o

w
e
3
s
i
g

‘()
o
u
s
T
I
a
n
a
3
e
h
-
d
u
w
e

=
zeystrqnd

s
y
s
T
r
q
n
g

¢ (
)
®
o
T
x
g
3
0
6

d
w
e
y

=
s
o
T
a
d

Jut
! ()

s
e
b
e
g
y
e
b

d
u
e
y

=
s
o
b
e
d

Jut
‘
(
)
e
T
3
T
I
3
9
6

d
w
e
y

=
e7371q

B
u
t
a
z
g

‘
(
)
p
1
3
s
b
-
d
w
e
y

=
pt

jur

![1]
s
s
u
t
z
e
b
e
u

=
d
u
e
y

s
u
t
z
e
b
e
y

}
(++T

‘
y
3
b
u
s
T
-

s
s
u
r
z
e
b
e
u

>
T

!
0
=
T

3uTt)aogz

f
a

u
)
u
T
3
u
T
a
d

3
n
o

w
e
y
s
i
s

¢
(u

" soutzebeu
STARTIT®AY,

) uT3utad
' 3no

weysis
! {

u
u
)
u
T
3
a
u
t
a
d
-
3
n
o
-
w
e
3
s
k
s

}
e
s
T
a

{
! (
u
u
)
u
T
3
u
T
a
d

q
n
o

- w
e
y
s
i
s

{
(
y
K
a
d
w
e

st
s
x
0
3
s
3
j
0
0
q

®Uil,)
u
T
3
u
t
r
a
d

- 3
n
o

w
e
3
s
i
s

!
(
w
u
)
U
T
r
u
T
a
d

N
0

W
O
3
S
A
S

}
(0

==
y
3
i
b
u
s
t

- s
s
u
t
z
e
b
e
w
)

71
}

(
T
T
N
U

=;
s
s
u
t
z
e
b
e
w
)

g1

! ()
o
T
T
a
s
u
T
z
Z
R
b
E
R
p
P
E
S
T

=
s
a
u
t
z
e
b
e
w

{
T
T
n
u

=
s
s
u
r
z
e
b
e
u
r

[
1
s
u
t
z
e
b
e
y

}
A
v
H
m
u
fi
s
u
m
a
o
a
m
w
fi
u
fl
a
m
n
H
m
m
q
fl
u
m
m
m
E
A
H
fl
u
s
m
u
n
o

PToa
d13e3Ss

O
T
T
Q
n
d

/x ¥
b
u
t
3
x
o
s

3
n
o
y
z
t
m

T
B
U
T
W
I
S
]

9yl
03

©
I
0
3
S
}
0
0
Q

BY3
UT

S
S
T
3
1
T
3

pue
sqrl

,
s
s
u
r
z
e
b
e
w

8yl
TT1®

s
3
a
n
d
a
n
o

-
H
m
a
fi
E
u
w
H
o
a
m
m
.
fl
u
fl
a
n
H
m
w
n
fl
u
m
m
m
z
fl
fi
fi
n
m
p
fl
o

x

xx/

!
(wu)
U
T
3
U
T
I
d

3
0
0

we3 s
&
s

‘(4
®
2
0
3
5
3
%
0
0
q

By3
uT

S
O
O
q

OU
BIE

®asyy,
) u
T
3
u
t
a
d

- 3
n
o
-
w
e
y
s
i
s

{(PT
+

u
:
Q
I
.
)
u
r
3
u
t
a
d
-
3
n
o
-
w
e
3
s
i
s

o

4
)
u
T
a
u
t
a
d
-
3
n
o
-
w
e
3
s
i
s
g

!
(
u
w
u
)
u
T
3
u
r
a
d
-
3
n
o
-
w
e
j
s
i
s

/1
+

p
u
n
o
g
s
e
u
r
z
e
b
e
w

=
p
u
n
o
g
s
s
u
t
r
z
e
b
e
u
r

}
(()pr3sb-asystrand

== 3ebie3)
3T

!
(
y
z
o
u
y
s
t
T
i
q
n
d
a
s
b

-
d
w
s
y

=
z
o
y
s
t
T
q
n
d

a
o
y
s
T
I
q
n
d

!
(
)
o
o
t
a
g
i
s
e
b
-
d
w
e
y

=
e
o
T
a
d

j
u
t

!
()
s
o
b
e
g
i
s
b
-
d
w
e
y

=
s
e
b
e
d

j
u
t

{
(
)
o
1
3
T
I
3
9
6

d
w
e
y

=
°13713

B
u
r
a
l
s

{
(
)
p
1
3
e
b
-
d
w
e
y

=
pPT

3uT

!
[
T
]
s
o
u
t
z
e
b
e
w

=
d
u
e
y

s
u
r
z
e
b
e
n

}
(++T

‘
y
3
b
u
e
7
-
s
e
u
r
z
e
b
e
w

>
T

{Q=T
3
U
T
)
I
0
F

{0
=

p
u
n
o
g
s
s
u
r
z
e
b
e
w

juT

}
esT®

{
!
(wu)ur3durad-3no-we3sis

f(,
&
3
d
w
e

sT
@
x
0
3
S
Y
O
O
Q

S
Y
L
,
)
u
r
3
z
u
t
a
d

3
n
o
-
u
w
e
l
s
i
s

!
(
u
u
)
u
r
a
u
t
a
d
-
3
n
o
-
w
e
l
s
i
s

}
(0

==
y
a
b
u
s
t

s
s
u
r
z
e
b
e
u
w
)
z
T

}
(
1
I
n
u

=

s
s
u
r
z
e
b
e
w
)
I
T

!
(
)
o
T
T
a
o
u
T
Z
R
b
R
R
p
P
E
S
x

=
s
o
u
r
z
e
b
e
u

!{1TTnu
=

s
o
u
t
z
e
b
e
w

[
]
s
u
r
t
z
e
b
e
y

}
(39bae3

j
u
t
)
a
d
y
s
T
I
q
n
d
z
o
T
R
U
T
W
I
S
T
O
L
S
S
U
T
Z
R
O
R
N
T
T
Y
I
N
d
3
N
O

PTOA
D
T
3
e
3
s

D
T
T
q
n
d

/%
bButizos

jnoylzTM
T
R
U
T
W
I
S
]

9y3x
03

‘
I
o
y
s
t
i
q
n
d

u
T
e
l
I
S
O

B
JO

4«
‘
s
z
o
g
s
y
o
o
g

oYz
ur

s
s
u
r
z
e
b
e
w

dyjz
Tre

s3indync
-

x
S
y
s
T
I
q
n
I
I
O
T
R
U
T
W
I
L
L
O
I
L
S
S
u
T
z
Z
R
D
E
R
T
T
Y
a
n
d
i
n
o

x

xx/

!
(
w
u
)
u
t
3
z
u
t
a
d
:

3
n
o
-
w
e
3
s
k
s

! (
,
"
®
a
0
3
s
)
y
0
0
q

9y3
utr

s
s
u
r
z
e
b
e
w

ou
axe

s
x
9
Y
L
,
)
u
T
i
u
r
a
d
-
j
n
o
-
w
e
l
s
i
g

!
(
w
w
)
u
T
3
u
r
a
d
-

a
n
o
-
w
e
3
s
k
s

}
sstT8

{

TTTH

22yl
B
u
t
a
a
s

L
z
o
a
e

‘Kem
sTYL

"yoes
S
I
9
3
0
B
I
B
U
D

GZ
»

3o
u
n
u
t
x
e
w

®
s
a
e
y

L
e
w

‘
(
'
D
3
8

‘
S
S
S
I
p
P
p
R

‘
S
W
R
U

X
9
)

S
T
T
R
I
S
P

S
N
O
T
I
E
A

x
®x03s

03
‘wexzboxd

sTyy
ur

pesn
s
B
u
r
a
l
s

oyl
e
y
l

uwsw
solAE

GZ
x

s
e
3
4
q

ut
‘
a
n
d
u
r

B
u
t
a
z
s

Aue
yo

y
z
b
u
s
t

oy3
s
j
u
s
s
s
a
d
e
x

S
E
I
A
Y

O
N
T
U
L
S

»

*
\

}
AVIOTTIIOYSTTANg

ssero
oriqnd

/a7
T
d
s
s
e
o
o
y
u
o
p
u
r
y

o
1

'
e
a
e
l

j
x
o
d
w
t

{
u
o
T
3
d
e
d
x
g
O
I

‘
o
1

"
e
a
r
l

j
x
0
d
u
t

A
V
I
S
T
T
A
X
B
Y
S
T
I
A
N
A
/
 / {

!
{ww)ut3zutad

q
n
o
-
w
e
y
s
i
s

! (
,
"
®
1
0
3
8
3
0
0
q

S
Y
3

UT
S
O
0

Ou
D
I
V

®
I
9
Y
L
,

)
u
T
a
u
t
a
d

3
n
o

‘
w
3

s
i
s

{
(
u
n
)
u
T
d
u
r
a
d

3
n
o
-
w
e
z
s
i
s

}
sste

{

{
{
(
u
-
7
9
y
s
t
i
q
n
d

S
T
Y
3

w
o
x
y

p
u
n
o
y

s
e
u
r
t
z
e
b
e
w

o
N
,
)
u
T
z
u
t
a
d
-
q
n
o
-
w
e
z
s
i
g

}
(0

==
p
u
n
o
g
s
s
u
t
z
e
b
e
u
)
g
T

!

(
u
u
)
u
T
a
u
t
a
d
-
a
n
o
-
u
w
e
j
s
i
s

!
(
y
=
=
=
=

==,
)
u
T
3
u
T
I
d

3
n
o

w
s
3
s
i
s

Y (
(
)
o
w
e
N
3
e
b

- a
s
y
s
T
I
q
n
d

+
,
i
¥
A
H
S
I
T
E
N
G
.
)
u
T
3
u
t
a
d
-
3
n
o

w
e
s
i
s

{
(
[
C
]
s
e
d
a
n
o
s
s
x

+ ,:
(
S
)
@
A
D
Y
N
O
S
E
Y
,

) u
T
a
u
t
a
d

3
n
o

w
e
j
s
i
s

(
(
{
u
n
)
s
T
E
N
D
S

" (Juwtay- [
(
]
s
e
o
a
n
o
s
e
a
)

{) 3T

}
(++C

‘
y
3
b
u
e
t
-
s
e
o
a
n
o
s
a
a
>
l

‘
o
=

j
u
r
)
z
o
z

!
()
s
e
o
a
n
o
s
s
y
T
R
U
O
T
}

T
P
P
Y
I
a
L

"
d
u
s
y

=
s
s
o
a
n
o
s
e
x

[
]
b
u
t
a
y
s

{
(
®
o
t
a
d

+
,:($)

E
O
I
N
G
.
)
u
T
a
u
t
a
d

j
n
o
-
w
e
a
s
k
g

{
(
s
e
b
e
d

+
,
:
5
@
A
9
V
A
.
)
u
T
3
u
T
I
d

3
n
0

w
e
y
s
i
s

{
(
9
T
3
T
3

+
.,

!FTLIL.)
U
T
I
U
T
I
d

3
0
0

w
e
3
s
i
s

}Aa3
!
[seTa3ugzoIoquUMuU]

ISYSTTqng
MOU

=
s
o
T
I
j
u
m
a
a
y
s
t
r
a
n
d

[
]
a
y
s
T
T
a
n
d

{SHIAE
Q
O
D
E
Y

/
S
Z
T
S
S
T
T
A
I
S
Y
S
T
T
A
n
d

=
SSTI3UuFFOISquNU

{
(
)
y
3
b
u
s
T

S
T
T
I
T
S
Y
S
T
I
A
N
A
S
O
Y
F

(JUT)
=

9
2
Z
T
S
O
T
T
I
I
L
Y
S
T
I
A
n
d

FuT
f(uMZ,

ENUYNETIA
YAHSITENG)

OTT.ISSOOOYWOPURY
MBU

=
S
T
T
A
I
S
Y
S
T
T
A
N
d
S
Y
3

}Kag

/0
=

S
O
T
I
3
U
I
I
O
I
S
q
U
A
U

JUT

{9TT4I0YSTIANGOYF
STTASSSOOYWOpUERY

}
(
)
e
T
T
a
a
s
y
s
T
I
q
n
a
p
e
a
x

[]zdysTIqngd
oT3e3ds

o
r
T
q
n
d

/x
a
T
T
a
x
e
y
s
t
T
I
a
n
d

®Yy3
IO

S3juULUO0D
BYR

TT®
Y
I
T
M

A
v
x
a
e

u
I
N
I
B
I
A
Y

x *

sotajue
zoystiqnd

Oyl
TTE

SPESI
-

STTAILUSTTANIDPEOX
4

wx/

!

I
V
¥
O
T
T
a
T
B
Y
S
T
T
A
N
d
,
,

=
E
W
Y
N
E
I
I
A

W
A
H
S
I
T
E
n
d

b
u
t
a
z
s

t
e
u
r
s

o
T
3
e
]
}
S
s

{
€
x
S
U
L
A
E

O
N
I
M
I
S

+
Z
x
S
H
I
A
L

I
N
I

=
S
H
I
A
E

Q
U
O
D
E
Y

I
U
T

T
R
U
T
F

o
T
3
e
3
s

/x
s
9
3
4
q

€8
=

GL
+

8
=

€
2
5
2

+
Ta¥

»

:dn
®ye3

pPTROM
STTF

UT
P
O
I
0
I
S

PIODBIT
oOoq

yoes
* * .1

(
2
3
1
s
g
e
n

‘
s
s
o
a
p
p
e

‘
s
w
e
u
)

s
b
u
r
i
l
s

€
x

(
o
u
o
y
d
e
t
e
n

‘PT)
S
A
U
T

¥
x * * ¥

:3o
dn

s
p
e
w

ST
p
x
o
d
a
x

e
y
s
t
r
a
n
d

®
O
D
U
T
S

"OTTF
®

UT
p
e
x
o
l
s

p
a
o
o
s
x

axoystiand
®

s
j
u
s
s
s
a
d
e
x

S
E
L
A
Y

Q
O
O

*
~

!y
=

SELAE
INI

3UT
TRUTI

DT3e3s
*oTT3

I
n
d
a
n
o

oY3l
UT

JUT
UR

BI03S
03

p
e
p
e
s
u

seldg
oy3

s
j
u
s
s
e
x
d
e
x

S
E
I
A
Y

INI//

‘
G
z

=
S
E
I
A
E

O
N
I
¥
L
S

I
U
T

T
e
u
T
y

O
I
3
E
3
s

/x
r
a
s
q
u
m
u

A
u
e

u
s
e
q

s
a
e
y

p
T
n
o
o

31
-
o
u
m
e
x
b
o
x
d

oy3z
Aq

p
e
p
r
o
e
p

ST
S
T
U
L

x
‘
1
1
3

3
n
d
a
n
o

syl
ur

s
8
3
4
q

gz
dn

e
y
e
y

T
T
I
m

w
e
x
b
o
a
d

s
T
Y
3

UT
pPesn

Bq
x

!
[SEIAE

O
N
I
N
I
S
]
®
3
&
q

mou
=

seikgesueu
[]e3dq

{()
3UIPES

" OTTITISYSTIANASYI
=

PT
IUT

! (
P
e
o
y
¥
o
r
A
a
3
u
s
)

3
O
S

ST TIISYSTTANASYF

{SEIAE
qQIODT

/
®zTSOTTAxsystTqnd

=
SoTIzUFOISQUNU

{()yabusT-oTTITPYSTTANG®Y3
(3UT)

=
SzTsOTTarsysTIqnd

JuT
£ (uMT,

' EWYNITIE
9
E
H
S
I
T
E
N
G
)

S
T
T
A
S
S
S
O
O
W
W
O
D
U
R
Y

MOU
=

S
T
T
A
I
S
Y
S
T
I
q
n
A
S
U
3

}&a3

{0
=

S
O
T
I
F
U
H
F
O
I
S
q
U
N
U

JUT

{
9
T
T
I
I
B
Y
S
T
T
A
N
I
S
Y
3

ST T
I
S
S
O
O
O
Y
U
O
p
U
R
Y

u
o
T
3
d
e
o
x
X
H
E
O
I

s
M
o
I
y
l

(
P
e
S
Y
o
r
A
I
j
u
s

J
U
T
)
p
P
I
O
O
S
Y
S
T
T
I
I
I
S
Y
S
T
T
A
N
I
P
e
s
I

I
S
U
S
I
T
A
n
g
d

O
T
I
B
3
S

o
fi
fi
n
a
w

o
T
T
d
r
o
y
s
T
I
q
n
d

®Yy3
w
o
x
y

p
e
s
x

o3
A
i
j
u
s

Fo
I
o
q
u
m
u

p
e
a
y
g
o
r
i
i
j
u
s

E
m
u
m
m
m
\
fl

@
x
0
3
8
)
0
0
q

oYz
w
o
x
y

A
x
j
u
s

a
e
y
s
T
I
g
n
d

B
S
p
E
S
l

-
P
I
O
O
D
Y
S
T
T
I
I
S
Y
S
T
T
I
N
I
P
E
R
S
I

H

.
xx/

{
T
T
N
U

u
I
n
3
l
a
x
 {

{
(
4
'
®
T
T
3

I
o
y
s
t
T
a
n
d

oy3
u
s
d
o

03
B
u
t
d
A
z
y

z
o
x
a
y
,
)
u
r
j
u
r
a
d
-
3
n
o
-
w
e
s
3
s
i
s

}
(o1

u
o
r
3
a
d
e
o
x
m
O
I
)

yo3zed
{

!
s
o
T
a
j
u
g
a
s
y
s
T
T
q
n
d

u
r
n
i
s
x

!
(
w
u
)
u
r
a
u
r
a
d
-
j
n
o
-
w
e
l
s
i
s

{
(4,

P
O
j
e
a
I
D

©q
30U

UBD
IO

I
S
T
X
®

JOU
S90p

OTTI
a
o
y
s
t
r
q
n
d

oYy,
)
u
r
z
u
t
a
d
-
3
n
o
-
w
e
i
s
i
s

!
(
w
u
)
u
T
z
u
t
a
d

3
n
o

- w
e
3
s
i
s

!
(
)
b
u
t
a
a
s
o
l
-
s

=
z
x
9

B
u
r
a
j
z
s

‘
p
e
3
e
s
I
0

o

30U
UBD

IO
I
S
T
X
S

J0U
S20p

I
T
T
I
I
S
Y
S
T
I
O
n
d
/
/

}
(®

u
o
t
r
a
y
d
e
o
x
m
)
y
o
j
e
o

{

{
!
(
p
e
2
Y
O
o
L
A
I
3
U
S
)

P
I
O
O
S
Y
S
T
T
I
I
Y
S
T
T
A
N
d
P
E
D
T

=
[
T
]
s
o
t
a
z
u
g
a
s
y
s
t
i
g
n
d

!
S
H
I
X
E

Q
Y
O
D
M
I
x
T

=
p
e
s
y
o
r
i
i
j
u
s

3
u
t

}
(++T

!
s
S
T
a
j
u
g
z
o
a
s
q
u
M
u
>
T

Q
=
T

J
U
T
)
I
O
J
F

sTTye3Ep
°y3

ybnoayy
doot//

!
o
n
a
3

u
a
n
i
s
x

! T
+
S
S
T
I
F
U
F
F
O
I
S
q
U
N
A
U

=
S
S
T
I
J
U
F
F
O
I
S
q
U
N
U

{
(
d

‘
9
3
T
a
I
M
O
L
A
I
3
U
d
)

P
I
O
D
S
Y
S
T

T
I
I
D
Y
S
T
T
A
N
I
D
O
F
T
I
M

{
S
H
I
A
E

Q
U
O
D
T
I
x
S
O
T
I
I
U
I
I
O
I
S
q
U
O
U

=
S
3
T
I
M
O
L
A
I
F
U
S

JUT 1}
&x3

{
S
E
I
X
E

Q
M
O
O
M
Y

/
e
z
T
S
e
T
T
d
a
e
y
s
T
I
g
n
d

=
S
O
T
I
J
U
F
F
Q
I
S
q
U
N
U

!
(
J
y
a
b
u
e
t
-
o
T
T
a
T
E
Y
S
T
I
A
N
G
S
Y
3

(IUT)
=

92ZTSSTTIxSYsTIAnd
JuT

{
(W43,

‘EWUNTTII
Y
E
H
S
I
T
H
A
J
)
O
T
T
I
S
S
O
O
O
Y
W
O
P
U
R
Y

MOU
=

OTTJIISYSTIANdsyus
1
&
g

{0
=

soTIjUAFOISqUMU
JUT

{9TTAISYSTTANASYF
ST TASSOOOYWopURy

(d
FoYSTIANd)

®
T
T
A
I
S
Y
S
T
T
A
R
G
O
L
S
F
T
I
M

UEBSTOOE
OT3IBIS

oflansw

K
x
q
u
e

z
e
o
y
s
t
r
a
n
d

m
e
u

®
d

E
m
n
m
m
w
\
H

‘o117
a
e
y
s
t
r
a
q
n
d

syl
o3

A
x
j
u
e

x
e
y
s
T
T
q
n
d

MeU
B

S
O
Y
T
I
M

-
B
T
T
I
I
S
Y
S
T
T
O
N
I
O
L
O
I
T
I
A

H

xx/ {
/{TInu

u
a
n
y
e
x

!
(
9
1
7
3

a
o
y
s
t
I
q
n
d

oy3z
u
e
d
o

o3
B
u
t
k
i
y

z
o
x
a
m
,
)
u
r
z
u
r
a
d
-
3
n
o

w
e
l
z
s
i
s

}
(ot

u
o
t
a
d
e
o
x
m
0
I
)

y
o
j
e
o

{
!
(
o
3
1
s
g
q
o
m

‘
s
u
o
y
d
e
T
e
]

‘
s
S
s
a
i
p
p
e

‘
s
w
e
u

’
‘
p
r
)
I
s
Y
s
S
T
I
q
n
d

M
U

U
I
N
I
D
I

!
(
s
e
3
h
g
e
3
T
s
g
e
m
)

b
u
t
a
l
s

m
s
u

=
9
3
T
s
q
g
e
m

b
u
t
i
a
s

¢
(
s
e
3
h
g
e
3
T
s
q
e
n
)

A
T
T
n
I
p
e
e
a

‘
T

T
I
I
S
Y
S
T
T
A
N
I
S
Y
S
F

!
[sEIxg

O
N
I
¥
I
S
]
®
3
4
&
q

mau
=

s
e
j
z
i
g
e
z
t
s
g
e
m

[]93hq

{
(
)
3
u
r
p
e
s
a

S
o
T
T
I
I
S
Y
S
T
I
A
N
g
a
Y
3

=
s
u
o
y
d
e
T
s
3

JuT

!
(
s
e
3
A
g
s
s
o
a
p
p
e
)

b
u
t
a
l
s

m
s
u

=
s
s
a
z
p
p
e

H
u
t
a
j
z
s

!
(
s
e
a
h
g
s
s
o
a
p
p
e
)

A
T
T
n
I
p
e
e
a

' OTTIISYSTIANASYTF
{
[SEIAE

O
N
I
¥
L
S
]
®
3
&
q

msu
=

se3hgsseappe
[]e3iq

!
(
s
e
3
h
g
s
w
e
u
)

b
u
t
a
i
l
s

m
e
u

=
s
w
e
u

B
u
T
t
a
z
s

!
(
s
e
3
A
g
o
u
r
e
u
)

A
T

T
n
I
p
e
s
a

' ST T
I
I
S
Y
S
T
T
A
N
I
D
U
D

}
(ot

u
o
r
3
d
e
o
x
m
O
I
)

yo3zed
{

!
8
n
I
]

u
I
n
l
s
x
 {

‘
(
[
T
]
s
e
t
a
3
u
s

‘
°
3
T
I
M
O
L
A
I
I
U
S
)
P
I
O
O
D
Y
S
T
T
I
T
I
Y
S
T
I
A
N
I
S
I

TIM
{SELAE

QUODTY»T
=

9
3
T
I
M
O
L
A
I
I
U
D

JuT
}

(++T
‘
y
a
b
u
e
T
’
s
e
r
a
j
u
e
>
T

/(=T
3IUT)IOF

!
{
y
a
b
u
e
T

' s
e
T
I
j
U
L

=
S
O
T
I
J
U
I
F
O
I
S
q
U
O
U

£ (0)
yabusT3es

 OTTATIBYSTIANADUF }
&x3

{SEIXE
QUODEM

/
9
z
T
S
O
T
T
I
I
o
U
s
T
I
q
n
d

=
S
O
T
I
F
U
F
F
O
I
S
Q
U
N
U

£
(
)
y
a
b
u
e
T

O
T
T
A
I
S
Y
S
T
T
I
A
N
I
S
U
3

(IUT)
=

S
z
T
S
e
T
T
d
I
d
y
s
T
I
q
n
d

JuT
!
(uMZ,

‘FWYNTTII
Y
E
H
S
I
T
E
N
G
)
O
T
T
I
S
S
S
O
O
Y
W
O
P
U
R
Y

MOU
=

S
T
T
I
I
S
Y
S
T
T
A
N
I
L
U
3

}Ax3

{0
=

S
O
T
I
U
I
I
O
I
S
q
U
N
U

JUT

{eTTaIOYSTINdOY]
OTTASSSOOYWOPUERY

}
(
s
e
T
a
j
u
e

[
]
a
9
Y
S
T
I
A
N
d
)

O
T
T
A
I
O
Y
S
T
I
I
N
I
O
I
S
I
T
I
M
S
I

UBRSTOOH
O
T
3
e
3
s

O
T
T
a
n
d

/%
T
N
I
S
S
D
O
D
N
S

S
e
M

B
Y
T
I
M

B
Y
J

I
S
Y
I
O
Y
M

u
I
n
i
s
x
p

x

o
T
T
a
x
a
y
s
t
T
T
a
n
d

By3l
03

S
I
T
I
M

O3
S
O
T
I
J
U
S

s
a
t
a
j
u
s

w
e
x
e
d
p

i *
°
x
0
3
8
3
0
0
q

@Yy
03

S
V
T
I
U
S

I
o
Y
S
T
T
A
R
d

S
O
I
T
I
M
-
B
I

-
S
I
T
I
I
S
Y
S
T
I
A
N
I
O
L
S
I
T
I
M
D
I

x

*x/ {
{ITNU

uIN3yLOI

! (
,
o
1
T
3

x
o
y
s
t
T
q
n
d

°yz
u
s
d
o

o3
B
u
t
d
k
i
z

z
o
z
x
m
,
)
u
r
z
u
t
a
d
-
i
n
o
-
w
e
l
s
i
s

}
(ot

u
o
t
3
z
d
e
o
x
m
O
I
)

yo3zeo
{

{
/9sTeF

u
I
N
3
a
I

{
(
,
o
T
T
F

aoystIqnd
®y3

o3
Duritam

oTTym
x
0
x
a
d
,
)
u
r
i
z
u
r
a
d
-
3
n
o
-
u
e
l
s
i
s

}
(ot

u
o
r
3
a
d
e
o
x
m
O
I
)

yojed
{

!
(
s
s
a
a
p
p
e
)

2
9
3
I
n
g
b
u
T
I
I
S

M
O
U

=
S
S
O
I
P
P
Y
I
Q
S

a
o
z
I
n
g
b
u
T
r
i
z
s

!
()
s
s
e
a
p
p
y
a
e
b
-
L
1
j
u
s

=
s
s
e
a
p
p
e

b
B
u
t
a
a
s

! (
)
b
u
t
a
y
s
o
l

-
s
u
r
e
N
3
q
s

=
sureu {

S
{(u

u
)
p
u
a
d
d
e
-
s
u
e
N
3
i
g
s

}
(sEIx€

ONTHIS
> ()

u3buet-swrenaqs)eTTym

!
(sureu)

z
e
z
y
n
g
b
u
t
a
l
s

m
o
u

=
s
w
e
N
l
q
s

z
e
z
F
n
g
b
u
t
i
i
s

!
()
s
w
r
e
N
3
®
b

- A
z
q
u
s

=
s
w
e
u

b
u
t
a
j
s

!
(
)
p
1
3
®
b
-
L
a
j
u
s

=
pt

jJuT

{SALAE
Q
O
D
E
Y

/
©
z
T
S
S
T
T
A
I
o
u
s
T
T
A
n
d

=
S
O
T
I
I
U
E
I
O
I
S
q
U
A
U

£
()y3bUST

S
T
T
A
I
S
Y
S
T
I
A
N
A
S
Y

(IUT)
=

o
z
T
g
O
T
T
A
T
o
Y
s
T
I
q
n
d

JuUT
f(WnT,

E
W
Y
N
I
T
I
S

YHHSITENG)
©
T
T
I
S
S
O
O
D
Y
W
O
P
U
R
Y

MSU
=

STTITISYSTTANISU3
}&aq

{0
=

S
9
®
T
I
U
I
O
I
S
q
U
N
U

JUT

{
S
T
T
I
I
Y
S
T
T
A
N
G
S
Y
]

S
T
T
I
S
S
O
O
O
Y
W
o
p
U
R
y

}
u
o
t
3
d
e
d
x
m
O
I

s
m
o
a
y
l

(
A
z
j
u
s

z
e
y
s
T
T
q
n
g

‘
e
3
T
a
m
o
r
i
r
j
u
s

JUT)
P
I
O
D
S
Y
S
T
T
I
I
S
Y
S
T
T
A
N
I
S
I
T
I
M

P
T
O
A

D
T
3
E
3
s

O
T
T
q
n
d

/%
a
r
T
a
z
s
y
s
t
i
a
n
d

eyl
o3

83rtam
o3

A
x
j
u
e

K
a
j
u
e

w
e
x
e
d
p

o
r
r
g
I
a
y
s
T
I
a
n
d

sy3
o3

®3Tam
o3

A
x
j
u
s

o

z
e
q
u
m
u

e
3
T
a
m
o
r
l
i
j
u
s

w
e
x
e
d
y

*
2
1
0
3
8
3
0
0
q

oYy
03

A
z
j
u
s

a
v
y
s
T
T
A
n
d

B
S
O
I
T
I
M

-
P
I
O
D
S
U
S
T
T
A
I
B
Y
U
S
T
T
N
I
S
I
T
I
M

4

*
*
\
 {

{TInu
u
x
n
j
e
x
 {

{
(
u
'
o
1
T
F

a
o
y
s
t
T
q
n
d

°y3z
u
s
d
o

o3
B
u
r
t
h
a
z

z
o
z
x
x
,
)
u
r
z
u
t
a
d
-
z
n
o
-
w
e
z
s
i
s

}
(ot

u
o
t
3
d
e
o
x
m
o
I
)

yozeEo
{

{
!{®sTeI

uIn3laIx

*oTT3F
z
9
y
s
t
I
a
n
d

oy3
o3

B
u
r
i
T
a
m

S
T
T
Y
M

x
0
x
x
d
™
,
)
u
r
j
u
t
a
d

3
n
o

w
e
i
s
i
g

}
(+47

‘yabuer'saeystTand>T
!0=T

3UT)IOF

{
1
1
n
u

=
d

a
s
y
s
T
I
q
n
d

! (
)
o
T
T
A
T
B
U
S
T
I
O
N
g
P
E
D
T

=
saaysTIand

{rrnu
=

s
a
e
y
s
t
i
a
n
d

[
]
a
s
y
s
T
I
q
n
d

}

(PT
3UT)

I
Y
3
I
T
M
I
S
Y
S
T
T
I
N
p
P
e
®
T

ISYSTTAnd
OTIB3Is

OTTqnd
/x

pt
aoustrand

syz
 pr

weaedy
i »

*pt
oryToeds

'
yats

aeyustrqud
9yl

sUANISIT
-

AIYI
T
M
I
S
U
S
T
I
A
D
I
P
E
S
T

4
2x/ {

/(.
o
1
1
3

F
e
y
s
t
i
a
n
d

oy3z
u
e
d
o

o3
B
u
t
k
x
j
y

x
o
0
x
x
d
,
)
u
T
z
u
t
a
d
-

3
n
o
-
w
e
l
s
i
s

}
(ot

u
o
t
3
a
d
e
o
x
m
O
I
)

yo3zeo
{

{
(
(
)
s
o
3
A
g
3
e
b

@3 TSgeM)
@3 TaM

" ST T
I
I
S
Y
S
T
T
A
N
G
O
Y
F

!
(
e
u
o
y
d
e
T
e
3
)

J
U
I
S
F
 TIM

S
T

T
I
I
S
Y
S
T
T
A
N
I
S
Y
F

! (()
s
e
3
A
g
3
e
b
’

s
s
o
a
p
p
R
)

83
TIM

S
T

T
I
I
S
Y
S
T
T
A
N
d
S
Y
3

£ (()
se3hgyeb

 sureu)
93

TaM
S
T
T
I
I
S
Y
S
T
T
A
N
G
S
Y
T

{
(
P
T
)
3
U
I
S
I
T
I
M

" S
T
T
I
I
S
Y
S
T
T
A
N
I
S
Y
F

!
(93 T

I
M
O
L
A
T
I
U
S
)

Y
O
O

" O
T
T
I
I
D
Y
S
T
T
A
N
G
S
U
F

!
(
)
b
u
t
a
z
s
o
l

- e
3
T
S
g
e
M
I
A
s

=
S
3
T
S
A
S
M
 {

0
!(n

u
)
p
u
s
d
d
e
-
o
3
l
T
s
g
e
M
i
q
s

}
(SEIXE

D
N
I
¥
I
S

>
(
)
y
a
b
u
e
T

e
3
T
s
g
e
m
a
q
s
)
o
T
T
u
M

!
(93

T
s
q
e
m
)

2
9
7
3
n
g
b
u
U
T
I
3
S

M
O
U

=
9
3
T
S
q
e
O
M
3
d
s

I
o
F
g
y
n
g
b
u
t
a
y
s

{
(
)
o
3
T
s
g
e
s
m
3
i
e
b
-
A
x
j
u
s

=
o
3
T
s
q
g
e
m

B
u
t
a
z
s

!
(
)
s
u
o
y
d
e
t
T
a
r
i
e
b
-
A
a
z
u
s

=
s
u
o
y
d
e
r
s
l

jur

! (
)
P
u
t
a
3
5
0
3

" S
S
O
I
P
P
Y
I
J
S

=
S
S
I
I
P
P
E
R

He
(
.

u
)
p
u
s
d
d
e
-
s
s
e
a
p
p
y
i
d
s

}
(SEIxg

ONINLIS
>

()y3zbueT
s
s
o
i
p
p
y
a
q
s
)
S
T
T
u
s

g
)
J
u
T
j
u
t
a
d
-
3
n
o
-
w
e
3
l
s
i
s

!
(
u
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

w
)
u
T
3
u
t
a
d
-
3
n
o
-
w
e
3
s
i
s

/(93
T
S
g
e
M

+
,
:
9
3
T
s
g
e
M
,
)
u
T
i
u
t
a
d

3
n
o

w
s
3
l
s
i
s

!
(
s
u
o
y
d
s
t
1
9
3

+
,
:
v
u
o
y
d
e
t
e
r
,
)
u
r
i
u
t
a
d
:
i
n
o
-
w
e
i
s
i
s

!
(
s
s
o
a
p
p
e

+
,
:
S
S
°
I
p
P
p
P
V
¥
,
)
u
r
i
u
t
a
d
-
i
n
o
-
w
a
3
s
i
s

!
(sureu

4
, :
s
w
e
p
N
,
)
u
r
3
z
u
t
a
d
-
3
n
o
-
w
e
3
l
s
i
s

{(PT
+

.
:
a
I
.
)
u
r
3
r
u
t
a
d

3
n
o
-
w
e
3
s
i
s

G
l

=
=
=
,

)
U
T
3
u
T
a
d

3
n
o

- w
a
3
l
s
i
s

!

(
u
u
)
u
r
z
u
r
a
d
-
a
n
o

- w
e
3
s
i
s

!
(
)
o
3
T
s
g
o
m
M
a
s
b
-
d
w
e
y

=
9
3
T
s
g
a
M

B
u
t
a
a
s

!
(
)
s
u
o
y
d
s
T
a
r
3
a
b
-
d
u
e
y

=
s
u
o
y
d
e
t
s
3

j
u
r

!
()

s
s
o
a
p
p
v
y
a
e
b

-
d
w
s
l

=
s
s
a
i
p
p
e

b
u
t
i
z
s

!
()

s
u
r
e
N
3
o
b

d
w
e
y

=
s
w
e
u

b
B
u
t
a
z
s

{
(
)
p
r
y
e
b
-
d
w
e
y

=
pt

3uT

!
[
1
]
l
s
a
s
y
s
t
i
g
n
d

=
d
w
e
y

x
9
y
s
S
T
I
A
N
g

}
(++T

‘y3buer- s
a
z
s
y
s
t
i
q
n
d

>
T

/Q=T
3
U
T
)
I
0
F

}
(TTnu

=
s
a
s
y
s
t
r
a
n
d
)
I
T

{()°TTaI9YSTIANgpPeax
=

sasystrqnd
{TInu

=
sasystidand

[laeystIqng
}

()
T
R
U
T
W
I
S
L
O
L
S
I
S
Y
S
T
T
A
N

T
T
¥
I
n
d
3
n
o

pToa
doT13®3s

O
T
T
q
n
d

/% *

H
U
T
I
X
O
S

J
N
O
Y
J
I
T
M

T
R
U
T
W
I
D
Y

x

ey3
o3

s
a
s
y
s
t
i
q
n
d

oyz
TTe

s
a
n
d
i
n
e

-
T
R
U
T
W
I
S
D
I
O
L
S
I
S
Y
S
T
T
A
N
I
T
I
V
I
N
d
I
N
O

&

xx/ {
!d

u
a
n
z
e
x

!
[
t
]
s
a
o
y
s
t
i
a
n
d

=
d

uxngysx

}
(PT

==
()pI3eh’

[
T
]
s
a
s
y
s
T
T
q
n
d
)

IT

!
(
w
u
)
u
r
T
3
u
t
a
d

3no
- w
e
3
s
i
s

!
(
y
m
=
=
=
=
=
m
=
=
=
=
—
c
—
—
c
=
=
s
s
e
—

1)
u
T
3
u
T
a
d

q
n
o

w
e
a
s
i
s
 {

{(oweu
+

,IEAWN
‘u

+
PT

+
,:QI,)ur3utid-jno-we3sis

{
(
)
®
o
3
r
s
q
e
m
a
r
e
b
-
d
w
e
y

=
e
3
T
s
q
g
e
m

B
u
t
a
g
s

! (
)
o
u
o
y
d
e
T
o
r
i
o
b

-
d
w
e
y

=
s
u
o
y
d
e
T
e
l
z

jut
! ()

s
s
e
a
p
p
y
a
s
b
-
d
w
e
y

=
s
s
e
a
p
p
e

H
u
t
a
l
g

!
(
)
s
u
w
e
N
3
o
b

d
w
e
y

=
s
w
e
u

HBurazsg

! (
)
p
r
3
e
b
-
d
u
e
y

=
pT

FUT

!
[
T
]
s
a
s
y
s
T
t
T
q
n
d

=
d
w
e
y

a
s
y
s
T
T
A
n
N
g

}
(44T

‘
y
a
b
u
s
T
'
s
a
e
y
s
t
r
a
n
d

>
T

/
=
T

IJUT)I0F

£

w
)
u
T
3
u
T
a
d
-
3
n
o
-
w
e
y
s
i
s

! (
u
:
s
z
o
y
s
T
I
q
n
d

S
T
q
e
T
T
R
A
Y
,
)
U
u
T
3
u
T
a
d

3
n
0

w
e
l
s
i
s

!
(
w
u
)
u
t
j
u
t
a
d
-
3
n
o

w
e
3
s
i
s

}
®ste

{
{
(
w
u
)
u
T
3
z
u
t
a
d
-
3
n
o

w
e
3
s
h
s

!
(-

s
a
s
y
s
t
T
q
n
d

ou
oxe

°
Y
L
,
)
u
r
j
u
t
r
a
d
-
j
n
o

w
s
i
s
i
s

!
(
w
u
)
u
r
z
u
r
a
d
-
3
n
o
-
w
e
3
s
i
s

}
(0

==
y3buet-sasystrqnd)3IT

}
(T1nu

=i
s
a
s
y
s
t
i
g
n
d
)
z
T

{
(
)
e
T
T
a
T
v
Y
S
T
I
I
N
I
P
E
D
I

=
savystTand

‘110U
=

sxeystiqnd
[]roysTIqng

}
()
T
e
U
T
W
I
S
L
O
L
S
O
W
E
N
S
Q
I
S
I
D
Y
S
T
T
I
N
A
T
T
Y
I
N
d
I
N
o

proa
ot3e3s

orrqnd
/% *

H
u
T
l
a
I
0
S

I
N
O
Y
I
T
M

T
R
U
T
W
I
D
]

D
Y

OF

s
s
u
e
u

p
u
r

g

,
s
a
s
y
s
t
t
a
n
d

°8y3
T
R

s
i
n
d
j
n
o

-
T
e
U
T
W
I
S
L
O
L
S
O
W
R
N
S
Q
I
S
I
D
Y
S
T
T
A
N
I
T
I
Y
I
n
d
a
n
o
 e/ {

!
(
w
n
)
u
T
3
u
T
a
d
-

3
n
o

- w
e
3
s
i
s

(
4
7
9
7
0
3
5
3
0
0
9

SY3
UT

S
O
0

Ou
BAB

VIVYT,
) U
T
I
U
T
I
A

N0
wEIsAs

!
(
w
u
)
u
T
3
u
r
a
d
-

3
n
o
-
w
e
i
s
i
s

}
e
s
t
e

{

e
£
(wu)ut3autad-3no-we3sis

(
,
"
®
1
0
3
5
3
0
0
q

Y
3

UT
SY00q

OU
BIB

B
I
9
Y
L
,
)
u
r
3
u
r
a
d
-
3
I
n
o

w
e
z
s
i
s

!
(
w
u
)
u
T
a
u
t
a
d
-
 3
n
o
-
w
e
z
s
i
s

}
ss1®

{

Chapter References

1. International Baccalaureate Organization. (2012). IBDP Computer Science Guide.

Recursion (computer science). (27, May 2016). In Wikipedia, The Free Encyclopedia.

Retrieved 13:39, June 3, 2016,

https://en.wikipedia.org/wiki/Recursion_(computer_science)

3. Peter Smith. An iterative solution to Towers of Hanoi. Course Comp 151, California

State University Northridge, September 2002. Retrieved 22:20, June 5, 2016,

http://www.csun.edu/~psmith/151handouts/hanoi3out.pdf

4. Dimitriou K. Hatzitaskos M. (2015). Core Computer Science for the IB Diploma

Program. Athens: Express Publishing. More information at:

https://www.expresspublishing.co.uk/gr/en/content/core-computer-science-ib-

diploma-program

5. Class ArrayList. In Java Documentation. Retrieved 19:00, July 8, 2016,

https://docs.oracle.com/javase/8/docs/api/java/util/ArrayList.html

6. Class LinkedList. In Java Documentation. Retrieved 19:00, July 8, 2016,

https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

7. Robert L. Glass. Facts and Fallacies of Software Engineering, Addison Wesley (2003)

8. Indent style. (16, July 2016). In Wikipedia, The Free Encyclopedia. Retrieved 15:05,

July 20, 2016, from https://en.wikipedia.org/wiki/Indent_style

9. Characters per line. (7, July 2016). In Wikipedia, The Free Encyclopedia. Retrieved

15:10, July 20, 2016, from https://en.wikipedia.org/wiki/Characters_per_line

Appendix A

(70}
4] = v - o]
) v

~ o

I L 7 |

- ¢

s (@]
P LLl
o 2 =8

Appendix A — Stacks & Queues

:g
o
s
e
d

{
y
e
s
a
q

!
(
)
d
o
d

3
p
e
3
s

1Z
o
s
e
o

{
y
e
s
a
q

!
(
q
u
s
w
e
T
a
)

y
s
n
d
-
j
y
o
e
3
s

f
(
)
3
u
r
z
x
s
u
-
3
n
d
u
r

=
J
U
S
W
S
T
S

JUT

{(,
:
3
j
u
s
w
e
T
®

x
o
j
u
d
,
)
3
u
t
x
d

i
n
o
-
 w
e
l
s
i
s

:T
o
s
e
o

}
(
u
o
T
3
o
®
T
S
s
)

U
O
I
T
M
S

!
(
y
u
r
a
u
t
a
d
-
a
n
o

w
e
l
s
i
s

! (
)
3
u
r
a
x
s
u
-
3
a
n
d
u
t

=
U
O
T
I
P
D
T
S
S

J
U
T

{(,
t
u
o
t
z
o
e
T
e
s

a
e
s
n
,
)
3
u
t
a
d
-
3
n
o
-
w
e
l
s
i
s

{
(
,
3
T
X
E

- p
,
)
u
T
3
u
t
a
d
-
3
n
o

w
e
3
s
i
s

!
(
,
3
0
o
e
3
S

{
Y
3

FO
s
S
j
u
s
w
W
S
T
®

ISY3J
J
U
T
I
g

.
m
=
v
n
fl
u
=
fi
u
m
.
u
=
o
.
5
0
u
w
h
m

!
(
,
y
o
e
3
s

w
o
x
y

j
u
s
w
e
T
e
®

dod
*
z
u
)
u
r
a
u
t
a
d
-
3
j
n
o

- we3sisg

:
(
,
j
o
e
3
s

03
j
u
s
w
e
l
e

y
s
n
g

‘
T
,
)
u
r
i
u
r
a
d
-
3
n
o

w
s
l
s
i
s

! (
,
:
s
u
o
t
a
d
o

B
u
t
m
o
T
T
o
F

9yl
Jo

Suo
3
0
9
7
1
9
8
,

)
u
T
3
u
t
a
d

3
n
o

w
e
3
s
i
s
g

}
(esTR3F

==
3TX9)

S
T
T
Y
M

¢
(
y
w
e
z
b
o
a
d

u
v
o
r
z
e
r
n
d
r
u
e
w

y
o
e
3
s
,
)
u
r
z
u
r
i
d

j
n
o
-
 w
e
l
s
i
s

{
(ut

w
e
3
s
k
g
)

a
s
u
u
e
d
g

msu
=

j
n
d
u
t

I
S
U
U
E
D
S

/
(
)
y
o
e
3
s

M
B
U

=
3
O
B
R
S

Y
O
e
3
§

!
@
s
T
e

=
3ITX9

u
e
L
T
0
0
q

}
(
s
b
a
e

[
]
B
u
t
a
z
s
)
u
r
t
e
w

p
r
o
a

o
r
3
e
3
s

o
I
T
q
n
d

}
u
t
e
y

s
s
e
f
o

o
r
r
q
n
d

!
z
o
u
u
e
n
s

T
3
0

e
A
a
R
l

j
z
0
d
W
T

STTF
I
s
A
T
I
/
/

ssep
3 s

t
r
A
e
x
a
y

oy

Sursn
u
o
n
e
j
u
s
w
a
y
d
u
w
y

yoeis

Ty

piisy

 ! (z9qunu

+
,

:
p
s
a
s
o
w
s
x

J
u
s
w
e
T
H
,

)
u
r
3
u
r
a
d
-
n
o

‘
w
e
g
s
k
s

(
T

-
(
)
®
z
T
s

y
o
e
3
g
)

d
A
c
w
e
x

- y
o
e
a
s

‘(T
-

(
)
e
z
T
s
'
3
y
o
e
3
s
)
3
s
h

y
o
e
z
g

=
a
e
q
u
m
u

JuT

}
este

{
! (u

&
3
d
w
s

st
3
o
E
3
S

®
Y
L
,
)
u
r
3
u
t
r
a
d
-
3
n
o

- w
e
3
s
i
g

b
(()

A
3
d
w
m
s
t
-
3
o
e
3
s
)

3T
}

()dod
ptoa

or1qnd {
!
(
z
9
q
u
i
n
u
)

p
p
e

* y
o
e
3
s

}
(
z
o
q
u
m
u

j
u
t
)
y
s
n
d

p
r
o
a

o
t
T
g
n
d
 {

‘
(
)
3
a
s
T
1
d
R
I
a
Y

M
U

=
3jDE3g

}
()xoe3s

orignd

{
y
o
e
3
s

<
a
e
b
e
o
j
u
r
d
j
s
r
i
i
e
s
s
y

o
3
e
a
t
a
d

}
3
o
e
3
s

s
s
e
r
o

o
r
r
g
n
d

{
3
s
T
T
h
e
a
a
y

T
T
3
n

e
A
R
L

Jaxodurt
S
T
T
3

p
u
o
d
e
s
g
/
/

{

{
!
(
)
u
t
3
u
t
a
d
-
3
n
o
-
w
e
y
s
i
s
 {

!{yesaq
{
e
n
a
3

=
3TxX®

iy
o
s
e
o

‘
y
e
s
a
q

!
()
s
a
u
s
w
e
T
m
i
u
t
a
d
:

y
o
e
q
s

{(,
i
u
o
t
j
z
o
e
r
e
s

a
e
s
n
,
)
3
u
r
t
a
d
-
3
n
o

w
e
y
s
i
s
g

{
(
w
3
T
X
E

"
p
,
)
u
r
3
u
r
a
d
-
3
n
o
-
w
e
l
s
i
g

!
(
,
y
0
e
3
s

°y3z
FO

S
J
U
L
W
S
T
®

°Y3
J
U
T
I
I

°
€
,
)
u
T
i
z
u
t
x
d
-
i
n
o

w
e
l
z
s
i
s

!
(
,
o
e
3
s

w
o
x
z

j
u
s
u
e
r
e

dog
‘
g
,
)
u
r
i
u
r
a
d
-
i
n
o
-
w
e
i
l
s
i
s

{
(
,
3
0
o
e
3
S
s

03
j
J
u
s
W
S
T
S

y
s
n
d

°
T
.
,
)
u
r
a
u
t
a
d
-
i
n
o
-
w
s
y
s
i
s

! (
,
:
s
u
o
t
g
d
o

B
U
T
M
O
T
T
O
F

®Yyj
JO

suo
3
0
9
1
9
8
S
,
)
u
r
3
z
u
t
a
d
-
3
n
o
-
w
e
l
s
i
s

}
(
®
s
T
e
F

==
3
T
X
°
)

S
T
T
Y
M

!
(
,
w
e
x
b
o
x
d

u
o
t
j
e
r
n
d
r
u
e
w

y
o
e
3
s
,
)
u
r
i
u
t
a
d
-
3
i
n
o

w
e
l
s
i
s

!
(ut

‘
w
e
3
s
A
g
)

a
I
o
u
u
e
n
s

m
o
u

=
3
n
d
u
T
l

I
B
U
U
R
D
S

! (
)
3
o
e
3
s

mMau
=

3ydOe3ls
y
o
e
l
z
s

!
a
s
T
e

=
3
T
X
S

u
E
S
T
O
O
q

}
(sbae

[
]
B
u
t
a
z
s
)
u
r
e
w

proa
o
T
3
e
3
s

o
T
I
q
n
d

}
u
t
e
l

s
s
e
r
o

o
r
r
q
n
d

!
z
9
u
u
e
n
g

' T
T
3
n

B
A
R
L

j
x
O
o
d
W
T

oTT3
3saTa//

sse[d
3
s
T
I
h
A
e
a
x
y

oy}

Suisn
u
o
n
e
l
u
s
w
a
j
d
w
i

a
n
a
n
d

z'v

! (
(
1
)
3
9
5

y
o
e
3
s
)
u
r
j
u
t
a
d

3
n
o

- w
e
i
s
i
s

}
(--T

{0
=<

T
{1

-
()®zTs'3Pe3S

=
T

JuT)
I0F

}
es1°

{
! (
.

&K3due
sT

3pe3Ss
°
8
Y
y
L
,
)
u
r
3
z
u
r
a
d
-
i
n
o
-
w
e
l
s
k
s

}
(
(
)
A
3
d
u
r
g
s
T

- 3yoe3s)
3IT

}
()s3uswermiurad

proa
orTqnd

{
(
z
e
q
u
m
u
)

ppe
* j
o
e
3
s

}
(
a
s
q
u
m
n
u

3
u
t
)
y
s
n
d

p
t
o
a

o
r
t
T
q
n
d

{
(
)
3
a
s
T
t
I
A
R
I
I
Y

M
S
U

=
3}OEB3S

}
()yoeas

o
r
i
q
n
d

!
y
o
e
3
s

<
a
e
b
e
j
u
r
>
3
y
s
t
r
l
e
a
a
y

o
j
e
a
t
a
d

}
3
o
e
3
s

s
s
e
o

o
r
r
a
n
d

‘
{
a
s
t
7
h
e
a
a
y

1
1
3
0

B
A
R
L

310dWIT

@
T
T
F

p
u
o
d
e
g
/
/

!
(
)
u
r
3
u
t
a
d
-
3
n
o
-
w
e
3
s
i
g

!
y
e
s
a
q

!
e
n
a
3

=
3
T
X
®

iy
o
s
e
d

{
y
e
s
a
q

! ()
s
j
u
s
w
e
T
m
a
u
t
a
d
-
y
o
e
3
s

1g
o
s
e
n

!
y
e
s
x
q

!
(
)
d
o
d

- 3yoeas

1z
o
s
e
o

!
y
e
s
a
q

!
(
3
u
s
w
a
T
a
)

y
s
n
d

-
j
y
o
e
3
s

{
(
)
3
u
r
3
x
s
u
-
j
n
d
u
r

=
J
u
U
s
S
W
S
S

JUT

{(,
:
3
j
u
s
w
e
T
®

x
9
3
u
g
,
)
3
u
t
a
d
-
3
n
o
-
u
w
e
l
s
k
s
g

11
o
s
e
d

}
(uoT3oSTSs)

uyo3TAS

!
(
Y
u
r
a
u
t
a
d
-
3
n
o

w
a
3
s
i
s

!
(
)
3
u
r
3
z
x
e
o
u
-

3
n
d
u
T
r

=
U
O
T
3
O
S
T
O
S

J
U
T

£
((1)3°6

y
o
e
3
s
)

u
T
a
u
t
a
d
-
3
n
o

uwe3sis

}
(
=
T

{0
=<

T
‘T

-
(
)
°
z
T
s
'
3
0
®
3
S

=
T

3JUT)
IOF

}
es1®

{
:(,

K
y
d
u
e

st
d
o
e
3
s

o
y
m
,
)
u
r
i
u
t
a
d
:
3
n
o
-
w
e
l
s
i
s

}
(
(
)
A
3
d
w
g
s
t
-
y
o
e
3
s
)

IT
}

()
s
j
u
s
w
s
T
m
i
u
t
a
d

p
r
o
a

o
1
T
q
n
d
 {

{
(
z
o
q
u
m
u

+
4,

"
v
w
>
o
E
w
u
«
u
n
m
E
m
H
m
=
v
:
a
u
a
fl
u
m
.
u
s
o
.
fi
w
u
m
h
w

(
T

-
(
)
°
o
z
T
s

' 3
j
o
e
]
l
s
)
S
A
o
W
S
I

}
Y
O
e
l
s

‘(T
-

(
)
o
z
T
s
'
3
y
o
e
3
i
g
)
3
e
b

y
o
e
l
s

=
I
s
q
u
m
u

JUT
}

es1°
{

:
(
,
-
K
3
d
w
s

sT
y
o
e
3
s

e
y
L
,
)
u
r
i
u
r
a
d
-
3
n
o

w
e
l
s
i
s

}
(()A3dugst

yoelis)
3IT

}
()dod

ptoa
oTTqnd {

