ADVANCED COMPUTER

SCIENCE

g hi # P <. For the IB Diploma
G ¢ . A ; y Program

(International
T Baccalaureate)

%

-h.. 8
$ HPEH LEVEL COMPLITER SCIENCE

|.r
P = : . I-..

.
e

|
KOSTAS DIMITRIOU Phd & MARKOS HATZITASKOS wmsc |
I ' [«F.EI!Z X
- =
\:‘1‘:“:—1 b4
R
=

ADVANCED COMPUTER
1ENCE

(International
Baccalaureate)

KOSTAS DIMITRIOU Phd & MARKOS HATZITASKOS wmsec

Program

(International
Baccalaureate)

" HIGH LEVEL COMPUTER SCIEN

Published by Express Publishing

Liberty House, Greenham Business Park, Newbury,
Berkshire RG19 6HW, United Kingdom

Tel.: (0044) 1635 817 363

Fax: (0044) 1635 817 463

email: inquiries@expresspublishing.co.uk
www.expresspublishing.co.uk

© Express Publishing, 2016
Design and lllustration © Express Publishing, 2016

First published 2016
Made in EU ;

Al rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted in any form, or by any means, electronic, photocopying, or otherwise, without the prior
written permission of the publishers.

This book is not meant to be changed in any way.

ISBN 978-1-4715-5233-5

Copyright page

List of licensed IB material used:

DP Computer Science Guide (first exams 2014):

Topic 5—Abstract data structures

5.1 Abstract data structures

Thinking recursively

5.1.1 Identify a situation that requires the use of recursive thinking.

3.1.2 Identify recursive thinking in a specified problem solution.

5.1.3 Trace a recursive algorithm to express a solution to a problem.
Abstract data structures

5.1.4 Describe the characteristics of a two-dimensional array.

5.1.5 Construct algorithms using two-dimensional arrays.

5.1.6 Describe the characteristics and applications of a stack.

5.1.7 Construct algorithms using the access methods of a stack.

5.1.8 Describe the characteristics and applications of a queue,

5.1.9 Construct algorithms using the access methods of a queue.

5.1.10 Explain the use of arrays as static stacks and queues.

Linked lists

Linked lists will be examined at the level of diagrams and descriptions. Students are not expected to construct
Inked list algorithms using pseudocode.

3.1.11 Describe the features and characteristics of a dynamic data structure.
5.1.12 Describe how linked lists operate logically.

5.1.13 Sketch linked lists (single, double and circular).

Trees

Zinary trees will be examined at the level of diagrams and descriptions. Students are not expected to construct
r=e algorithms using pseudocode. Tracing and constructing algorithms are not expected.
5.7.14 Describe how trees operate logically (both binary and non-hinary).
5.1.15 Define the terms: parent, left-child, right-child, subtree, root and leaf.
_7.16 State the result of inorder, postorder and preorder tree traversal.
1.17 Sketch binary trees.

Applications

_7.18 Define the term dynamic data structure.

.7.18 Compare the use of static and dynamic data structures.

.20 Suggest a suitable structure for a given situation.

oW o

W

Topic 6—Resource management
£.1 Resource management

System resources

7.7 Identify the resources that need to be managed within a computer system.

7 2 Evaluate the resources available in a variety of computer systems.

7 = Identify the limitations of a range of resources in a specified computer system.

=7 £ Describe the possible problems resulting from the limitations in the resources in a computer system.
Sole of the operating system \

2.7 .5 Explain the role of the operating system in terms of managing memory, peripherals and hardware
mo=rfaces.

=7 7 Outline OS resource management techniques: scheduling, policies, multitasking, virtual memaory, paging,
me=mrupt, polling.

=7 2 Discuss the advantages of producing a dedicated operating system for a device.

=7 2 Outline how an operating system hides the complexity of the hardware from users and applications.

th ih

L)

Topic 7—Control

7.1 Control

Centralized control systems

7 7 7 Discuss a range of control systems.

7 2 Outline the uses of microprocessors and sensor input in control systems.

~ 7 = tvaluate different input devices for the collection of data in specified situations.

7 7 £ =xplain the relationship between a sensor, the processor and an output transducer.

7.1.5 Describe the role of feedback in a control system.

7.1.6 Discuss the social impacts and ethical considerations associated with the use of embedded systems.
Distributed systems

7.1.7 Compare a centrally controlled system with a distributed system.

7.1.8 Outline the role of autonomous agents acting within a larger system.

D—Object-oriented programming

D.4 Advanced program development

D.4.1 Define the term recursion.

D.4.2 Describe the application of recursive algorithms.

D.4.3 Construct algorithms that use recursion.

D.4.4 Trace recursive algorithms.

D.4.5 Define the term object reference.

D.4.6 Construct algorithms that use reference mechanisms.

D.4.7 Identify the features of the abstract data type (ADT) list.

D.4.8 Describe applications of lists.

D.4.9 Construct algorithms using a static implementation of a list.

D.4.10 Construct list algorithms using object references.

D.4.11 Construct algorithms using the standard library collections included in JETS.
D.4.12 Trace algorithms using the implementations described in assessment statements D.4.9-D.4.11.
D.4.13 Explain the advantages of using library collections.

D.4.14 Outline the features of ADT’s stack, queue and binary tree.

D.4.15 Explain the importance of style and naming conventions in code.

KOSTAS DIMITRIOU Phd & MARKOS HATZITASKOS wmsc

For the IB Diploma
Program
(International
Baccalaureate)

HIGH LEV

Kostas Dimitrou Dedication

70 /»g _some y//)nﬁé/; am/a/ /ng aémcaq/{é/ ﬁm&
Voo, fmﬁz/ 74{4/[/dﬂfe &&u

Markos Hatzitaskos Dedication
i, a_// ”W f//em/a{f //t{a_?/ /b/e//azo/ We 7%‘; .a/da/ a /ea//é
}éa %/rvaor W/b/a&ma are.

Preface

“ostas Dimitriou holds a PhD in Spatial Decision Support Systems and Environmental
Zlanning, and has taught computer science courses in various undergraduate and
oostgraduate University courses. He has participated in many scientific conferences and
workshops, twenty research projects, and presented sixty scientific articles. He has been
t=2ching the IB computer science in the Hellenic American Educational Foundation since
2002. He is a Microsoft Certified Educator, Microsoft Expert Educator, Microsoft Expert
=cucation Trainer and Microsoft Innovative Educator Fellow. {kdimitriou@haef.gr}

Mzrkos Hatzitaskos holds an MSc in Advanced Computing and has taught computer science
=ourses throughout all school levels (from primary to high school and the I.B.). He has been
“=aching in the Hellenic American Educational Foundation since 2011. In his free time,
wnenever that might be, he develops mobile applications and attends the Athens School of
=ne Arts as an undergraduate. {markosh@haef.gr}

"= authors would like to thank the Board of Directors and the Administration of the
—=lznic American Educational Foundation (HAEF) for providing an ideal working
=nwironment. Thanks are also due to Kostas Ziogas who gave us some valuable advice. Both
=_thors would like to express their gratitude to the employees of Express Publishing and
==pecially to our friend Tzeni Vlachou.

~2 authors would like to acknowledge the ongoing, valuable support of Sophia Arditzoglou,
—=ZF IB coordinator, over the years. A lot of Computer Science students contributed with
= uzble ideas, comments and suggestions on early drafts. The computer science class of
Z21Z encouraged us to start this book.

"= purpose of this document is to facilitate learning and help our colleagues and CS
stugents around the world. This book is based on the IB computer science syllabus and
"= ows the IB computer science syllabus. The authors did their very best to cite all resources
—==c_If you find a source that is not properly cited please report it to the authors. This book
w=s inspired by the book': Jones, R & A. Meyenn. (2004). Computer science Java Enabled.
~t=rnational Baccalaureate. Series, IBID press, Victoria.

“Somes, R & Meyenn, A, (2004). Comiputer science Java enabled. International Baccalaureate. Series,
=2 oress, Victoria.

The following IBO documents were used during the development of this book:

1.

International Baccalaureate Organization. (2004). IBDP Computer Science Guide.
International Baccalaureate Organization. (2012). IBDP Computer Science Guide.
International Baccalaureate Organization. (2012). IBDP Approved notations for
developing pseudocode.

International Baccalaureate Organization. (2012). IBDP Java Examination Tool
Subset.

International Baccalaureate Organization. (2012). IBDP Pseudocode in examinations.

= of Contents

S — Abstract data Structures............eeeeeeeeesenonns it e iy |
5.1 2bsiract data structures

--

1£-5.1.5Two dimensional arrays......................
46517 Stacks

(NPT

S — Resource management...cce.ceecversmeennen.
RN e anagementy. ... ou o e st SR R TR s

=T TEERUEES compsa it e R R e s e e
= 2.2 Availability of resources
= 1.3 Limitation of resources

B cteencest . e e 94

T T oo e e e e e AR e veseeses 95
L IITED o O Y O T Ty O T COr L r e e e Tt 95
ERNSERzEicontrolisystemsy o e T e e 95

7.1.2 The uses of microprocessors and sensor input in control systems......co...ooovveveoee 101

7.1.3 Different input devices for the collection of data in specified situations 103
7.1.4 The relationship between a sensor, the processor and an output transducer............. 104
7.1.5 The role of feedback in a control SYSEE ITiE-ctaete = enem b SIS oo S e 106
7.1.6 Social impacts and ethical considerations associated with the use of embedded systems
.. 106
Disthibutedioysterns MMttty SFnain 0 o Al T DR A 109
7.1.7 Comparison of centrally controlled systems with distributed systems 109
7.1.8 The role of autonomous agents acting within a larger systemcoooooovioioo 111
End of chapter example questions with answers..........oocoommmcoooo 115
EhaptegReferencest tRumaNERnEn Mg 1001 1Y B0 Seaar ool 55 S i no 120
Topic D — Object-oriented PLOBraMMINET i o i i SRR T e e 1 §
IS DB e e e e e e e S e ol o b 121
D:¢ Advanced program'development ... 7.0l 0 L TS BRRAY Rl R 122
D Lilheftermrech s inmg s L 122
D12 Applicationjoffecursivelalgomthms S0 5 L0 S0 S s il T 122
D.4.3 Construction of algorithms that use recursion ..o 128
B & e ofeecursivetalporithims 5t N e R S 129
D15 befinelthettermiobjectreference > DT 0L D venen, SEIOVEL 9SEEL L8 130
D.4.6 Construct algorithms that use reference mechanisms...........ooooeoooo 133
D.4.7 Identify the features of the Abstract Data Ty BRI ISttt s A M 137
D48 Bescribetgiclapplicationsicflists .= 7L PR FUIS IS e g0 iinimien gl b8 | 140
D.4.9 Construct algorithms using a static implementationofialist s, 0 e EREE 144
D.4.10 Construct list algorithms usingiobjectireferances & 1 MUV Sl Nalas 152
D.4.11 Construct algorithms using the standard library collections included in JETS............ 161
D.4.12 Trace algorithms using the implementations described in assessment statements
D DRl e e 167
D.4.13 Explain the advantages of usinglibrarycollections -, o b e TR T 171
D.4.14 Qutline the features of ADT’s stack, queue and binary tree..........oooouemooooooo 173
D.4.15 Explain the importance of style and naming conventions in codeovvvooovoorn. 173
End of chapter example questions with answers.......cccoommm 177
ChapterReferences: Lo I e S T o dsiea Bl e 284
Appendix A — Stacks & Queues TenrRoae e, e P s=... 285
A.1 Stack implementation using the Arraviisticlassio o Sin ol e o ik 285
A.2 Queue implementation using the ArrayLiasticlassi BIRIAN A T nial s | 287

TOPIC 5 — ABSTR

Pcode practice tool found at:

This excellent tool was developed by Mr. Dave Mulkey. The authors wish to express
their gratitudéto the developer of this valuable educational resource.

Most IB compatible pseudocode examples of this book have been tested using the EZ

i
i
i
: https://dl.dropboxusercontent.com/u/275979/ibcomp/pseduocode/pcode.html
i
!
i

Chapter 1

ACT DATA STRUCTURES

- 2 Topic 5 — Abstract kldata structurest

5.1 Abstract data structures

Thinking recursively

5.1.1 - 5.1.3 Recursive thinking

g. Identify recursiy
gorithm to express a

Recursion is when a method calls itself until some
terminating condition is met. This is accomplished without
any specific repetition construct, such as a while or a for
loop. Recursion follows one of the basic problem solving
techniques, which is to break down the problem at hand into
smaller subtasks. Any algorithm that may be presented in a
recursive manner can also be presented in an iterative
manner and vice versa. In most cases, recursive algorithms
are considered as harder to code.

Towers of HanoiZ

Image 5.1: The Towers of Hanoi game

In order to gain a firm understanding of the basic idea, as well
as the application of recursion, the following example

Y International Baccalaureate Organization. (2012). IBDP Computer Science Guide.

> Towers of Hanoi. (2015, Novemb
November 17, 2014, from https://

er 17). In Wikipedia, The Free Encyclopedia. Retrieved 14:03,
en.wikipedia.org/wiki/Tower_of Hanoi

-—-n.un-u———_-"

presents what is known as the Towers of Hanoi. The Towers of Hanoi is a puzzle that
consists of three rods and a number of discs of different sizes, which can slide onto any rod.
The puzzle starts with the discs in a neat stack in ascending order of size on the first rod, the
smallest at the top, as shown in Image 5.1. The goal of the puzzle is to move the stack of
discs from the first rod to the third rod, obeying the following rules:

A disc may not be placed on top of a smaller one.

Only one disc may move on every move.

A disc may not be moved if it is not the top disc on a stack.
For temporary storage, the third rod may be used.

There are various approaches that can solve the Towers of Hanoi problem, including both
iterative and recursive solutions. We will be concentrating on a recursive solution, by
recognizing that this puzzle may be solved by breaking it into smaller and smaller similar
puzzles, until a solution is reached.

Assume that the rods are named A, B and C and that n represents the number of discs (with
1 being the smallest, at the top, and n being the largest, at the bottom). A recursive solution
to the Tower of Hanoi problem, in order to move n discs from rod A to rod C could be the
following:

e Move n-1 discs from rod A to rod B, leaving disc n
in rod A.

e Move disc n from rod A to rod C.
e Move n-1 discs from rod B to rod C.

The algorithm above is recursive as it is applied again and
again in both the first and the third steps for n-1 discs. At
some point n will be equal to 1 and a single disc will be
moved from rod A to rod C, resulting in an algorithm with
finite number of steps.

A working example of this algorithm is examined. Figure 5.1
represents the three rods {(named A, B and C) as well as
three discs, stacked on top of eaéh other in rod A. The
algorithm goes as follows:

Move green disc from A to C.
Move orange disk from A to B.
Move green disk from Cto B
Move grey disk from Ato C
Move green disk from B to A
Move orange disk from B to C

e T s L). e

Move green disc from Ato C
Figure 5.1: St f th 5 : .
< i o The recursive algorithm for the solution of the Towers of
Hanoi problem is also presented in Figure 5.2. Pay
attention to the fact that a sub-procedure called moveDiscs is used. moveDiscs takes four

arguments. The number of the discs (n), the rod the discs are to be moved from (from), the %
rod to which the discs are to be moved to (dest), as well as the rod that will not be used i
(aux). The arguments of the moveDiscs sub-procedure (that is, n, from, aux, dest) should not i
be confused with the name of the rods used previously (A, B and C).

Start :@iscs(n, from, dest, aux)

true

Declare n

Input

moveDiscs(n-1, from, dest, aux)

moveDiscs(n, A, B, C)

a / Move disk n from from to dest /
v
Stop v I
moveDiscs(n-1, aux, from, to) ¢
Move disk 1 5
Return
from from to o)
dest :
I
Al
\
|
Figure 5.2: The Towers of Hanoi flowchart |
[

Snowflakes ‘

The Koch snowflake is a mathematical curve which is based on the Koch curve, developed by
the Swedish mathematician Helge von Koch.

. This mathematical curve can be constructed by starting with an equilateral triangle. Using
recursion each line segment changes using the following steps:

1. divide the initial line segment into three sub-segments of the same length.
draw an outward pointing equilateral triangle that has the middle segment from
step (1) as its base. j

3. delete the line segment that is the base of the triangle from previous step.

The following algorithm expressed in IB pseudocode creates a 400 by 461 window and draws
a Koch fractal:

//Three curves that shape an equilateral triangle
//pen originally is heading at 90 degrees (x axis)
//the method pen.goForward is supposed to control

//a pen that plots line segments on the screen

//the method pen.turnLeft is supposed to change the original
//heading of the pen counter clockwise by the degrees given as a parameter.
//the method pen.turnRight is supposed to change. the original
//heading of the pen clockwise by the degrees given as a parameter.

method Draw_Koch_fractal(N)

width = 400//width of the window

height = 2*width/Math.sqrt (3) //calculation of the height of the window
size = width/Math.pow (3.0, N)//size of each drawing step
initial pen position = pen.setposition (0, width*Math.sqrt(3)/2, 0)
//calculation of the initial pen position (0,114}
pen.setWindowSize (width, height)//initialization of the window
koch fractal(N)//call of the Koch fractal method
pen.turnrRight (120) //turn right by 120 degrees

koch fractal(N)//call of the Koch fractal method

pen.turnRight (120) =

koch fractal (N)

end method

method koch fractal (n)

if (n == 0) then
pen.goForward (size)
else

koch_fractal (n-1)
pen. turnLeft (60)
koch fractal (n-1)
pen.turnRight (120)
koch_fractal (n-1)
pen. turnLeft (60)
koch fractal (n-1)
end if
end method
output Draw_Koch fractal (N)

The following table depicts the snowflakes prc;duced by the above algorithm for N=0 to 5:

A iy -

vy rv s e S
h‘\ ;1 'é rr‘r‘ }
= 0 Ly
A PR ‘z_.:‘;g g“‘
;) : P4
£ e 2§ 4
Y RSN VR N L N % L ST
Boli & e ek V! g s t‘”‘tvé”“'?
X 3
v RSN /5'1
o
N=4

The following program uses recursion to create the method addIntUpTo (n) for n>0 that
will add all numbers from and including n down to 1. For example, if addIntUpTo (4) is
called, the result wouldbe: 4 + 3 + 2 + 1 = 10

method addIntUpTo (n)
if (n == 1) then
return 1
else
return n + addIntUpTo(n-1)
end if
end method

This method is a recursive function since it calls itself. On each call, the argument is reduced
by one (every time addIntUpTo is called, its argument is n-1). n-1 calls are made until the
terminating conditionn = 1 is met.

Programming | xample 2: xample

What is going to be the output of the following algorithm?

method foo (n)
if (n <= 1) then
return 1
else
return foo(n-1) + foo(n-2)
end if
end method

output foo (5)

Answer: 8

Programming Example 3: Example of recursion.

What is going to be the output of the following algorithm?
method foo(n, m)

if (n <= 1) OR (m <= 1) then
return 2

else
return foo(n-1, m) + foo(n, m-2)
end if
end method

output foo(5,4)

Answer: 30

What is going to be the output of the following algorithm?

method foo(n, m)

output "value of n=", n, "value of m =", m
if (n <= 1) OR (m<=l) then
return 2
else
return foo(n-1, m-n)+foo(n, m-2) 2
end if
end method

output "Output is", foo(3,2)

Answer:

value of n= 3 value of m = 2

value of n= 2 value of m = -1
value of n= 3 value ocf m = 0

Output is 4

S e 5 BB e,

What is going to be the output of the following algorithm?

method Foo(X,Y)
- if X < Y then
return Foo (X+1,¥-2)
else if X = Y then
return 2*Foo (X+2,Y-3)-3
else
return 2%*X43*Y
end if
end method
output "Output is", Foo(3,12)

Answer:

Output is 47

Abstract data structures

5.1.4 - 5.1.5 Two dimensional arrays

imensional arrays.

o-dimensional arrays.

A one-dimensional array should be considered as a single line of elements. However, in
many cases, data comes in the form of a data table. Each element in a 2D array must be of
the same type, either a primitive or object type. Take, for example, five exam scores of a
student, as a data record, and represent it as a row of information. The data records for ten
students, would then be a table of 10 rows. Below is the visualization of this collection of

- Alot of information and examples of two-dimensional arrays can be found in the book
- Core Computer Science for the IB Diploma Program®.

: Index 0 Index 1 Index 2
Student 1 Index O 98 68 65
- Student 2 Index 1 77 77 88
' Student 10 ; | Index 9 a2 86 90 81

Table 5.2: Two dimensional array Scores

2D arrays are indexed by two subscripts. The indices must be integers. The first one refers to
tne row, while the second to the column. Scores[1][1] refers to Exam 2 of the second
student. Its value is 77.

//This program will use the array Scores which is a 2D ARRAY.
/It will print the contents of the array.

/3 students with 5 exams each

Scores =

1198,68,65,73,67],
[77,77,88,78,90],

153,63,74,85,72],

[77,77,68,78,91],

188,86,90,56,81]]

STUDENT = 0

=xaM = 0

Zocp STUDENT from 0 to 4
output STUDENT +1, "Student”
loop EXAM from 0 to 4
output "----", "Exam ", EXAM+l, Scores[STUDENT] [EXAM]
end loop
=xnd loop

OUTPUT

1 Student

-——— Exam 1 98
———-— Exam 2 68
———-—- Exam 3 65
———— Exam 4 73
—-——- Exam 5 67
2 Student

—-——- Exam 1 77
-——— Exam 2 77
-——- Exam 3 88
-—-—-— Exam 4 78
-——— Exam 5 90
3 Student

—-—-—— Exam 1 53
--—-- Exam 2 63
-——- Exam 3 74
---- Exam 4 85
-——— Exam 5 72
4 Student

-=—==- Exam 1 77
-——— Exam 2 77
—-——- Exam 3 68
-——— Exam 4 78
—-——- Exam 5 91
5 Student

—-—-—— Exam 1 88
—-——-— Exam 2 86
———— Exam 3 90
—-——- Exam 4 56 i
—-——— Exam 5 81

Scores =
[[98,68,65,73,67],
[77,77,88,78,90],
[53,65,74,85,72],
[77,77,68,78,91],
[88,86,90,56,81]1]
STUDENT = 0
EXAaM = 0
loop STUDENT from 0 to 4
output STUDENT +1, "Student”
loop EXAM from 0 to 4
if (Scores|[STUDENT] [EXAM] mod 10 = 5) then
output "----", "Exam ", EXAM+l, Scores|[STUDENT] [EXAM]
end if
end loop
end loop

OUTPUT

1 Student
-—-—- Exam 3 65
2 Student
3 Student
--—-- Exam 2 65
---- Exam 4 85
4 Student
5 Student

Programming Example 8: Finds and outputs the number of “8”s each score contains. It also
outputs the total number of appearance of digit “8”.

Scores =
[[98,68,65,73,67],
[77,77,88,78,90],
[77,77,88,78,91],
[88,86,90,56,81]]
STUDENT = 0
EXAM = 0
TCOUNTER = 0
loop STUDENT from 0 to 3
output STUDENT +1, "Student"
loop EXAM from 0 to 4
X=1
COUNTER = 0
X = Scores[STUDENT] [EXAM]
loop while X>0
if X mod 10 = 8 then
COUNTER = COUNTER + 1
TCOUNTER = TCOUNTER +1
end if
X = div (X, 10)
end while 2
output "----", "The grade of exam ", EXAM+1, "has",

COUNTER, "eight(s)"
end loop
end loop
ocutput " A total of ", TCOUNTER, "eights appear in all grades"
OUTPUT:
1 Student
-——-- The grade of exam 1 has 1 eight (s)
—---- The grade of exam 2 has 1 eight(s)
--—-—- The grade of exam 3 has 0 eight(s)
-—-—-—- The grade of exam 4 has 0 eight (s)
--——- The grade of exam 5 has 0 eight(s)
2 Student
—-—-- The grade of exam 1 has 0 eight(s)
---- The grade of exam 2 has 0 eight (s)
—-—--- The grade of exam 3 has 2 eight(s)
‘ —--- The grade of exam 4 has 1 eight(s)
i —---- The grade of exam 5 has 0 eight(s)

i 3 Student
—---- The grade of exam 1 has 0 eight(s)

I
{
]

—-—-—-- The grade of exam 2 has 0 eight(s)
---- The grade of exam 3 has 2 eight(s)
---- The grade of exam 4 has 1 eight(s)
---- The grade of exam 5 has 0 eight(s)
4 Student

——--— The grade of exam 1 has 2 eight(s)
--—-- The grade of exam 2 has 1 eight(s)
———- The grade of exam 3 has 0 eight(s)
—-—-——- The grade of exam 4 has 0 eight(s)
—--- The grade of exam 5 has 1 eight(s)

A total of 12 eights appear in all grades

5.1.6 - 5.1.7 Stacks

Exit skills. Students should be able to:

Characteristics

A stack stores a set of elements in a particular order and allows access only to the last item
inserted. ltems are retrieved in the reverse order in which they are inserted. The stack is a
Last-In, First-Out data (LIFO) structure. The elements of a stack may be numbers, Boolean
values, characters, objects, arrays, strings, etc.

Stacks utilize three methods:

1. push(). Pushes an item onto a stack.
2. pop().Removes and returns the last item entered in the stack.

3. isEmpty (). Tests if a stack is empty. It will return true if stack contains no
elements.

Suppose we want to add the elements 5, 4, 3 in a stack named Numbers. The following
diagram explains this situation:

e

| Stack is initially empty.

Numbers . push(S)
5 was added to the stack.

i
1
i
|
{

=T
1
+
(
1

Numbers push(4)
§ 4 was added to the stack

- 3 was added to the stack

=Y

Suppose we want to remove all the elements from the stack.

The following example presents this situation:

3 Stack contains 3 numbers.
4
5 _

SmS e T e e e s S YQ
1 Top element was removed from the stack. This element was
S the number 3. 3 was assigned to variable X ‘

 Top element was removed from the stack. This element was
5 ' the number 4. 4 was assigned to variable X
- Top element was removed from the stack. This element was
~ the number 5. 5 was assigned to variable X. Stack is empty.
Aoplications 2

o The back button of a web browser uses a stack to function. Every time a URL is
visited it is stored on a stack. The last address that was visited is on the top of the
stack. The first address that was visited during the current web session is on the
bottom of the stack. If one selects the Back button, he/she begins to visit the
previous pages they have visited in reverse order.

» Microprocessors usually use a stack to handle methods. Suppose a method, A, which
returns an integer, with parameters b and c of type integer, is called. In Java this
would look like this:

int ¢ = A(a, b):
The method header would look like this:

public static int A(int b, int c¢)
The method body should look like this:

{method body
return r}

Woen As called, its return address, as well as b and ¢ are pushed onto the microprocessors
z=ck. When the method returns z, the return address and the parameters (arguments) are

zooped off the stack. The overall process is more complicated, but further explanation is
2=vond the scope of this book.

e Recursive methods also utilize the system stack to keep track of each recursive call.
This block of memory is used to store temporary data required for program
execution. The calls are nested inside each other. Initially, all recursive calls are
unfolded and pushed onto the stack, until the base case is reached and then all
recursive calls are popped from the stack, when necessary. In the following example
the left-hand code fragment will return 4. The right-hand code fragment will
generate a run time error because the recursive program will never reach the
terminating condition.

public class Rec Demo public class Rec Demo
{ {
public static int question(int n)| public static int question(int n)
{ {
if (n <= 0) if (n <= 0)
return -2; return -2;
else else
return (question(n) return (question (n+100)+3) ;
} }
public static void main (String]] public static void main(Stringl[]
a) a)
{ {
int 1 = question(111); int 1 = question(111) ;
System.out.println("1= "+1); System.out.println("l= " + 1);
} }
J }
OUTPUT OUTPUT
1=4 java.lang.StackOverflowError:null

Algorithms

' Programming Exa.rﬁp’té 9: Use of a star:k, an array and a collection.

//==== Reverse and store === ==

// This algorithm uses an array, a stack and a collection.
// It reads names from the array, reverses them,

// using the stack, and stores the contents of the stack
// inside the collection.

e — e

NAMES = ["Kostas", "Markos", "Anna", "Mary", "Takis"]
NAMES C = new Collection ()

STACK NAMES = new Stack ()

I=20

loop I from 0 to 4
STACK NAMES.push (NAMES[I])
end loop

output "Add names in the collection:”
output "== ======="
loop while NOT (STACK NAMES.isEmpty())
NAME = STACK NAMES.pop ()
NAMES C.addItem (NAME)
output NAME, "was entered in the collection”
end loop

output ""
cutput "Names stored in the collection:"
cutput " = 3
loop while NAMES C.hasNext /()

output NAMES C.getNext ()
end loop

OUTPUT

2dd names in the collection:

Tzkis was entered in the collection
¥M=ry was entered in the collection
Zona was entered in the collection
M=rkos was entered in the collection
Eostas was entered in the collection

YNzmes stored in the collection:

“he following program uses 4 stacks to solve the Towers of Hanoi problem:

. /Declaration and initialization of wvariables

= new Stack{() //a new stack

= new Stack() //a new stack

new Stack() //a new stack

new Stack() //a new stack

new Array() //auxiliary array to use in display method
new Array() //auxiliary array to use in display method
new Array() //auxiliary array to use in display method

[SPa, SPb, SPc, SPd] //an array of four stacks

TLLELLT

I

I I I & A I Y
I
OO0 WNKHO

B b
[

Il
ul

//the number of disks

W
)

H
10]
[0}
Hh
i
[\
o]
[o]
H
S~
P
=g
]
g‘
0]
H
Q
th
[A
9
10}
hal
0

33

//The following method is the starting point
//of the program
method TowersofHanoi (n)
loop I from 0 to n-1
m = n-I
PEGS[1] .push (m)
end loop
display ()
move(n,1,2,3)
end method

f/This is a recursive method used to solve the problem
method move(n, a, b, c)
if n>0 then
move(n-1, a, ¢, b)
t = PEGS[a] .pop()
PEGS[c] .push(t)
display ()
move (n-1, b, a, c)
end if
end method

//The following method is used to visualize the
//pegs and the disks. Three auxiliary arrays are
//used so as to display the contents of each stack.
method display ()

output ""

output " | A | B | C |"

loop I from 0 to NUM-1

daa[I] = PEGS[1].pop()//put the elements of the stack to an array

dbb[I] = PEGS[2].pop()//put the elements of the stack to an array

dcc[I] = PEGS[3].pop()//put the elements of the stack to an array
end loop

loop I from 0 to NUM-1

da = daa[I]
db = dbb[I]
de = dcc[I]
fl = String(da) //covert to string
if £f1 == "null" then
fl="-"
end if
£2 = String(db) //covert to string
if £2 == "null" then
f2="-"
end if
£3 = String(de) //covert to string
if £3 == "null" then
f3=" =T
end if
output s t|WREE PSS RS - e B e [
end loop

loop I from 0 to NUM-1

m = NUM-1-I

PEGS[1] .push(daa[m]) //put the elements of the array daa back to the stach
PEGS [2] .push (dbb[m]) //put the elements of the array dbb back to the stack

PEGS[3] .push(dcc[m]) //put the elements of the array dcc back to the stach
end loop

end method

FORMATED QUTPUT

@) 0 EE 0] UM | om0l (S YR e | UAmMwm 11 owmn 1l [SJE- T, N | UM In

meeoN moonl meo10d Me N me <t 10 Mmoo me ol P 11

o || [T T A | Al [T~ T T I A | e I D S Ad-MNm | [T T R | Cop et e a
< & 3 = 5 S & &

[& T T I B I | vem ol [50 T R | ST I T B [I T T I B owm 11| U= o | DNmn |

mer 010 [T S R | Mmool mom< 11 mey <t 111 IR R | mao 1o m

dm<tin | 1 = | [= 0 T T | g 110 [I TS T T B | dqoam || e 11 [I T Y Y B |
™ ~ s & 2] N b

(B R0 [I T B T | vpem 1 O 11 1 1 (S){Ty [A Dewn 11 U stn | Um=swn ||

mo1o1r 11 mo 1ot me = 1 meo <t o111 [- I I T I me <t ol Y0 mer 11

dom<n | =< | Al Al domn 1ol et 111 - T T T | g 1| - I T T I |
~ © = = 3 & & ®

3 0.0 0 00 [ST T B I | Urom | o | A P 1 Y LS TTo T T R B | U Nwn | Osn 1| Deonstin 1|

ey e me o Mmooy mey =t 1 1 1 Mmool m= 1| mi1 111 Mme oy 10

= I B T T A <in 1 A 0ot gecn 11 ot 0 LI | TR gm 111 [- R I B I | cA0 0 i
— Ln o) (o) b > L9 =g

5.1.8 - " ol 9Queues

Exat sknl!s Students should be able to':

R S

Characteristics of queues

A queue stores a set of elements in a particular order and allows access only to the first item
inserted. Items are retrieved in the order in which they are inserted. The queue is a First-In,
First-Out (FIFO) data structure. The elements of a queue may be numbers, Boolean values,
characters, objects, arrays, etc.

Queues utilize three methods:

—

1. enqueue (). Puts anitem into the end of the queue.
dequeue (). Removes and returns the first item entered in the queue.

3. isEmpty(). Tests if a queue is empty. It will return true if queue contains no
elements.

Suppose we want to add the elements 5, 4 and 3 in a queue named Numbers.
The following example presents this situation:
[Quehe i'nitially empty

Numbers . enqueue (5)

~ 5 was added to the queue
Numbers .enqueue (4)
4 was added to the queue
Numbers . enqueue (3)
- 3 was added to the queue

il
{Bjciia}

B
o)

Suppose we want to remove all the elements from the queue.

The following example presents this situation:

Queue contains 3 numbers

B
=
H

= Numbers.dequeue()'
. First element was removed from the gueue. This element
 was the number 5. 5 was assigned to variable X. :
= Numbers.dequéué() ; |
First element was removed from the queue. This element
- was the number 4. 4 was assigned to variable X. '
' = Numbers .dequeue () |
' Flrst element was removed from the queue. This element
was the number 3. 3 was assigned to variable X. Queue is
_ empty. |

g
]

H

-

Applications of queues

e Queues are used to model physical queues, such as people waiting in line at a
supermarket checkout.

e The print queue displays the documents that are waiting to be printed. These
documents will follow the first-send first-print policy.

e When sending data over the internet, various data packets wait in a queue to be
sent.

e A server usually serves various requests. In most cases these requests are stored in a
queue. The first-come first-served request procedure is followed.

Algorithms that use queues

Prograrhming Examp!e 11: l,.-Jse"of a queue and arrays.

A small school uses two buses to transport students. As soon as the buses arrive, all students
enter a queue and a teacher uses a registry to check which students are present. The
following algorithm uses two arrays to represent the school buses, a queue to represent the
queue, and an array to represent the registry:

BUSL = ["Roger", "John", "Nikos", "Marion", "Hellen"]

BUS2 = ["Nora", "Bill", "Eliza", "Takis", "Alex"]

REGISTRY = ["Alex", "John", "Elina", "Nikos", "Leo", "Marion",
"Hellen", "Nora", "Bill", "Eliza", "Takis", "Roger"]

STUDENTS = new Queue() //Queue for Students

A = mmn

I=20

FOUND = 1

//copy students from BUSL
loop I from 0 to 4

STUDENTS . enqueue (BUS1[I])
end loop

//copy students from BUS2
loop I from 0 to 4

STUDENTS . enqueue (BUS2[I1])
end loop

loop while NOT (STUDENTS . isEmpty ())
A = STUDENTS.dequeue ()
loop I from 0 to 12
if REGISTRY[I] = A then
FOUND = 1
end if
end loop
if FOUND = 1 then
cutput A, "is not absent"
end if
end loop

OUTPUT

Roger is not absent
John is not absent
Nikos is not absent
Marion is not absent
Hellen is not absent
Nora is not absent
Bill is not absent
Eliza is not absent
Takis is not absent
Alex is not absent

ProgrammlngExample 12: Use of queues, arrays and a collection,

A supermarket has two express cashiers. The array CASHTER1 contains the customers that
enter the queue CUSTOMER1, while the array CASHIER2 contains the customers that enter
the queue CUSTOMER2. The TIME collection stores the names of the customers that waited
more than 60 secs, counting from the moment that their turn to be served had come. The
supermarket administration wishes to minimize the waiting for these two express cashiers. A
questionnaire is sent by email, from the administration of the supermarket, to the
customers stored in the collection TIME to understand why this situation took place. A
message that outputs the overall slower express cashier is output at the end of the day.

I

CASHIER1 ["Roger", "John", "Nikos", "Marion"]
CASHIER2 = ["Nora", "Bill", "Eliza", "Takis"]
CUSTOMER1 = new Queue () / /Queue for CUSTOMER1
CUSTOMER2 = new Queue () //Queue for CUSTOMER?2
TIME = new Collection()

A D
B =0
Cl1 =0
c2 =0
T =10
D1 = 0
D2 = 0
TOT B = 0
TOT_C = 0
FOUND = 1

//copy CUSTOMER1 from CASHIERI1
loop I from 0 to 3

CUSTOMERI.enqueue(CASHIERl[I])
end loop

//copy CUSTOMER2 from CASHIER2
loop I from 0 to 3

CUSTOMER2.enqueue(CASHIER2[I])
end loop

loop while NOT(CUSTOMERl.isEmpty())

D1 = (CUSTOMERI1.dequeue ())

Cl = Math.floor ((Math.random() * 100) + 1)// use of random functrion
to generate random times between 1 sec to 100 sec

if C1>60 then //only customers waiting more than 60 secs enter the
collection
TIME.addItem(D1)
"end if
TOT B = TOT B + C1
end loop

loop while NOT (CUSTOMERZ.isEmpty ())

D2 = (CUSTOMER2.dequeue())

C2 = Math.floor((Math.random() * 100) + 1)
if C2>60 then

TIME . addItem(D2)

end if

TOTHCE="TOTRCHELC2

end loop

TIME.resetNext ()

loop while TIME.hasNext ()
output TIME.getNext ()

end loop

if TOT B > TOT_C then//outputs the slower cashier
output "CASHIER1l is slower"

else
output "CASHIER2 is slower"

end if

A POSSIBLE OUTPUT

Roger

John

Bill

Eliza

CASHIER2 is slower

5.1.10 Arrays as static stacks and queues

Exit skills. Students should be able to':

E :
| Explain push and pop operations, and test on empty/full stack.

| Explain enqueue and dequeue operations, and test on empty/full queue.

Algorithms to implement stacks using an array

The program starts with an array of 10 elements. The methods used are the following:

push ()

this method is used to add elements in the stack. Inserting an element increments high by 1
and adds the element in this array position. The high is incremented before the insertion of
the new item takes place.

pop ()
this method returns the value of the top element and then decrements high. It serves to
remove the top element from the stack. The item removed actually remains in the array but

is inaccessible.

isempty ()

it is based on the high variable. It returns true (1) if the stack is empty.

isfull ()

it is based on the high variable. It returns true (1) if the stack is full.

size()

it is based on the high variable. It returns the number of elements stored in the stack.

s array = new Array() OUTPUT:
SLneell =][.g 7077070,,0,,07:0,10,0/, 0] Message: stack is empty
maxsilze = c i
s, = =4l Message: stack is full
n =20 R
high=9
Popi)SSEaEt T TR e . R e
push (1) s_array contains :
pusbi2) 1,2,7,9,10,9,33,29,11,49
push (7)
push (8) f""""
pop () size of stack = 10
push (9) T
push (10) stack contents display and removal
S I
push (29) 49
push (11) 11
push (49) 29
push (10) 33
9
outputE S Ee i 10
output "high = ", high
Slgsily Voommmesss = 9
output "s array contains :", s array 7
EEEElE Yeseoosono A 2
output "size of stack = ", size() 7
S T
b L e :
output "stack contents display and Explanation:
removal" This algorithm uses the s_array to
c“;1/:1;"}“.‘;-//////////////////////////.//// el L S S e
e h A ’ i t ’
loop while isempty() = 0 2;£iii(f)mif§£iet?emp 49
n = pop() ¥
output n
end loop When this algorithm starts an array of

output
B e A B o e e e B e

method push (n)
if (isfull() == 1) then
output "Message: stack is full"
else
high = high + 1
s_array[high] = n
end if
end method

method pop()
if (isempty() == 1) then
output "Message: stack is empty"”
else
high = high - 1
return s _array[high+1]
end if
end method

method isempty()
if (high == -1) then
return 1
else
return 0
end if
end method

method isfull ()
if (high == maxsize-1l) then
return 1
else
return 0
end if
end method

method size ()
return high+1l
end method

ten elements is created.

maxsize variable is used to hold the
maximum stack size, high variable is
used to point the array position that is
the top of the stack.

The first pop () instruction generates a
“Message: stack is empty” output.

push (1), push(2), push(7),
push (8) instructions add four
elements in the stack.

pop () instruction removes 1 from the
stack.

push (9), push(10), push(9),

push (33), push(29), push (11),
push (49) instructions add 7 elements
in the stack. The stack is now full.

push (10) instruction causes
“Message: stack is full “ message to be
displayed.

Instruction “output "high =
S high%

prints the number 9 which is the array
position used to point the end of the
queue.

Instruction “output s_array
contains :", s array” outputs
the contents of the actual array used.
The numbers 1,2,7,9,10,9,33,29,11,49
are printed.

The size of stack is 10

After a “stack contents display and
removal” message a loop that removes
and outputs all elements of stack is
used. 49,11,29,33,9,10,9,7,2,1 are
printed.

N

Prbgi'arﬁ ming Example 14C0nven lnteger to binér\) uSi.r:Ijg a sfa_c_k-.

//This algorithm uses a stack to convert an integer to its binary
equivalent

//Declaration of wvariables
s_array = new Array()

s2_array = new Array()
s_array = [0, O, O, O, O, O, O, O, O, O]

maxsize = 10
high = -1

x =0

y =20

n=20

r =0

g dig value = 0
number = 123

output "Convert number ", number

//Call method convert in binary
convert to binary(number) //max number is 1023

//Use of an auxiliary array to properly output the result
output " "

output "Final result"
loop a from 0 to 9
s2 array[a] = s_array[9-a]
end loop
output s2_array

method convert to_ binary (x)
output "Calculations"
loop while x > 0
Yy = x mod 2
push(y) //use of push method
x = div(x,2) //division of x over 2
end loop
//the next loop will use the isempty method
loop while isempty() = 0
t = pop() //use of pop method
dig value = Math.pow(2, (high+l)) //2” (high+1)
output "Binary digit number", high+l," (",dig value,")", "is", t
end loop
end method

method push(n)

if (isfull() == 1) then
output "Message: stack is full"
else

high = high + 1
s_array[high] = n
end if
end method

method pop()

if (isempty() == 1) then
output "Message: stack is empty"
else

high = high - 1
return s_array[high+1]
end if
end method

method isempty ()
if (high == -1) then
return 1
else ‘
return 0
end if
end method

method isfull ()

if (high == maxsize-1) then
return 1
else
return 0
end if
end method
OuUTPUT
Calculations
Binary digit number 6 (64) is 1
Binary digit number 5 (32) is 1
Binary digit number 4 (16) is 1
Binary digit number 3 (8) is 1
Binary digit number 2 (4) is 0
Binary digit number 1 (2) is 1
Binary digit number 0 (1) is 1

Final result
0,0,0,1,1,1,1,0,1,1

Algorithms to implement queues using an grray

| Programming Example 15: Implementation of queue using an array.

INDEX (o] 1 2 3 4 5
5 3 9 7 8
FRONT REAR

When using an array to implement a queue, insertion takes place at the REAR index, while
deletion takes place at the FRONT index only. At the beginning both FRONT and REAR are 0.
When entering the first element, FRONT remains 0, while REAR becomes 1. When entering
another element, FRONT again remains 0, while REAR becomes 2. When entering yet
another element, FRONT remains 0 and REAR becomes 3. If we remove an element, FRONT
becomes 1 and REAR remains 3. If we remove another element, FRONT becomes 2 and REAR
remains 3. If we remove yet another element, both FRONT and REAR become 0, since the
queue is empty.

The following algorithm implements this approach. Unfortunately, this array-based
implementation is tricky. It works well when entering elements and then removing them all
before entering new elements again. This is not the case when adding and deleting data in a
random order since the end of the array will eventually be reached and an out-of-bounds
exception will be raised.

g_array = new Array()

q_array [0, o, 0, 0, 0, 0, O, 0, 0, 0]
FRONT =
REAR = 0
SIZE = 10

n =20
dequeue ()
enqueue (71)
enqueue (1)
enqueue (2)
enqueue (112)
enqueue (14)
enqueue (52)
enqueue (67)
enqueue (14)
enqueue (52)
enqueue (62)
dequeue ()
dequeue ()
dequeue ()
dequeue ()
dequeue ()
dequeue ()
engueue (61)

o

output "Queue contents display"
output "--—--——-- 2
if (FRONT == REAR) then
output "Message: queue is empty"
else
loop I from FRONT to REAR-1
n = g array[I]
output n
end loop
end if

output W e e e "

method enqueue (N)

if REAR == SIZE then
output "Message: queue is full"
else

g _array[REAR] = N
REAR = REAR + 1
end if
end method

method dequeue ()
if FRONT == REAR then
output "Message: queue is empty"

else
N = g_array[FRONT]
if (FRONT+l1l == REAR) then
REAR = 0
FRONT = 0
else
FRONT = FRONT + 1 i
end if
end if

end method
OUTPUT

Message: queue is empty
Message: queue is full
Queue contents display

As we can see the queue contains only 4 elements. Although the array can hold 10 elements
the FRONT is now 7 and the REAR is 10 so enqueue (61) will generate the queue is
full message. This situation can be solved by using a circular implementation of a queue.

Algorithms to implement a circular gueue using an array

The problem with the previous implementation is that the new elements are added to
successively higher-numbered positions in the array. When elements of the queue are
deleted, the FRONT index increases and this process continues until the queue runs out of
space. The array might have free positions at the indices that are smaller than the FRONT
index, but these positions are unusable. The following circular implementation of a queue
solves this problem:

[11] [0] [11] (0]

REAR=1

[10] [1] [10] 20 [1]
[9] 2l s [2]
8] 3] [8] 3]
7] [4] [7] [4]
[6] [5] (6] [5]
FRONT =0 ADD 20
REAR = -1 FRONT =0
REAR =0
[11] [0] [0]
[10] [1] [1]
[9] 2] ﬁ [2]
[8] [3] a [3]
[7] [4] a [4]
[6] [5] (5]
DELETE 20 ADD
ADD 30 30,40,50,60,70,80,90,100,110,120,130
FRONT =1 FRONT =1

REAR =11

[11] [0]

[10] 130 | 140 [1] .
[9] [2]
[8] [3]
7] 80 | 70 (4]
ADD [6] [5] 140
FRONT = 1
REAR = 0

This is the benefit of a circular queue.
Iltem 140 was inserted in the array index 0.

Figure 5.3: Explanation of the operation of a circular queue

The following algorithm starts with an array of 10 elements. The methods used are the
following:

enqueue ()

This method is used to add elements to the queue. Inserting an element increments rear by
1 and inserts the element in the new array position where rear points to. If rear is at the
end (top) of the array, then rear should be set to -1 before the addition of the element
takes place. This means that a wraparound takes place and the next element will be placed
at the start (bottom) of the array. Finally, the variable that holds the number of elements,
nelements, is incremented by 1.

dequeue ()

This method is used to remove elements from the queue. A temporary variable, temp, is
used to hold the value of £front. front is then incremented by 1. If front equals to the
array length, then a wraparound takes place and 0 is assigned to £ront. Finally, the variable
that holds the number of elements, nelements is decremented by 1.

isempty ()
This is based on the nelements variable. It returns true (1) if the queue is empty.

isfull ()
This is based on the nelements variable. It returns true (1) if the queue is full.

size ()

This is based on the nelements variable. It returns the number of elements stored in the
gueue.

g _array = new Array()

q array = [0, O, O, O, O, O, O, O, O,
//you can replace the previous two
lines
//with q array = new Array (10)

maxsize = 10

front = 0

rear = -1

nelements = 0

n =20

dequeue ()

enqueue (1)

enqueue (2)

enqueue (7)

enqueue (8)

dequeue ()

enqueue (9)

enqueue (10)

output "front = ", front

output "rear = ", rear

output "gq array contains :",

output "--—--—-——--- 2

output "size = ",

cutput "---————--- o

g array

output "queue contents display and
removal”
output "--——-—-———- o
loop while isempty() = ©
n = dequeue ()
output n
end loop

method enqueue (n)
if isfull() = 1 +then
output "Message: queue is full"

else
if (rear == maxsize-1) then
rear = -1
end if
rear = rear +1
g _array[rear] = n

nelements = nelements + 1
end if
end method

method dequeue ()

if isempty() = 1 then

output "Message: queue is empty"
else

temp = g array[front]

front = front + 1

if (front==maxsize) then

front = 0

end if

nelements =

return temp
end if

nelements - 1

0]

Output:

Message: queue is empty
front = 1

rear = 5

g_array contains
1,2,7,8,9,10,0,0,0,0

removal

Explanation:

This algorithm uses the q_array
to implement a circular queue. The
methods used are: enqueue (),
dequeue (), isempty (),
isfull () and size() .

When this algorithm begins, an
array of ten elements is created.
maxsize variable is used to hold
the maximum queue size, the
front variable is used to point to
the start of the queue, the rear
variable is used to point to the end
of the queue and nelements is
used to hold the total number of
elements stored in the queue.

The first dequeue () instruction
generates a “Message: queue
is empty” output.

enqueue (1), enqueue (2),
enqueue (7), enqueue (8)
instructions add four elements in
the gueue.

dequeue () instruction removes 1
from the queue.

enqueue (9) and enqueue (10)
add two elements to the queue.

Instruction output "front =
", front prints the number 1

5e)

aend method

=ethod isempty ()
if (nelements ==
return 1

else
return 0
end if i
end method

method isfull ()
if (nelements ==
return 1
else
return 0
end if
=nd method

method size ()
return nelements
=end method

which is the array position used to
point to the front of the queue.

0) then
Instruction output "rear = ",
rear prints the number 5 which is
the array position used to point to
the end of the queue.

Instruction output "size = ",
maxsize) then size () outputs size = 5, which
is the size of the queue.

Instruction output "q_array
contains:", g _array outputs
the contents of the actual array
used. The numbers
1,2,7,8,9,10,0,0,0,0 are printed.

After a “queue contents
display and removal”
message, a loop that removes and
outputs all elements of queue is
used.2 7 8 9 10 are printed.

E——

Linked lists

5.1.11 Features and characteristics of a dynamic data structure

Exit skills. Students should be able to*:

Linked lists will be examined at the level of diagrams and descriptions. Students are not
expected to construct linked list algorithms using pseudocade.

Suppose you want to develop a program to handle a variable number of airplanes that arrive
at an airport every day. The array based implementation has the disadvantage that its size
must be predetermined. The size of the array must be determined before the actual use of
the array. Declaring a large array means allocating an amount of memory that might be not

next

I (D >

data node
Figure 5.4: A node of a linked list

utilized, while declaring a small array means that the array may run out of space during the
execution of the program. The solution to this inconvenient situation is to use dynamic
allocation of memory. The resulting data structure will be flexible enough to shrink or grow,
as the request for data storage decreases or increases respectively. This provides the
programmer with the ability to control the amount of memory that is utilized.

In programming, a node is a basic unit (object) that contains both data and a pointer. A
pointer is a field of the node whose value points to another object, stored in some other
memory location. Each node in a linked list stores a pointer to the next value of the linked
list. Thus, every node requires memory for both its data and its pointer. THE NULL pointer is
a special pointer that points to nothing, meaning that it has no pointee. The NULL pointer is

drawn as a diagonal line between the left lower corner and the right upper corner of the
pointers variable box.

Figure 5.5: The NULL pointer

5.1.12 Operation of linked lists

Exit skills. Students should be able to':

A linked list is constructed from a series of nodes. Every node of the list is a distinct object
that contains both data, as well as a reference (pointer) to the next node. A reference refers
10 an object’s address in the RAM. In C++ we use pointers, while in Java we use references.

A linked list is very different from an array. Although they are both used to create lists, their
operational characteristics are completely different. In an array, each element resides in a
particular position which can be directly accessed using an index. In a linked list, a particular
element can only be accessed by following the references (pointers) of all the previous
slement. In a way, linked lists resemble a chain. There is no way to access an element
directly. One can only access every element in turn, starting with the initial one in the list.

I is important to stress the difference between the logical representation, which refers to
how the data and the links are “seen” by the programmer, and the physical representation,
which refers to the underlying mechanisms that store the data in RAM. The physical
representation includes details like memory addresses, type of data, number of bytes used,
the way the pointers are handled etc. This is another example of abstraction where all
unnecessary details are hidden.

Key Characteristics of a linked list:

|
/

e To traverse a linked list, you start at the first node and then go from node to node,
following each node’s pointer to find the next node.

e A node with a specific key value can be found by traversing the list. Once found, a
node’s data can be accessed.

e Alinked list consists of a sequence of nodes.

e Each node contains data and a pointer.

o Alinked list may be empty.

e The length of a linked list is the number of elements that it contains.

e The last node contains a null pointer.

e A node’s successor is the next node.

e A node’s predecessor is the previous node.

L List:

Figure 5.6: A diagram of linked list with four elements

In the previous Figure the existence of a dummy header node, which is just an initial node
that exists at the front of a linked list even when the list is empty, is assumed. Its purpose is

to point at the first element and to keep the linked list from being null. This node doesn’t
contain any data, but only a pointer.

Representing linked lists with pseudocode

Suppose we have an object named student with the following properties:

Name (of type) string
Surname (of type) string
ID (of type) integer

A node object will have one additional field to store information about the reference to the
next node of the linked list:

Next (of type) pointer (or reference)

So the node of a single linked list that is used to store student objects should have the
following fields:

Name (of type) string

Surname (of type) string

ID (of type) integer

Next (of type) pointer (or reference) //reference to the next node

Itis clear that the node is not only the data that it stores, but it also includes a pointer.

Another approach would be to create two classes. A student class and a node class. In this

approach the data are not placed directly in the node. A reference is used in the node object
to represent the student’s data.

node Student

Student sl //reference to student Name of type string
object Next of type pointer (or Surname of type string
reference) ID of type integer

Table 5.3: Pseudocode for the two classes

It is important to mention that the ID will be used as the key value. So all linked list
operations (finding, inserting, deleting etc.) will be implemented according to this key.

5.1.13 Sketch linked lists

Exrt skllis Students should be able to':

| Sketch linked lists (sin ie double and cnrcuiar)
| Sketch diagrams illustrating:
r ® adding a data item to linked list.
e deleting specified data item.
e modifying the data held in the linked list.
e searching for a given item.

Single linked lists

Empty linked list Header

L List: _ (]

L List:

L List: NULL

Header

L List: | @

Figure 5.7: Possible representations of an empty linked list (L_List).

Adding (inserting}

After an element

L List:

Figure 5.8: Adding an element involves 4 steps: (a) find the node you want to insert after, (b) create the new
node, (¢) copy the pointer from the node that’s already in the list, (d) change the pointer in the node that’s
already in the list to point to the inserted node.

At the beginning

' New node

Figure 5.9: Inserting to the head involves the following steps: (a) create the new node, (b) make the new node
point to the old first, (c) make header node point to the inserted node.

3

At the ———
New node

Figure 5.10: Inserting to the tail involves the following steps: (a) create the new node, (b) make the new node
point to ng}ll, (c) make the old last node point to the new inserted node.

L List:

Deleting

After an element

L _List:

Figure 5.11: To delete a node, just change the link in its previous node to point its next node.

At the beginning

L List:

Figure 5.12: To delete the first node, change the link in the header to point to the next (second) node.

At the end

L List:

Figure 5.13: To delete the last node, change the pointer of the previous (second to last) node to point to NULL,

Modifying
To modify the data of a node one can follow two different procedures:
1. Delete the node and insert a new node with different data in the same position
of the list
2. Find the node and change its data by replacing it with the new data

Searching

To search for a specific element, in a sorted or unsorted linked list, linear search must be
followed. Starting from the first node, all elements are examined until the desired element is
found. If the element is not in the linked list, an appropriate message is returned.

Sorted linked list

Before discussing the advantages of sorted linked lists, it is useful to examine a program that
keeps all array elements sorted, in descending order, at all times. Keeping a list sorted makes
it possible to apply binary search, when searching for a data item.

The following program starts with an empty array of 10 elements. When an element is
inserted, the correct location is found in order to keep the array sorted in a descending
order. Deletion works by shifting elements, with higher index numbers, to fill in the gap left
by the deletion process. To find the position of an element to be deleted, binary search is
applied. The advantage of using an ordered array becomes apparent when binary search is
applied, since it performs much faster than a sequential search.

ARRAY = new Array (10) QUTPUT
n_elements = 0
element = 0 - inserting 4
searchKey = 0 Avvconons
C_index = 0 inserting 8
found = 0 8.r4rl!rrrrr
inserting 5
insert (4) Bl pnppn
insert(8) inserting 12
insert(s) 12}'8I574!flllf
insert (12) inserting 34
insert (34) A28 8IS AT,
insert (18) inserting 18
insert(15) 34,18,12,8,5,4,,,,
insert (23) inserting 15
insert (77) 34,18,15,12,8,5,4,,,
insert (1) inserting 23
del (15) 34,23,18,15,12,8,5,4,,
del (23) inserting 77
insert(99) 77,34,23,18,15,12,8,5,4,
del (11) inserting 1
del (4) 77,34,23,18,15,12,8,5,4,1
deleting 15
method insert (element) 77,34,23,18,12,8,5,4,1,
output "inserting", element deleting 23
j=0 77,34,18,12,8,5,4,1,,
k=20 inserting 99
loop while (j < n_elements 99,77,34,18,12,8,5,4,1,
AND ARRAY[]j]>element) deleting 11
3} & Sl 11 not found
end loop deleting 4
k = n elements 99,77,34,18,12,8,5,1,,
loop while k > j
ARRAY[k] = ARRAY[k-1]

L]
Ul

k=k -1
end loop
ARRAY[j] = element
n_elements = n elements + 1
output ARRAY
end method

method del (searchKey)
output "deleting", searchKey
LOW = 0
HIGH = n elements % 1
C index = 0
m =0
found = 0
loop while (LOW <= HIGH)
C_index = div ((LOW + HIGH), 2)
if (ARRAY{C_index] == searchKey)
then
found = 1
loop m from C_index to
n elements - 2
ARRAY [m] = ARRAY [m+1]
end loop
ARRAY [n elements - 1] = ""
n_elements = n elements - 1
output ARRAY
else if (ARRAY [C_index] >
searchKey) then
LOW = C_index + 1
else
HIGH = C index - 1
end if
end loop
if (found = 0) then
output searchKey, "not found"
end if
end method

Sometimes, it is very useful to maintain a sorted linked list. In such a linked list, all data are
stored according to a key value. A programmer can use a sorted linked list in the same way
that a sorted array is used. Although a linked list is more difficult to implement than a sorted
array, the advantages of a sorted linked list is that the elements do not need to be moved,
but only pointers need to be altered. This results in a high speed element insertion, which, in
addition to the fact that the linked list can easily expand to any size that is supported by the
available RAM, makes linked lists ideal in various situations. To insert an element in a sorted
linked list, one must first search through the linked list until he/she finds the correct place to
insert the new element. After that, the element can be inserted in the usual manner
described above.

Double-linked lists

In a double-linked list each node contains data, a pointer to its successor, and a pointer to its
predecessor. The header node points to the first node and to the last node of the list. If the
linked list is empty, the pointers point to NULL. The first node and the last node of such a list
are directly accessible without traversal, and allow traversal of the list from the beginning or

o

the end. The pointers of each node allow traversal of the list in either direction. Another
advantage of a double-linked list is that deletion and insertion before a node, become
2asier. A serious disadvantage of the double-linked list is the additional space used. The
double-linked list requires two pointers per node, and so it needs twice as much overhead as
the singly linked list. Applicatichs of double-linked lists include web browsers, where the
back and forward buttons are used for backward and forward navigation, implementation of
undo and redo functions etc.

D IL:

Figure 5.14: A double-linked list

Circular-linked lists

X circular list is a linked list in which the last link points back to the first link. In such a list it is
=asy to loop and access all nodes circularly, and one has the ability to traverse the entire list
starting from any node. The implementation of the circular-linked list is more complex and
=xira caution is needed so as not to end up in an infinite loop. Applications of Circular-linked
“sts include OS time sharing algorithms and multiplayer games.

L List:

o s s

-

Sinary trees will be examined at the level of diagrams and descriptions. Students are not:

=xpected to construct tree algorithms using pseudocode. Tracing and constructing:
olgorithms are not expected. -

5.1.14 Logical operation of trees

Exit skills. Students should be able to':

Trees combine the quick insertion and deletion of linked lists, as well as the quick searching
of an ordered array. Tress in general are fascinating dynamic data structures that have been
studied as abstract mathematical entities. They belong to the graph category and consist of
nodes that are connected by edges. In algorithms, nodes (usually circles or rectangles)
represent values or objects and the edges (lines) represent the way the nodes are
related/connected. In Java, edges are represented by references while in C++ by pointers.

levelltowslte—— e e

level/frow 2

Level/row 3 1

Top node

GanGompany. |- 7

Saleselsas s v Manufacturing §— R&D

Level/row 4

Europe

Other countries

Cars | Buses

Figure 5.17: A tree used to represent an abstract model of a hierarchical structure.

The top node is connected to two or more nodes on the next row. These nodes are
connected to more nodes on the next row. The resulting shape looks like a “real tree” that

was turned upside-down. Trees, in general, may have more than two children per node.
However, a binary tree may have 0, 1 or 2 children.

5.1.15 Binary-tree related terminoclogy

Exit skills. Students should be able to*:

3
The nodes below a given node are its children nodes.
Key | It is a data field of a node which may be used to search for the node or
" | perform other operations on it.
Leaf - Anode that has no chlldren is called a Ieaf
The level of a partlcular node refers to how many generattons the node is
Level from the root. If we assume the root is Level 1, then its children will be
| Level 2, its grandchildren will be Level 3, etc. |
Height | Number of edges from the top node to the deepest leaf (l e. the one that
Is furthest away). s e g
P AII nodes except from the root, which has no parent node, have exactly
- oneedge running upward to their parent node. :
. T Suppose one wants to travel from node to node along the edges that link

G anone them The sequence of nodes that are travelled is called a path.
Root The node at the top of the tree is called the root.
' Any node may be considered to be the root of a subtree. That subtree will

Subtree
| consist of the node’s descendants. Smo
- ' To traverse means to visit all the nodes of the tree in some specnfled
' Traversing |
. orden o .
- To visit a node means to arrive at a node for the purpose of performmg
Visiting . some operation on the node. If an algorithm passes over a node on the

path from one node to another then it is not considered a visit.
Table 5.4: Some common terms used in bmary tree

24 is the root node.

8 is the parent of D and E.

F and G are the children of C.

E is the right-hand child of B.

Fis the left-hand child of C.

D,E, F, and G are leaves.

The level of Eis 3.

The height of the tree is 2.

The ancestors of node E is A and B.
The descendants of node C is F,
a2nd G.

2 is the root node of the subtree
consisted of B and its descendants,
DandE.

Figure 5.18: A binary tree and the equivelant terminology

A tree that has at most two children is called a binary tree.

e

Figure 5.19: A binary search tree

A recursive definition of a binary tree is the following: Every binary tree has only one root.
Each node of the tree can be considered as the root of a subtree of the tree. Consequently,
every tree consists of a root and one or more subtrees. Each subtree is a tree.

In a binary tree when a node’s left-hand child has a key less than its parent and a node’s
right-hand child has a key greater than or equal to its parent, then the tree is a binary search
tree. These trees keep their keys in sorted order and allow fast lookup of data. The binary
search algorithm can be applied when looking for a particular key in the tree.

Representing a binary tree using pseudocode

Suppose we have an object named Student with the following properties:

Name of type string
Surname of type string
ID of type integer

A Node object will have two additional fields to store information about the references to
this particular node’s children:

Left Child of type Node
Right Child of type Node

So the Node of a tree that is used to store Student objects should have the following fields:

Name of type String

Surname of type String

ID of type Integer

Left Child of type Node //reference to Node’s left-hand child
Right_Ch;.ld of type Node //reference to Node’s right-hand child

It is clear that the Node encompasses more than just the data that it stores (i.e.: the Name,
Surname and ID). It may also include references to its children, if any.

Another approach would be to create two separate classes: a Student and a Node class. In
this approach the data are not placed directly in the Node. A reference is used in the Node
object to represent the student’s data.

 Node object Student object

' Student sl //reference to student Name of type string

| object Surname of type string
' Left Child of type node ID of type integer

' Right Child of type node

Table 5.5: Pseudocode for the two classes

It is important to mention that the ID will be used as the key value. As such, all tree
operations (finding, inserting, deleting etc.) will be implemented according to this key.

5.1.16 Tree traversal

Exit skills. Students should be able to':

e e e

Traversing a tree means to visit each node in a specified order. There are three ways to
implement tree traversal: inorder, preorder and postorder. All traversals work with all binary
trees, not only with binary search trees. But it is important to mention that the inorder

traversal of a binary search tree will visit all the nodes in ascending order, according their
key values.

Inorder traversal algorithm

It is assumed that the tree is not empty. The algorithm initially starts with the root node as
an argument and performs the following recursive steps:

1. The algorithm calls itself to traverse the node’s left-hand subtree.

2. The algorithm visits the current node.

3. The algorithm calls itself to traverse the node’s right-hand subtree.

In pseudocode this algorithm looks like:

in Order (localRoot)

if(localRoot '= null) then

in Order (localRoot.Left Child)
output localRoot.ID //ID is the key value
in Order (localRoot.Right Child)

end if

This rec@rsive method is first called with the root of the tree as an argument, as such:

in_Order (root)

Preorder traversal

It is assumed that the tree is not empty. The algorithm initially starts with the root node as
an argument and performs the following recursive steps:

1 The algorithm visits the current node.
2 The algorithm calls itself to traverse the node’s left-hand subtree.
3 The algorithm calls itself to traverse the node’s rlght-hgnd subtree.

In pseudocode this algorithm looks like:

pre_Order (localRoot)

if (localRoot != null) then
output localRoot.ID //ID is the key value
pre_Order (localRoot.Left Child)

pre_order(1oca1Root.RighE;Child)
end if

This recursive method is first called with the root of the tree as an argument, as such:

pre Order (root)

Postorder traversal

It is assumed that the tree is not empty. The algorithm initially starts with the root node as
an argument and performs the following recursive steps:

' 1. Thealgorithm calls itself to traverse the node’s left-hand subtree
2. The algorithm calls itself to traverse the node’s right-hand subtree

3. Visit the node //Recall that visit a node means to perform an action

In pseudocode this algorithm looks like:

post_Order (localRoot)

if (localRoot != null) then
post _Order (localRoot.Left Child)
post_Order (localRoot.Right Child)

output localRoot.ID //ID is the key value
end if

This recursive method is first called with the root of the tree as an argument, as such:

post Order (root)

Binary search tree Binary tree
Inorder: ABCDEFG-sorted in ascending order Inorder: DBEAFCG
. Preorder: DBACFEG Preorder: ABDECFG
: Postorder: ACBEGFD Postorder: DEBFGCA

Table 5.6: Examples of tree traversals

Tree traversal — g practical approach

Figure 5.21: Diagram that illustrates empirical tree traversal

The approach presented in Figure 5.21 is very useful and can be used during examination to
answer tree traversal questions. Suppose every node is illustrated as a circle and has four
points at 0, 90, 180 and 270 degrees. The names of these points are N for 0°, E for 90° s for
180° and W for 270° respectively. Figure 5.21 illustrates an orange coloured path that circles

the tree starting from the root. The path tightly follows the outline of the tree without
intersecting with any path or node.

In-order traversal: following the path, if you are able to approach the point S of a node then
print the name of the node: ABCDEFG

Post-order: following the path, if you are able to approach the point E of a node then print
the name of the node: ACBEGED

Pre-order: following the path, if you are able to approach the point W of a node then print
the name of the node: DBACFEG

Infix, prefix and postfix notation

A binary tree can be a valuable tool to symbolize an algebraic expression that involves
operands and operators (+, -, /, *). The root holds an operator, and the other nodes of the
tree hold either an operand or an operator. Each subtree is an algebraic expression. Three
notations may be used: infix, prefix or postfix.

® Inthe infix notation an operator is placed between two operands.
® In the postfix notation the operator follows the operands.
® Inthe prefix notation the operator comes before the operands.

In the infix notation an algebraic expression such as X*(6+Y)/Z means:

e ADD6 AND Y TOGETHER.
® MULTIPLY THE RESULT OF THE ABOVE OPERATION BY X.
* DIVIDE THE RESULT OF THE ABOVE OPERATION BY Z.

It is clear that precedence of operations, left associativity and brackets play an important
role.

In the postfix notation (a.k.a. reverse polish notation) operators are written after their
operands. The expression given above can be written as X 6 Y + * Z /. Brackets cannot be
used to change the order of evaluation of operators which is always left-to-right. So in
postfix notation, operators act on values that are immediately to the left of them. For
example:

e THE+USESTHEGANDY.
e THE * USES THE RESULT OF THE ADDITION AND X.
e THE /USES THE RESULT OF THE MULTIPLICATION AND Z.

In the prefix notation (a.k.a. polish notation) operators are written before their operands.
Operators are evaluated from left-to-right and brackets are unnecessary since operators act
on the two nearest values to the right. The expressions given above can be written as:
/* X +6YZ. In this example:

e THE + USES 6 ANDY.
e THE * USES THE RESULT OF THE ADDITION AND X.
e THE/USES THE RESULT OF THE MULTIPLICATION AND THE Z

: X * Y+Z /2 ‘
SEUea) 2 xVZEc2) JRRGTED
X2) NPAAY e X Y22 |
Table 5.7: Examples of different notations

™
Traversing a binary tree (expression tree) using preorder would generate the prefix notation

while traversing an expression tree using postorder would generate the postfix notation.

szl Xy 22

Expression Expression Expression
(infix). {prefix). {postfix).
: Tree
inorder postorder preorder
traversal traversal traversal
(2+3)*6 *4+236 23+6*
- 7/9)+5)*6 *+/7956 79/5+6*
Wei5)/(6%32) | / /46 *632| 46 /632 */
BEG2/c | /28636 8675346/

Table 5.8: Various expressions their notations and the equivalent binary trees’

* Tool used: http://cstar.iiit.ac.in/~kkishore/DSVL/exp6/exptree.swf

5.1.17 Sketch binary trees

Adding a new data item in a binary search tree.

Adding a new data item means to add a new object. An object is added in the correct
position of the tree as a node according to its key value. Thus, adding a new data item is
similar to adding a new node.

Searching for a particular data item in a binary search tree

Searching for a particular data item involves comparing the value to be found with the key
value of a node, and following:

* that node’s left-hand child if the search value is smaller than the current node’s key
value.

® the node’s right-hand child if the search value is greater than the current node’s key
value.

Finding the minimum value in q binary search tree

Move to the left-hand child of the root.

Then move to the left-hand child of that child.

Repeat the process until you find a node that has no left-hand child.

The key value of that node is the minimum value in the binary search tree.

F 0 SR

Finding the maximum value in a binary search tree

Move to the right-hand child of the root.

Then move to the right-hand child of that child.

Repeat the process until you find a node that has no right-hand child.

The key value of that node is the maximum value in the binary search tree.

ORI

Adding one or more new nodes to a binary search tree.

To insert a new node into a binary search tree, follow the steps:

1. If the binary search tree is empty, insert the new node at the root.
2. If the binary search tree is not empty, follow the rooti to the parent of the node

P

to be inserted. The parent will be a leaf node. Insert the new node, according
to the following rules:
a. If the key of the new node is smaller than the key of the parent node,
then connect the new node as the parent’s left-hand child.
b. If the key of the new node is greater than the key of the parent node,
then connect the new node as the parent’s right-hand child.

To follow the root, simply compare the key value of the node that needs to be inserted with
the root’s node key value. If it is smaller, then move to the left-hand subtree. If it is greater, :
then move to the right-hand subtree. Continue with the next node and repeat the above :
process, until a leaf node is reached.

Duplicate keys
To deal with duplicate keys two methodologies may be applied:

1. The first and safest is to forbid the existence of duplicate keys. The candidate
numbers of IB students, the tax identification numbers, the car license and
registration numbers etc. are all unique and are used as key fields for searching,
deleting and adding operations.

2. The second is to modify the insertion process so as to insert a node with a duplicate
key as the right-hand child of the node with the same key. This will cause minor

' problems during the searching process, since when the first node, with a given key,
is found the searching algorithm will stop and return the requested data. Of course
this problem is solvable. A new searching algorithm may be put in place to
accommodate for the existence of duplicate keys. However, the new searching
algorithm would be a bit more time-consuming, as it would need to keep on
searching the tree even after the first node, with a given key, was found.

Removing one or more nodes.

Deleting a node is important in many tree applications and involves three cases:

1. The node to be deleted has no children:
The node can just be deleted. The appropriate child field in the parent node must be
changed to point to NULL, instead of pointing to the node that needs to be deleted.

2. The node to be deleted has one child:
Just connect the parent of the node to be deleted directly to the child of the node to
be deleted. Change the appropriate reference in the parent (Left_Child or
Right Child) to point to the deleted node’s child.

3. The node to be deleted has two children:
Replace the node to be deleted with the node that has the largest value in its left-
hand subtree (inorder successor) or the node with the smallest value in its right-
hand subtree (inorder predecessor).

Example of adding and deleting nodes in a binary search-tree

The following table provides a detailed example of inserting and deleting operations in a
binary search tree:

Inserting 0123:
® Thetreeis empty so 0123 is the
root node.

Inserting 1123;
e 1123>0123 $0 1123 goes to the
right. :

Inserting 0045:

® 0045<0123 so 0045 goes to the
left.

Inserting 1456:
e 1456>0123 so move right to
1123.
® 1456>1123 so 1456 goes to the
right.

Inserting 8765:
* 8765>0123 so move right to

1123.

® 18765>1123 so move right to
1456.

® 8765>1456 so 8765 goes to the
right.

Inserting 0013:
e 0013<0123 so move left to
0045.
e 0013<0045 so 0013 goes to the
left.

Inserting 0234:

0234>0123 so move right to
1123.

0234<1123 so 0234 goes to the
right.

|

Inserﬁng 0785: '

0785>0123 so move right to
1123.

0785<1123 so move left to
0234.

0234<0785 so 0785 goes to the
right.

i

Inserting 0026:

0026<0123 so move left to
0045.

0026<0045 so move left to
0013.

0026>0013 so 0026 goes to the
right.

Inserting 0047:

0047<0123 so move left to
0045.

0047>0045 so 0047 goes to the
right.

Deleting 8765:

e 8765>0123 so move right.

e 8765>1123 so move right to
1456.

e 8765>1456 so move right.

e The key is found it is the child of
1456.

e Delete 8765.

Deleting 0013:

e (0013<0123 so move left to
0045.

e (0013<0045 so move left.

e The key is found; it is the child
of 0045 and has 0026 as its
child.

e Delete 0013 and connect 0045
to 0026.

Deleting 0045:

o (0045<0123 so move left to
0045.

e The key is found; it is the child
of 0123 and has two children.

e The greater value of its left-hand
subtree is 0026. Delete 0045
and let 0026 to take its position.

Deleting 1123:

e 0123<1123 so move right to
1123.

e The key is found; it is the child
of 0123 and has two children.

e The greater value of its left-hand
subtree is 0785. Delete 1123
and let 0785 take its position.

Deleting 0123:
e This is the root.
e Replace it with the greater value
of its left-hand subtree.
o Delete 0123 and let 0047 to take
its place.

Table 5.9: Adding and deleting node operations in a binary search tree’

Balanced trees

An unbalanced tree is a tree whose left or right-hand subtree has a lot more nodes than the
other subtree. Binary search trees become unbalanced because of the order in which the
data items are inserted. In most cases, insertion of data items with random key values result
in, more or less, balanced trees. However, if the data items inserted present an ascending or
descending sequence of their key values, then the trees becomes unbalanced. For example,
if one enters the data items with key values 1, 2, 3, 4, 5 or 5, 4, 3, 2, 1 then he/she will have
an unbalanced binary tree. But if one enters 3, 1, 5, 2, 4 then he/she will have a balanced
tee.

Figure 5.22: Two unbalanced and one balanced (on the right) tree with the same data items.

Inserting 1, 2, 3, 4, 5 0or 5, 4, 3, 2, 1 are two extreme cases that both result to trees with no
branches. These trees act like linked lists. One has to search (on average) through half the
items to find the data item that he/she is searching. So instead of O(logN), of a balanced
tree, one ends up with the O(N) of a linked list. Searching through 100000 items in an
unbalanced tree requires 50000 comparisons. In a balanced tree this would require only 17
comparisons.

Suppose one wanted to insert "ABCDEFGHIJKLMOPQRSTUVWXYZ" in two different binary
search trees, Figures 5.23 and 5.24. To find J in the first binary search tree he/she would
need to follow the path Y, G, S, §, P, O, L, I, K, J (9 comparisons). To find J in the second
tree he/she would need to follow the path K, B, F, H, I, J (5 comparisons).

Figure 5.23: Unbalanced tree®

Figure 5.24: Better balanced tree

* Tool used: http://www.algomation.com/algorfthm/binary—tree—insert-delete-display

Applications

5.1.18 Definition of the term dynamic data structure

Exit Ski"S Students hould be able to":

A dynamic data structure changes its size at execution time as required by its elements.
Allocation and de-allocation of memory is controlled by the data structure.

5.1.19 Comparison of static and dynamic data structures

it skills. Students should be able to':

DAM‘E, STATIC

...... o i e ale
 Memory is allocated at compile time. The 1‘

Memory is allocated to the data structure i ry p
: : : ' size is predefined and can never change
dynamically i.e. at run-time. An example of

5 - ~ during run-time. An example of a static
a dynamic data structure is a stack | 2 & |

| data structure is a stack implemented usin |
lmplemented using linked lists. | ' B &

,,,,,,,,,,,,,,,, 2 arrays. R i s
Advantages L Advantages s |

J[e The memory aliocatlon is flxed and
as such there will occur no problems |

e Makes the most efficient use of RAM | when adding or removing data

as it only uses as much memory as it items. |
needs. | e FEasier to program as there is no ‘
e One does not need to know or need to check upon the data !
decide upon the size of the data structure size. '}
structure in advance. e The space reserved in RAM will |
always be available, in order tobe
Gt ety s o L used by the data structure. |
o Disadvantages e Disadvantages :
° leen that the memory aIIocat|0n et o Canbe very inefficient as the |
dynamic, it is likely that the structure memory for the data structure is |
will 'overflow' should it exceed its predefined. 1‘
allowed limit or 'underflow' should it ! e Fven when the array has no data |
become empty. i elements in it, it still takes up the
e In most cases algorithms with RAM space that was allocated at
dynamic data are slower, during compile time. I
execution, than algorithms with | e Sometimes it is difficult to predict }
static data structures. 5 the required array size.
e Random access is not allowed and e In asorted array, inserting a new l‘
elements should be visited 1 element in the correct positionor

seovien ity s s e e s NOCICNE a0 existing one, requires |

i e Assuch, there is no way to shifting of other elements.
‘ implement binary search. ’
. e More complicated to program as the
| software needs to keep track of its }
} size and data item locations at all ,
e times. |

Table 5.10: Comparison of dynamié and static data structures

Data

| stenure s

_____ Average . ; ; ; '7\'#\!70_5_‘1: |
B | Access | Search Insertipinij Deletion 4_.7Acces§4'7§garch | Ins_er_tigq__% Deletion
Byl o0 o RO Ao ol oS B0 LRI Ol O
- Binary i ‘ ‘ l
| Search | Oflog(n)) | Oflog(n)) = Oflog(n)) . Oflog(n)) O(n) . 0Ofn) OfmE IR (0] O(n)
Tree Soeveip SUREEE T e e s Lo iy A
~ Double- } i 1
| linked | ©(n) | oM@ | o@ o) o . Ofn) | @@ . @
| oLst | ! e [e
TR @ Ok | @m0 ek Gl | B B B
Singly- ; : e | : ‘:
[Rtinked S o (RO (7 S OH I O (T RO) o) oMo o (n)
U oW @E) | e | @E Ly CH o) . o) o(n)

Table 5.11: Efficiency of various data structures

5.1.20 Suible strtures T

Exit skills. S ol

An Abstract Data Type (ADT) is just an abstract conceptual tool. All data structures can be
used to implement ADTs. A (static) linked list can be implemented using an array and an
array-type structure can be implemented using a linked list. Building a linked list using an
array is the option for primitive level languages and assembly languages that require fixed

size data structures and do not support dynamic memory allocation. ADTs are conceptual
models that abstract their fundamental data structures (the data structures that are used to
implement them) and are used with some specific purpose in mind.

Stacks and queues are examples of ADTs that may be implemented either by using arrays or
linked lists as their fundamental data structures. The important thing for a queue is to have
an enqueue () and a dequeue () method. This can be achieved regardless of the use of an
array, a linked list or a double-ended linked list. For a dynamic implementation of a stack the
push () method would be implemented using the Linked List. insertFirst (data)
call, while the pop() method would be implemented using the node =
Linked List.deleteFirst() call. The user of the stack just uses the methods, without
bothering with the details of the implementation (abstraction for the user), while the
programmer, who has actually implemented the stack methods, knows the underlying
programing mechanisms.

Binary trees can be represented using arrays. In the array approach, the nodes are stored in
an array and are not linked by references. The index of the node in the array matches the

sosition in the tree. The node at index O is the root node, the node at index 1 is the root’s
‘=ft-hand child, and so on. This method is not very efficient. Empty nodes and deleted nodes
‘=ave holes in the array, occupying RAM, and when the deletion of a node involves moving
subtrees, a lot of elements of the array must change position, resulting in a very time
consuming operation.

Data

BENEFITS DRAWBACKS
structure _

Fast insertion L Slow sea-ch
Array Fast access of an element with a Slow deletion
. & knownlindex IR Fixed size
o Slow deletio
Ordered More efficient search than unsorted = B L
? Slow insertion
array array

Fixed size

Stack

Models physical stacks

| Provides Last-In, First-Out (LIFO).
Models physical queues
Provides First-In, First-Out (FIFO).

Slow access to other elements

Queue Slow access to other elements

S . Fast insertion
Linked list : Slow search
Fast deletion

< . Fast search
Binary search : :
Fast insertion

tfree : |
Fast deletion i 1

End of chapter example questions with answers

Example 1
Question

The following table shows basketball players and scores, from a game.

_Ronald 5

1. Construct a binary tree that will store the data of the table, given above, in the order

of scores.
2. Construct the diagram of a linked list that will store the table data in ascending

order.
3. Compare the use of the binary tree with a linked list.
4. State what will happen if we enter the scores data, in a binary search tree, in the

following order: John, Ronald, James, Mark, Jeff.
Answer

1. The resulting binary search tree will be:

Left Pointer
| Right Pointer |

Left Pointer

)

]
+—
=

o
o
)
o=
koo
o

| Right Pointer |
Left Pointer

Ronald

Left Pointer

| Right Pointer

| Right Pointer |
Left Pointer

2. The resulting linked list will be:

Ronald

Pointer
Pointer
Pointer

3. Differences between the two data structures
a. Binary search can be applied in binary search trees while linear search
can be applied in linked lists. So it is faster to search a balanced binary

search tree.
b. A binary search tree uses two pointers for each node while a single
linked list only one. So, a linked list needs less storage
4. The binary search tree will become unbalanced and the search for an element
will be the same as in the linked list.

Example 2

Question
State three disadvantages of a recursive algorithm.
Answer

e |tis more difficult to write.
e Itis more difficult to maintain.
e An overflow error may occur if the stack runs out of space.

Example 3

Question

Explain how an element stored in a linked list could be found.

Answer

1. Start from the beginning (head) of the list.

2. Follow the pointer to the first node.

3. Compare the data in this node with the data to be found.

4. |f the data is found, stop.

5 If the data is not found, follow the pointer of this node to the next node.
6. Repeat from step 3 until the data is found or the end of the list is reached.

NULL

Example 4

Question
How is a queue best characterized?
Answer

First-In First-Out

Example 5

Question

Given an empty queue Queue, what does it look like after the following instructions?

Queue. enqueue (6)
Queue. enqueue (8)
Queue.dequeue ()
Queue.enqueue (3)
Queue .dequeue ()

Answer

3

Example 6

Question
What is the reason for using a "circular queue”?
Answer

Reuse empty space.

Example 7

Question

Suppose there is a circular array-based queue implementation is capable of holding 10
elements. Show the array after the following code is executed:

loop m from 1 to 7
engueue (m)

end loop

loop m from 1 to 7
enqueue (dequeue ())

end loop

Answer

front =

redr —

value 4 5 1617 5|
Clrcular Queue contentsl 2,3.4°5) 6 7

Example 8

Question

Suppose there is a circular array-based queue implementation capable of holding 10
elements. Show the array after the following code is executed:

loop m from 1 to 3
enqueue (m)

end loop

loop m from 1 to 2
enqueue (dequeue ())

end loop

loop m from 1 to 2
enqueue (dequeue ())

end loop

Answer

front
rear

Value

Carcular Queue contentsz 3 1_ =

Example 9

Question
Is it possible to implement a queue using two stacks?
Answer

Yes. Two stacks are needed: an input and an output stack. All elements, at any time, must be
either in the input or the output stack. When enqueuing, the elements are pushed in the
input stack. When dequeuing, all the elements are popped from the input stack and pushed
onto the output stack. The top element is then popped from the output stack to get the
dequeued element. To add (enqueue) more elements one must pop the remaining elements
from the output stack, push them to the input stack and add (push) the new element(s).

Example 10

Question

Which type of traversal always gives the sorted sequence of the elements in a binary search
tree?

Answer

Inorder traversal

Example 11

Question

What is the maximum number of children that the largest element of a binary search tree
must have?

Answer

Example 12

Question

What is the maximum number of children that the smallest element of a binary search tree
must have?

Answer

Example 13°

Question
Draw a binary search tree such that:

e each node stores a single number and
® apreorder traversal yields 6, 3, 4, 13, 10, 9, 11, 14 and
® apostorder traversal yields 4, 3, 9, 11, 10, 14,13, 6.

> Tool used: http://btv.melezinek.cz/binary-search-tree.html

Answer

Example 14°

Question
Draw a binary tree such that:

e each node stores a single number and
e aninorder traversal yields 30, 20, 4, 15, 9 and
e apreorder traversal yields 20, 30, 15, 4, 9.

Answer

Example 15

Question

What value does method a return when called with a value of 47

a (number)

® Tool used: http://btv.melezinek.cz/binary-search-tree.html

if (number <= 1) then
return 1
else
return a * a(number - 1)
end if

Answer

24 (i.e.: 4*3*2%1 = 24)

Example 16

Question
Which of the following data structures is not a dynamic data structure?

Array.
Binary tree.
Linked list.
Stack.

RIS

Answer

Array

Example 17

Question
Describe why the use of recursion is memory-intensive.

Answer

When a recursive method calls itself, all previous method calls are still open. The call stack
(or execution stack) is composed of many stack frames (or activation records). Each stack
frame relates to a method call. All stack frames of the previous method calls still occupy
space in the execution stack.

Example 18

Question

Identify the type of linked list that:
1. starts with a pointer to the first node and
2. contains a pointer from each node to the next node and
3. in which the pointer in the last node points to the first node.

Answer

Circular, singly-linked list.

Example 19

Question
Do binary search trees always have the same shape for a particular set of data?
Answer

No, it depends on the order in which the values were inserted.

Example 20

Question

A piece of software finds the probable origin of a last name. When a user enters his/her last
name he/she can find its origin. The following table shows some examples:

Lastname Origin _
Farmery York
Peters Athens
. Woodcock Hertford
' Angel London
Carpenter - Salisbury

1. Construct the binary tree that stores the data from the table above in alphabetical
order by last name.
2. Construct a linked list to represent the same data in alphabetical order by last name.

Answer

Farmery

York

(B
Left Pointer
Right Pointer

Angel Peters

Athens

Left Pointer
Left Pointer
Right Pointer

London

Right Pointer

Carpenter Woodecock

Hertford

Right Pointer

Left Pointer
Right Pointer
Left Pointer

Salisbtiry

Farmery Woodcock

Angel Carpenter

Pointer
Pointer
Pointer

Salisbury Athens

tondon

Example 21

Question

An application records the personal best times (in minutes) of competitors in a tournament.
The program stores the data as they arrive in a sorted linked list according to the best times.

Part of the data structure is given below:

Peters Weodcock

Farmery

Pointer
Pointer
NULL

Carpenter had a best time of 12 minutes. Explain how this new node should be added to the
above linked list.

Answer

A new node is created with the data of the competitor:

Carpenter

TEMP

Pointer

Then, the

pointers are adjusted:

Farmery

Carpenter

The resulting linked list is the following:

Carpenter

Pointer

Answer

1.

3.

Example 22

Question

Simulation of processes.

Farmery.

Jab queue that contains jobs to run.

Pointer

State three applications of queues in computer science.

Pointer

Peters

Waoodcank

Pointer

2. Transfer of data between /O devices (e.g.: keystrokes of keyboard).

NULL

Wobdcbek

NULL

Example 23
Question

State three applications of stacks in computer science.
Answer

1. In evaluating expressions.

2. To store return addresses.
To copy the parameters of a method onto a parameter stack before performing a
method call.

Example 24

Question

Calculate the value of the following postfix expression:
234+*5—

Answer

2*(3+4)-5=9

Chapter References

10.

11.

12.

13.

14,

15.

16.

17.

International Baccalaureate Organization. (2012). IBDP Computer Science Guide.
Tower of Hanoi. (2015, November 17). In Wikipedia, Free Encyclopedia. Retrieved
14:03, November 17, 2014, from https://en.wikipedia.org/wiki/Tower_of_Hanoi
Sedgewick, R., & K. Wayne. (2016). Stacks and Queues, Retrieved 10 July 2016, from
http://introcs.cs.princeton.edu/java/43stack/

Sedgewick, R., & K. Wayne. (2016). Binary search trees, Retrieved 10 July 2016, from
http://algs4.cs.princeton.edu/32bst/

Shaffer, C. (2009). Practical Introduction to Data Structures and Algorithms, Java
Edition, Prentice Hall.

Lafore, R. (2002). Data Structures and Algorithms in Java, Second Edition, SAMS.
Jinks, P. (2012). Infix, Postfix and Prefix, Retrieved 1 August 2016, from
http://www.cs.man.ac.uk/~pjj/cs212/fix.html

Parlante N. (2000). Pointers and Memory, Retrieved 5 July 2016, from
http://cslibrary.stanford.edu/lOZ/PointersAndMemory.pdf

Rowell, E. (2016). Big-o, Retrieved 10 July 2016, from http://bigocheatsheet.com/
Kothapalli, K. (2016). Expression trees, Retrieved 15 July 2016, from
http://cstar.iiit.ac.in/'“kkishore/DSVL/expG/exptree.swf

Parlante N. (2001). Linked List Basics, Retrieved 15 July 2016, from
http://csiibrary.stanford.edu/103/LinkedListBasics.pdf

Parlante N. (2001). Binary trees, Retrieved 15 July 2016, from
http;//cslibrary.stanford.edu/llO/BinaryTrees.htmI

Meech, D. (2016). Algomation, Retrieved 1 August 2016, from
http://www.aIgomation.com/algorithm/binary—tree-insert—delete—display

Galles, D. (2016). Data Structure Visualizations, Retrieved 15 August 2016, from
https://www.cs.usfca.edu/"’gal|es/visualization/AIgorithms.htmI

Melezinek, J. (2016). Binary Tree Visualizer, Retrieved 15 July 2016, from
http://btv.melezinek.cz/binary-search-tree.html

Dimitriou K. Hatzitaskos M. (2015). Core Computer Science for the IB Diploma

Program. Athens: Express Publishing. More information at:
https://www.expresspubIIshing.co.uk/gr/en/content/core-computer—science—ib—
diploma-program

Halim, S., F. Halim, et al. (2016). Visualgo, Retrieved 1 August 2016, from
http://visualgo.net/

Chapter 2

Topic 6 — Resource management
6.1 Resource management
System resources

6.1.1 Identification of critical resources

Exit skills. Students should be able to:

System resources include computer hardware, software, trained personnel and supporting

infrastructure. A critical factor when dealing with computer systems is the management &
resources. Most resources present limited availability and should be managed with caution
In most cases the Operating System (QS) is responsible for the successful management o
hardware and software resources. Different computer systems have dissimilas |
specifications, capabilities and purposes to fulfill. Some critical hardware resources include:

Primary memory

All processed data and instructions and all resulting data have to be stored in the primany
memory. Primary memory is directly connected to the processor and feeds the processar
with the required data by the fetch, decode, execute cycle data and instructions (Machine
Instruction Cycle). Sometimes the primary memory is also referred as Immediate Access
Store. Primary memory should be considered as an addressable matrix of cells with a unigus
address for each and every cell.

RAM and Cache memory

All data and instructions held in RAM may be altered at any time. There are two types o
chips used for RAM: static RAM and dynamic RAM. Static RAM is a type of semiconducizr
memory that holds data for as long as there is power supply to the memory circuits. Daz=
stored in a dynamic RAM semiconductor gradually leaks away and needs to be refreshes
periodically. DDR-SDRAM (Double Data Rate - Synchronous Dynamic RAM) is a typica
example of semiconductor technology used to build RAM chips in modern PCs. Static RAM =
more expensive, needs more transistors per byte but is faster than DRAM. Both SRAM an=
DRAM are volatile and used concurrently nowadays. DRAM is used in large quantities =

! International Baccalaureate Organization. (2012). IBDP Computer Science Guide.

primary memory while SRAM is used in small quantities to speed up the overall performance
by the caching technique, which balances the speed of DRAM with that of the much faster
processor. The much faster SRAM is placed between the processor and the DRAM and
directly feeds the processor. Data is moved from DRAM to SRAM and then to the processor
and vice versa. This process has maximum benefits and performance when frequently-used
instructions and data are stored in SRAM. The task of storing the correct data in SRAM is not
always an easy task. Level 1 cache memory is usually built onto the processor while level 2
cache memory is on a separate chip located between the processor and the larger DRAM.

ROM

Read Only Memory (ROM) is non-volatile and slower than RAM. ROM is used to hold critical
instructions used to start up a PC. A common use of ROM is to hold the Basic Input Output
System (BIOS) which makes it possible for a PC to boot and sometimes to hold the entire OS
for old small home computers (e.g.: Personal CP/M ROM-based version of CP/M 2.2 for
small home computers developed by Digital Research Inc. and MSX Small ROM-based
version of MS-DOS for Z80 home computers developed by Microsqft Corp.). ROM is also
used in embedded microprocessors, microcontrollers and control systems.

Secondary storage

Secondary storage, auxiliary storage and backing store are terms that refer to hardware
that provide data integrity, low cost, mass storage capacity and permanent storage. There
are two broad types of secondary storage devices: the first uses direct access while the
second uses sequential access.

Direct access storage techniques

The devices that fall into this category have the ability to access, retrieve and store any
particular data without having to read through all previous data. Floppy disks, CD-ROMs,
Hard disks, DVDs, USB sticks etc. belong to this category.

Sequential access storage techniques?

The devices that fall in this category have to read sequentially through all previous data
before locating the requested data. Magnetic tapes, which belong to this category, are not
only used in old science fiction movies, and are certainly not a dead technology. It is a major
storage medium and recently IBM Research and Fuji Film have produced a magnetic tape
with a record density of 123 billion bits of uncompressed data per square inch. This
technology allows secure storage for 30 years, built-in data encryption, low cost and less
energy consumption. Magnetic tapes are ideal for backup purposes.

Processor speed

A processor repeats the fetch, decode, execute cycle continuously as long as the computer is
turned on. MIPS (Million Instructions Per Second) is used to measure the performance of a
processor. MIPS is only an approximation of a processor’s performance since it does not take
into account the fact that sometimes a single instruction may operate on many operand

2 |BM sets new tape storage record. (13, April, 2015). In New Atlas. Retrieved 19:05, June 13, 2016,
from http://www.gizmag.com/ibm-tape-storage—record/36931/

fetches and stores, some instructions have a higher effectiveness than others, and some
processors have the ability to execute several instructions simultaneously.

Processor Clock Frequency (Master Clock MCLK) _
= Average number of clock Cycles Per complete Instruction (CPI) * 1000000

U e i
L TR R L

cycles /second million instructions
T 7 Ereles = second
L (instruction) =1000000 :
b i

e e e et e g e R o S e e e S e s e et s s et S

The clock rate refers to the frequency at which the processor is running and is commonly
used as a rough indicator of the processor’s performance. The unit used is hertz and in the
case of multicore processors the clock rate is the same for all cores. The clock rate of
modern processors is measured in gigahertz (GHz). It is very important to mention that the
clock rate should not be used as a perfectly reliable measure of the performance of different
processor families. L—

Figure 6.1: Installation of a modern processor in a CPU socket on the motherboard

Bandwidth

Memory bandwidth is the rate at which data can travel from SRAM and DRAM to the
processor and vice versa and is essential to the performance of a CPU. It is expressed in
millions of bits per second or in Mb per second (Mb/s). The peak theoretical bandwidth,
which is typically one word per bus cycle, is not the same as the sustained memory
bandwidth, which is less and is affected by various design features.

Screen resolution

21l digital television sets, computer monitors, tablet touch-screens and mobile phone
screens have a maximum number of distinct pixels that can be used to display video,
pictures, text etc. This is mentioned as Maximum resolution = Width x Height, where Width is
the number of distinct pixels in the horizontal dimension and Height is the number of
distinct pixels in the vertical dimension. Most devices can support a number of different
resolutions. A rule of thumb is that higher resolutions need more memory and more

processing power.

1920 pixels 3840 pixels

1080 pixels
2160 pixels

Ultra HD
(UHD/4K)

Full HD
(FHD)

7680 pixels

4320 pixels

Full Ultra HD
(FUHD/8K)

Figure 6.2: TV display with resolution comparisons

Disk storage

Disk storage is a general category of metal or plastic storage plates on which data can be
recorded. The rotating disk(s) are mounted on a central spindle. Common disk storage
devices are the hard disk drive (HDD), the floppy disk drive (FDD) and various optical disc
drives. Nowadays HDD, solid state drives (SSD) and solid state hybrid drives (SSHD) are the
main disk storage systems used in most computers. SSDs are very expensive, very fast, more

durable and consume less energy.
HDDs are very cheap, present slower
boot times, can cover all storage
requirements and are cost-effective.
SSHD share the benefits but also the
disadvantages of HDDs and SSDs and
they probably provide the best
affordable combination of perform- : _
ance characteristics. 7

Sound processor

Sound cards facilitate the input,
process and output of audio signals.
In most cases they are integrated

Figure 6.3: Hard disk

onto the motherboard, while some
advanced models are sold as separate
cards that use an expansion slot of
the motherboard. Professional sound
cards act like audio interfaces and are
hosted in external rack-mountable
units and connect through USB,
FireWire, or an optical cable. Sound
processors have the ability to convert
analog sound to digital files, digital

files to analog sound and process Figure 6.4: Sound card
multiple audio channels.

Graphics processor

General-purpose processors are not efficient at running demanding computer-generat=c
imagery algorithms. This is the primary reason for the evolution of GPUs (Graphics
Processing Units). Modern GPUs are massively parallel processors, very efficient ==
manipulating and processing graphics and
images. Their technical characteristics make
them ideal for running algorithms that require
processing of large blocks of graphics data and
computer generated imagery. Their rapid
evolution has been driven by the video game
entertainment industry, which is a fast growing
sector with great potential. Faster GPUs are sold
as separate cards that use an expansion slot of

the motherboard, while some low-end models

are embedded on the motherboard or are Figure 6.5: Graphies card

integrated with the main processor circuit.

Network connectivity

Some computers have various network connectivity capabilities. A laptop which is equipped
with both a wired Network Interface Card (NIC) and a wireless NIC will outperform a tablet
which is only equipped with a wireless NIC. in this case, the laptop presents a better network
connectivity solution. On the other hand, a lot of modern tablets are 4G enabled meaning
that they have SIM (Subscriber Identification Module) card slots. This greatly enhances their
ability to work and stream various media on the move.

6.1.2 Availability of resources

Exit skills. Students should be able to:

Mainframes

Together with supercomputers, mainframes, or “big iron” are the flagships of computing.
They are used by large organizations for critical applications, to handle large-bandwidth
communication, bulk data processing such as census, industry, defense, consumer statistics,
enterprise resource planning and large-scale transaction processing. [BM is the leading
company in the sector of mainframe production and in 2015 announced the production of
7133, Mainframes are the largest computer systems available and are typically housed in
isolated, air-conditioned rooms. Mainframes are equipped with extremely great processing
power, vast amounts of RAM, arrays of disks and backup tapes, and serve hundreds of user
terminals. They are able to handle high volumes of input and output and run a lot of
different applications concurrently.

Figure 6.6: Mainframe

® The digital revolution demands a better server. In /[BM. Retrieved 20:05, June 14, 2016, from
http://www-03.ibm.com/systems/z/hardware/z13.html

Supercomputers

They are very fast and expensive, and
focus on mathematical calculations,
weather forecasting, climate research,
molecular modelling, scientific and
engineering applications. The perfor-
mance of a supercomputer is meas-
ured in floating-point operations per
second (FLOPS). New supercomputers
exceed 10 PFLOPS drawing on the
power of more than 30000 processors.
The first supercomputers were comp-
act designs that used the local

parallelism approach, while the latest
designs are considered as massively HiEle s 2 A supercomputer
parallel systems equipped with multiple arrays of computers and processors.

Servers

A server is software, hardware, or both and provides various services to clients. The client-
server model is fundamental in computer networking and modern servers serve database,
file, email, game, application etc. requests from various clients. Servers need multiple
network connections for advanced performance, a lot of RAM to support multiple requests,
fault tolerance and ease of repair without the need of shut down, advanced backuso
facilities, superior security characteristics and various automation capabilities.

PCs

Microcomputers and home computers were the first terms used to describe what we now
call Personal Computers (PC). Years ago the computer hierarchy had three classes:
mainframes, minicomputers and microcomputers. The term PC is widely used to describe 2
device capable of supporting the computational needs of one user at a time. Nowadays PCs
are inexpensive solutions that can run various software applications. Popular OSs for PCs
are MS Windows, MacOS and LINUX.

Laptops

The rapid change in working patterns and the increased need for mobility have favored the
popularity of mobile devices. Modern laptops are not a compromise in comparison to a PC.
Moreover, they have long-lasting batteries that can be used to support hours of computing.
Laptops, mobile workstations, desktop replacements, sublaptops, notebooks and
subnotebook are terms used to describe mobile PCs with different weights and dimensions,
as well as graphic-displays, processors, RAM, secondary storage and battery capabilities. It
is important to mention that most laptops include input devices like a camera and a
microphone and output devices like speakers. Touch-screens are now widely used as input
devices and facilitate tasks such as drawing and editing.

Tablets

A tablet is a mobile computer equipped with a touch-screen display which is used as both an
input and an output device. Tablet users can take advantage of the touchscreen to enter text
using the virtual keyboard or the built-in handwriting-recognition facility. The use of various
gestures completely replaces the need for a mouse, while finger and stylus pens are widely
used in all applications. iOS, Android and Windows are the major OS for tablets. Hybrid
tablets have a detachable keyboard and closely resemble laptops. Tablets are equipped with
sensors like fingerprint, three-axis gyro, GPS and accelerometers, front and rear cameras,
Bluetooth for connecting peripherals, Wi-Fi for networking and powerful batteries.
Specifications for high-end tablets include 2732x2048 pixels display, 12.9” screen, 128 GB
internal storage, 3 GB RAM, slot for 16 to 128 GB microSD (Secure Digital) memory card,
octa-core processor, 12.0 MP camera and 24-bit/192kHz sound. Various developers can
develop apps for tablets and distribute them online through application stores like Apple’s
App Store and Google’s Android Play/Store.

PDAs

Personal digital assistants (PDA), were used until 2010 as electronic agendas, calendars and
personal information systems. Nowadays smartphones offer all the capabilities once
provided by PDAs. Common OS for PDAS were Palm OS, BlackBerry OS and Windows CE.

Cell phones

A smartphone or smart phone is a mobile phone (portable
telephone) whose hardware components and software are
managed by a mobile operating system. Nowadays smartphones
combine features of PCs, PDAs, cameras, media players and GPS
navigation units. All smartphones can access the Internet, are
equipped with touchscreens that enable the user to interact
directly with what is displayed, can run third-party applications
and have photographic capabilities that approach those of mid-
level point-and-shoot cameras. They also support high-speed
mobile broadband through 4G LTE, Wi-Fi connection and
Bluetooth connection. They also feature RFID solutions, motion
sensors, a fingerprint sensor, accelerometer, gyro sensor,
proximity sensor, compass, barometer and heart rate monitor,

as well as mobile payment transactions and geotagging ' 'Bure6.8:Asmartphone

mechanisms. Modern smartphones use i0S, Windows and Android OSs. Various developers
can develop apps for smartphones and distribute them online through application stores like
Apple’s App Store and Google’s Android Play/Store. Specifications for high-end smartphones
include 1440x2560 pixel display, 64 GB internal storage, 4 GB RAM, slot for 16 to 128 GB
microSD (Secure Digital) memory card, octa-core processor and 24-bit/192kHz audio.

Digital cameras

A digital camera encodes images and videos
digitally and stores them in the attached
memory card for later reproduction. High-end
products have a 30.4 Megapixels sensor and are
equipped with an LCD viewfinder, as well as a
GPS sensor. They support various image formats,
such as JPEG and RAW, as well as video formats,
such as MP4. They can record 4K video and
connect to a computer system through a USB
interface or Wi-Fi connection. They may also

Figure 6.9: A digital camera

include HDMI output, analog stereo audio
output and analog video output (NTSC/PAL). All the signal processing and control functions
of a digital camera are performed by a dedicated specialized processor.

6.1.3 Limitation of resources

Exit skills. Students should be able to®

2%

Sometimes when a computer system is active the request for services exceeds the

availability of resources. Memory is a typical example of system resources. Every time one
opens an application the OS is reserving a particular amount of memory that the program
needs to operate. If a PC is equipped with 8 GB of RAM, the available memory to run various
applications is around 6 GB because the OS and various programs that load during the
startup process utilize a total of 2 GB. Although the OS will do its best to satisfy ones
requests, the launching of more and more applications will lead to an "Out of Memory"
message or a very slow computer.,

In computer-generated imagery (CGl), rendering is the process of generating a 2D or 3D
graphic and exporting it to an image file. It also refers to the process of adding effects during
the video editing process, in order to generate a final product. The rendering process
involves complex mathematics and the solution of the rendering equation. This integral
equation must be solved by rendering software to produce realistic graphics. Although the
advances in personal computer resources allow an image to take less time to render than
before, state-of-the-art image quality needs specialized solutions, such as render farms.
These high performance computer systems are used by professionals to render computer
generated imagery.

A single core single processor system may not be able to perform demanding tasks or run
complex mathematical models efficiently. A multicore or a multiprocessor system may be
more efficient. A single processor system may have an IC (Integrated Circuit) with multiple
cores. In a multiprocessor system two or more ICs are mounted on the motherboard. Each

IC could have more than one core. A multiprocessor system is more expensive, needs
complex configuration and usually runs multiple programs faster, whereas a multicore
system usually runs a single program faster and is considered as the best choice for
everyday users. This, oversimplified, statement assumes that the comparison takes place
between ICs with the same characteristics and clock speeds. It is important to keep in mind
that in a multicore system, the main cache memory is shared by all the cores.

A computer system may have one or more standalone GPUs. A single GPU is what most
users opt for. It is an economical and powerful option that can serve as many as 4 different
monitors, play HD video, and provide gaming capabilities. If someone wants to play an
action game in a 4K resolution then using a single GPU may not allow the game to run
smoothly. However, multiple GPUs can generate disturbing noise and high temperatures,
especially under load. In most cases, two or three GPUs of the same type do not resultin a
double or triple increase in the performance respectively.

Thirty years ago, few computers could process more than one program at a time. This single
program operation was the most common and the loading and running of each program
was supervised by a simple OS like MS-DOS. Computer system resources were scarce and it
took a long time to complete tasks that needed more than a single program to run in order
to be completed.

As computer systems evolved, a slightly more sophisticated and complex type of computer
operation appeared called batch processing. In batch processing some programs are
batched together and then executed as a group, without the need of any intervention from
the user. Only one program is actually running at a time, while the others are waiting for
their turn. When it completes, the next program in the queue runs, and so on, until all the
programs in the batch are run.

As computer systems evolved even more, and more than one programs could be loaded in
main memory at the same time, ready to execute, a new type of operation emerged, called
multiprogramming. in multiprogramming two or more programs may be loaded in the main
memory. However, only one program will actually be executed by the CPU at any one point
in time. All the other programs will be waiting for their turn. The idea behind
multiprogramming is to maximize the use of CPU time (i.e. CPU idle time should be
minimized). For example, if the currently running program is performing input/output tasks
(eg. waiting for input from the user or drawing an image on the screen) the CPU will be idle,
since it will not be needed. A multiprogramming OS will give control to one of the other
programs residing in the main memory and needs to execute, thus reducing CPU idle time.

Even with multiprogramming, if there a number of programs loaded in the main memory
and all are CPU intensive, without any idle time for I/O operations, the last program will
have to wait for all the other programs to finish, before executing. Another problem that
needs to be dealt with when there are multiple programs residing in main memory is
memory fragmentation as programs are moved from and to the memory. Unix, developed
by Bell Laboratories of AT&T, was one of the first OSs that supported multiprogramming. In
a multiprogramming time-sharing environment, a lot of different users share a computer
system simultaneously. This situation can cause numerous security problems, such as
stealing/copying another’s user programs/data or using system resources without proper
accounting. In any case, the degree of security in a multiprogramming system is less
compared to the security in a single-user dedicated system.

Further system development and evolutions introduced a new type of operation callea
multitasking. Multitasking is similar to multiprogramming with the subtle difference that
tasks or processes (instead of whole programs) are performed simultaneously and share =
common resource, for example one CPU. Each task finishes; before another takes up th=
CPU, as was the case in multiprogramming. However, tasks are a lot “smaller” than
programs and as such are completed very quickly. Both multiprogramming and multitasking
operating systems are Central Processing Unit time sharing systems. In older systems
multiprogramming allowed -one program as a whole to run until it was completed, while in
newer systems multitasking best manages the utilization of CPU resources with the use of
program fragments called processes. Since tasks are completed in a timely fashion, the
illusion of parallelism is achieved. That is, all programs running on a computer appear to b=
operating at the same time to the user. What is happening however, is that small tasks, from
each program, are completed very quickly by the CPU, making the programs appear as =
they are all operating at the same time.

Multiprocessing refers to the hardware and means that a computer system has more tha=
one CPU cores. This might mean multiple CPU dies or even multiple cores in one or mor=s
CPU dies. Since multiprocessing refers to hardware, whereas multiprogramming anc
multitasking refer to software, a system can be both multiprocessing, as well ==
multiprogramming or multitasking.

Multithreading is the ability of a program or an operating system to execute different pars
of a program, called threads, simultaneously. The program has to be designed by th=
programmer in such a way that all the threads can be executed at the same time withous
interfering with each other. It is important to mention that several threads of a singl=
process can share the CPU, in a single CPU system, or run in parallel in a multiprocessing or
multicore system. Multithreading is widely used in applications that encompass a GUI. For
example, in such an application, if a task requested by the user needed a long time =
complete (because it was a complex mathematical computation or a network call, etc.), the
GUI would be unresponsive (“freeze”) until the task was completed. Multithreading, on the
other hand, would allow the GUI of the application to be responsive and the user to have =
better experience.

Another advanced mode of operation is multi-access, where a lot of users can interact with

2 one computer system through their terminals. The computer system may execute a

number of programs and the connected users can interact with these programs. This mode

of operation, of a computer system, allows the simultaneous connection of a number of
terminals. Such a system must embrace the following functional characteristics: (a) multiline

communication capabilities that will support simultaneous dialogues with the remote
terminals; (b) concurrent execution of various programs with the ability to instantly switch
from executing the program of one client to executing that of another; (c) ability to quickly
sind and make data stored on the hard disks available; (d) ability to protect all data from

unauthorized access. Unix OS supports multi-access and provides the above mentioned

characteristics.

Role of the operating system

6.1.5 Rnle of the Operatmg System {OS}

Exit skills. Students should be abie to':

Operating Systems (OSs) can be classified as single
user, multi-user, multiprocessing, multitasking and
multi-threading. Most OS are now written in C or
C++ while older 0S were written in low level
languages. A few critical operations that are very
important for the performance of an OS are still
written in assembly. All OSs are collections of
software and belong to the system software. An OS
is a system, meaning that the collection of software
that form an OS collaborate towards a common goal.
Any computer system is a collection of hardware and
software resources which provide input, process and
output services. The OS is the core software that
coordinates all these resources, on top of which all
other software applications reside. The OS$ controls
the execution of all other software. For example, it
will locate where an application is saved on the HD,
calculate the amount of RAM needed for the
application to run, allocate the correct amount of

Figure 6.10: Different levels of a computer

RAM for the application, copy the application to the allocated RAM, etc.

Managing memory and processes

Usually, a computer’s RAM is small compared to its secondary storage. M=
management is the act of managing computer memory and every instruction o
executed in the arithmetic and logic unit (ALU) was previously loaded from the RAM anz »

the hard drive directly. Thus, the RAM is a scarce resource that should be pre:
efficiently and carefully managed by the OS in order to achieve the best perfor
possible. Only vital data should be kept in the RAM; the rest should be kept in secomas
memory.

Programs that quit should return the memory that they had been allocated while rums
The OS should guarantee that this will happen, because otherwise those resources wor =
available to any other programs. This situation is rare and is called a memory leak
resource leak. The OS should dynamically allocate portions of memory to applicatom &
their request and also free them for reuse when no longer needed by the application. ™
crucial since, in modern computer systems, a lot of processes are running at any one po -
time.

During the operation of any computer system, the OS should track the location =& &
programs within its RAM and convert the logical into actual physical addresses, whemnew
those addresses are needed by a process. A logical address is a reference to a storec «
and is used by the program that generated this reference, while a physical address =
actual address of one memory cell. Address binding is the process of mapping a o8
address to a physical address. A program may be loaded in different physical addr=sss
while running, and the use of address binding helps to keep track of where the program
located in RAM. Since the logical address is known, the physical address of a process ca=
be located. Using these techniques the OS keeps track of programs in memory.

Swapping is the general term of a mechanism in which a process or blocks of program
can be swapped temporarily out of RAM and into a hard disk, and then, later, broughs ==
into RAM to continue their execution.

Paging is the underlying mechanism of virtual memory implementation, which allows
modern OS to utilize the, much greater in size, secondary storage as if it was RAM. The &
copies as much data as possible into RAM, and leaves the rest on the disk. When = I
requests data from the disk, it exchanges a quota of data (called a page) in RAM w=r &
quota of data on the disk. This is extremely helpful when data to be loaded in RAM is g1
in size than the available RAM. The secondary storage used in this case is usually a harz 2=
drive capable of providing direct access to these memory pages. Excessive page swaos
causes thrashing that results to poor system performance.

Multitasking systems use slicing to effectively manage all running programs. A slice o
time-slice is the time allocated to each user in a multi-access system or to a program =
multitasking system. The OS uses an interrupt mechanism which suspends a process tha
executed by the ALU and invokes a mechanism to identify the next process to be execu==
The interrupt handler is scheduled to allow the OS to switch between processes when ==e
time-slices expire. The mechanism used to select the next process is called a scheduler

s run once, during every time-slice, to choose the next process to run. The collaboration
cetween the interrupt and the scheduler allows for the processor’s time to be shared
ocetween a number of different processes and is a vital component of multitasking systems.
n a modern multitasking OS, the operating system can store and restore the state of a
orocess or thread, so that execution can be resumed from the same point at a later time.
The scheduler performs selections that satisfy the scheduling policy's priority constraint.
When a high priority takes over from the lower priority task currently running, it is known as
preemptive scheduling. When the scheduler selects a ceased lower priority task to resume,
the task continues from the stored state.

A1 any specific time, processes can be separated into two groups: those that are waiting for
‘nput or output and those that need to use the CPU. The processes that are waiting for input
or output do not need to use the CPU, allowing other processes to do so. When the
requested data becomes available, and thus the input or output has completed, an interrupt
s generated and the paused processes return to their executing phases and may use the
cPU.

Managing peripherals

‘nput and output devices vary in their characteristics, come from different vendors and
oresent different technical challenges. Their speed of communication also varies, even when
they belong to the same industry standard. For example, USB 1.0, released in 1996,
supported data rates of 1.5 Mbit/s to 12 Mbit/s and USB 1.1, released in 1998, fixed
oroblems identified in 1.0. USB 2.0, released in 2000, supported data rates of 280 Mbit/s,
while USB 3.0, released in 2008, supported data rates of 4 Ghit/s. Finally, USB 3.1, released
in 2013, supports data rates up to 10 Ghit/s. The OS uses a special program called a device
driver to handle all internal and external hardware, input and output peripherals and
storage devices. Each device connected to a computer system utilizes a device driver in
order to communicate with the OS. This piece of software acts like a bridge that facilitates
the communication between the particular piece of hardware and the operating system. A
device driver is coded by the product manufacturer and guides the OS as to how to use the
particular device. Manufacturers usually provide free up-to-date device drivers and most
device drivers are operating-system-specific. The use of device drivers is another example of
abstraction since the OS does not need to know the technical details about every piece of
hardware that needs to exchange data.

Managing hardware interfaces

The operating system hides the complexity of hardware resources from users while it also
manages the interaction of processors, memory, data storage and 1/0 devices. It acts like an
interface that handles "interrupts" generated by the I/O controllers and shares I/O between
programs using the CPU. This is also is another example of abstraction. The OS efficiently
manages low level hardware in a way that application software can take advantage of
installed hardware. For example, when typing a document, the word processor application
does not bother with the drivers of the keyboard or the video adapter used. That is an
example of abstraction. The OS multiplexes the hardware components for all application

software and hides all unnecessary details from the user and the application software.

General Poicies Volumes Driver Detsis Everts

i Samaung SSD 850 EVO 50068
L et
i
| e
B3 Intel(R) Serial 10 DMA Centrolfer } : g
v s Diskdrives Diiver Date: 21undls
s JetFlash Transcend 12868 USB Device 160105860
= Szmsung SSO 850 EVO 50068 . Nicroscit Windows
» I Display adapters i
» 3 Firmware . . : |
s ﬁﬁumanlnmfzceuwica | To view details sbout the driverfiles i 5
> g IDE ATASATAP! controllers f ; R
» 3y Imaging devices Towdﬁeﬂu&va&ﬂmfu-hés
> B Keyboards Ftha devios s fter updating the & Flo version: 10.0.0596.0.4h2_relesse 151023-1700)
» [Miceand other pointing devices back o the previously insiallsd ifver.|
> 3 Monitors

+ Copynght: @ Micresoft Corporation. Al fights resanved.
5 [P Network adapters | Digital Signer: Microsoft Windows
» [Portable Devices |

> I Print queues

> £ Processors | TR &
» B Software devices RO S 3."
> & Sound, vides and game controllers | ol ‘3

'} Level Dats and Time :
Binformation OF-Jun-16 22724 PH Service Control Manager 45 8
(B information OF-Jun-16227:22 PM Service Control Manager 45 None E " Creste Custom View
@HMM OF-Jun-16 227:22 PM UserPop 2001 (ros) i 2 i
L} Information -hum-16227:22 PM UsesPrp 20001 (T00S)
i O7-Jun-15 10157 PM Service Contral Manager 745 Naone Clear Log...
Dinformation O7-Jun-161:01:56 PM Senvite Contro! Manager TM5 None 1| F Fiter Current Log...
i Infannation 07-Jun-161:07:55 PM UserPnp. 20001 {705) i 13 Propenies
[nformation 07-Jun- 1610155 PM UserPrp 20001 (o) | 0 Foa
Dhin i O7-Jun-16 10138 PM Service Control Manager 7045 None o .
Yinformation T-un-16 123250 BM Kemel-General 16 None I Sove i Events As...
O7-Jun-16 123724 PM Kemel-General 16 Nore vl Attach 2 Task To this Log...
{ x View »
| 2 Refresh
| B KeyManegement Service | et Detail =
|5 £ Microsett B v
! Microsoft Office Alerts The i i i ings da et grant Local Activati izsion For the COM S ication with CLSID ~
(S A nen | |DGEI0CS BB 4350 A ERBID ST
{ & Windowr P and APPID S
- g
| % Subseriptions 18 [ISCABSEES-ACBT-47CH-AFCA-ABRRS11C2T5) s z
| fa the urer NT AUTHORITYISYSTEM SID (5-1-5-16) from address Lacalost (Using LRPC) ranning in the 2pplication container Unavaitable SI0 1] Attach Task To This Event...
1 3 e x A bk 0 -
i o). Thi g the C 8 Cory M
| Log Neme: System E3 sove Selected fvens.,
1§ seurce DistributedCOM Logged: 07-Jun-16 25412 PV G Refoesh
| Event Il 10016 Tazk Category: Ncm prre
1 o tever Erer Keywords Classic
| 4 Usen SYSTEM Cemputer KostasDell

Figure 6.12: Event viewer of Windows 10,

6.1.6 - 6.1.7 OS resource management techniques

Exit skills. Students should be able to*:

The techniques of multitasking, virtual memory and paging have
previous section.

Scheduling

Most OSs have a special application called “Task Scheduler” that is used to create and
manage common tasks that the computer should carry out at specific times. These tasks
include virus scans, backups, defragmentation etc.

D Tesk Scheduler — g

Trigger b

Wihen the task is crested or modified

Wihen the task s created o modified B Creste Besic Tosk...
When the task s ereated or modified 8 ™ CresteTack...

At log o of any user

Al::mdmlm 3 Import Task...

ihen computer i idle | |8 Display All Runing Yeske:
When computer s idle 5 Enable Al Tesks History
AE11:23 AW every Saturday of every week, stasting 02-Apr-18 B Now Folder.

On event - Log: Application, Source: PC-Doctor Launcher, Event 10: 1

o e e S e et B U L S SRS View »

|G Refresh

. Conditions Settings History (disablec)
Rt iAo i

Microseft Corporation j
e tarkc e ciuche fles used to display the start menu, & 5 enabled orth che files are nos optimalty rgarized. Lo
|] Disable
| Bport..
I ® Propetties.
Security options e [pelete
Wihen runming the task, use the following user sccourt: &
e
R only when user i logged on
Run whether user Is ogged on or ot
The task willoriy.
Run with highest peivileges

Hidden

Figure 6.13. The Task Scheduler of Windows 10

The process scheduler is part of the operating system and decides on the next tasks to be
admitted into the CPU and thus the next process to run. Operating systems may feature up
to three separate scheduler types (short-term, medium-term and Iorig—term). The scheduling
criteria that affect the selection of the best scheduling algorithm for a particular situation
include CPU utilization, throughput, turnaround time, waiting time and response time. The
most common CPU scheduling algorithms are:

First-Come First-Serve Scheduling, FCFS
Shortest-Job-First Scheduling, SIF
Priority Scheduling

Round Robin Scheduling

Multilevel Queue Scheduling

Multilevel Feedback-Queue Scheduling

UL SOl Tl e

Policies and account management

In many cases more than one user has access to a personal computer. Moreover, in a
corporate computer network, there could be thousands of people who have access to the
network's data. In all cases, an operating system is responsible for setting up accounts for
each user who will utilize the computer or network resources. A user account defines the
privileges and access rights of a particular user. A user name and a password is used to gain
legitimate access to a computer or a network and to prevent unauthorized access by people
who do not have the permission to use the services and the facilities.

€ Sefings

- 5%
3 AccounTs : g i Finda mitng e
: x [

Your email and accounts

Require sign-in i

| Myouvebenawaywh Please reanter your password

Work access ; When PC wakes up frq

Family & other users

We need to verify the password for your Microsoft account.

Bk O a0 by w
Password I
Syncyour séttings kdim@haefgr I
Change your account pd |
- E Password i

Forgot my password

PIN

Create a PIN to use in p| |

Picture passwo

Sign in to Windows usi
P

Figure 6.14: User accounts settings of Windows 10

Interrupts

An interrupt is a signal from a device or from a program within the computer that causes the
OS to stop the current task and decide what to do next. Various interrupts are generated
and have different priorities. When a printer runs out of paper a “printer unavailable”
hardware interrupt will be triggered to inform users that the printer is not available for
printing. The multitasking principle, described in this chapter, is based on software
interrupts. In general a hardware interrupt occurs when an 1/O operation has finished

performing a function, while a software interrupt occurs when a program requests various
services from the 0S.

£4 Task Manager
File Options View

Processes Performance App history Startup Users Dstails Services

& b 62% 1% 0%

Name CPyU Memory Disk Network |
¥ Microsoft account 3.1% 56.8 MB 0 MB/s 0 Mbps
(&3] Deskiop Window Manager 1.1% 679 MB 0 MB/s 0 Mbps
(] Systern and compressed memory 0.9% 0.1 MB 0.1 MB/s Q Mbps
> ¢ Task Manager 0.5% 9.5 MB 0 MB/s 0 Mbps
Store 04% 404MB 0 MB/s 0 Mbps
7 System interrupts : 0.1% 0MB 0 MB/s 0 Mbps
& WMI Provider Host 0% 244MB 0 MB/s 0 Mbps

Figure 6.15: Various system interupts presented in the Task Manager (Windows 10)

Polling

Polling is the periodic checking of devices, by a central device to sample their status (i.e. see
what state they are in and identify whether they are still connected or want to exchange
data). The CPU periodically checks certain registers, actuators or sensors to see if some
request has been made. If, for example, a device is ready to transmit data, then polling will
identify this situation.

Polling and interrupts: Polling is when one checks his/her smartphone periodically, to
see if any notification has come up, while interrupt is when a notification arrives to
ones smartphone and the smartphone vibrates to inform him/her.

e P e et

There are two general approaches when developing a dedicated OS for a device:

e The first approach is to take an existing OS and adapt it for the particular device. The
advantage of this approach is that the end user deals with a familiar interface. The
disadvantage is that the final product will not be optimized for this particular
purpose. For example, if one plans to develop an OS for a mobile device, using an
existing OS that was developed for desktop computers, as its base, this may lead to
various obstacles since the mobile device may not have all the resources and
capabilities of a desktop computer.

e The second is to design an OS that will fit the particular needs of the device exactly.
This approach would lead to an OS optimized for this particular device and purpose.
For example, when developing an OS for an embedded system, characteristics such
as small size (in bytes), quick responsiveness to external interrupts, real-time
scheduling policy and fast, lightweight, processes are very important and should be
taken into consideration. When developing an OS for a cell phone, considerations
about the efficient use of the battery and RAM, as well as the small touchscreen size
and the overall small device size should be made.

Examples of dedicated OSs:

Android is a the name of the mobile Operating System currently developed and owned by
Google. It is based on the Linux kernel, and designed mainly for touchscreen mobile devices,
such as tablets and smartphones. Android is one of the best-selling OSs for handheld
devices, and has the largest installed base. It is written in C, C++ and Java, and offers users
access to Google’s own services like Google Search, Maps, Translate, YouTube and Gmail.

Figure 6.16: Android Nougat replica in front of Google office on June 30, 2016.

Symbian is a mobile OS designed for smartphones. It was written in C++ and original’s
developed as a closed-source OS for PDAs in 1998 by Symbian Ltd. Symbian was used 4

many mobile phone brands, like Samsung, Sony Ericsson, and Nokia, but is defunct as of Mz
2014.

TinyOS is a free and open-source, embedded, component-based, OS and platform for low-
power wireless devices, such as those used in wireless sensor networks and home
automation. It is written in the nesC programming language.

Tizen is an OS based on the Linux kernel and the GNU C Library implementing the Linux A=
It is written in C, C++ and HTML, and is a project within the Linux Foundation. The Technic=
Steering Group that governs this project include Samsung and Intel. It works ==
smartphones, PCs, cameras, tablets, in-vehicle infotainment devices, smart Tuws
smartwatches, Blu-ray players, printers, refrigerators, air conditioners, etc. Its purpose is =z
offer a consistent user experience across devices and promote smart home solutions.

Embedded Configurable Operating System (eCos) is a free and open-source, real-time. 0%
that was engineered to serve embedded systems and applications which need only ome
process with multiple threads. It is easily customizable to specific application specifications
of run-time performance and hardware requirements. It is written in C and C++.

6 1.9 OS and complexity hldmg

Exit skills. Students should be able to':

;:_ml;m;. R e s e '

Outline how an operating system hides the complexity of the hardware from users
and applications.

As we have already seen earlier in this chapter the OS hides the complexity of the hardware
from the users. This is a typical example of abstraction. The use of device drivers and the
management of hardware resources are not the only examples of abstraction related to OS
function.

Drive letters

In the following picture, drive C is a S55HD and D is a USB device. So letters C and D
correspond to real devices. Desktop, documents, downloads, 101_ 05, BOOK etc. on the
other hand refer to folders (locations). The user uses the icons to select the desired folder
without bothering with the complexity that lies beneath this simple selection (Figure 6.17).

Bl 5 = ThisPC

o

e v 4 D> ThisPC

s Quick access 2 - Folders (6)
50 Desktop < - "
8 Do 1 = = B B |
- Downloads + Deskiop Documents Downloads Music Pictures Videos
is=] Pictures # 88~ Devices and drives {2)
ol 10 _os
[l soOK R
e By By
.. Python27 Windows DIMITRIOU
| toprnt =) ©)

¢@ OneDrive

Figure 6.17: File explorer of Windows 10.
Virtual memory

A user of Microsoft’s Windows 10 has the capability to alter the settings of virtual memory.
After that, the OS will handle the page file, when required, in the best possible manner, in
order to maximize the performance of the system. Once again the OS hides this complexity.

- O

1> Control Panel > System and Security » System v & | SearchCo.. 0
m| Virtuad Memeey X : Performance Options X
Tom
[Automatically menage paging fite size for all deives | Vgl Efferts Advarded Dats Evecution Prevention
Peging file e for each drive . ;
L | Dive [Volume Label} Paging File Size (ME) RocEstogached sy
3 200 - 1024 Choose how 1o allocste processor resources.
= }
Adjust for best performance of:
! | bt | ® Programs O Background services
Space pveilable: PEOIES WME L Virtuel mernory
@ 4 hichy A paging file is an wrex on the hard disk that Windows uses a< if &
Custorn sae: were RAK.
Indtial s (ME; Totel paging {e sie for ol drives: 464 M
Kasdorumn size (VB): | 1024 [
i il
O Syskera managed sion o AR L
O No paging ke bose
Teiad paging fde sive for il deives
Mindenuen aliowed: 16 ME
Recommended: 1809 ME :
o (Cwrctiysocmet dH1ME o
| ense Tern;

Figure 6.18: Use of virtual memory in Windows 10

Input devices

Various input devices are controlled by the OS using their device drivers. The user simply
uses these devices and can change their settings without knowing any details about how
they operate at a hardware level.

v oy Imaging devices
3y Ieteqrated Webcam
v & Keyboards
Standard PS/2 Keyboard
v [Wice znd other pointing devices
@ Det Touchpad
@ Microsoft Arc Mouse (Mouse and Keyboard Center)
@ wicrosoft PS/2 Mouse

Figure 6.19: Screenshot showing various input devices in the device manager

The [ava virtual machine

The Java architecture allows code to run on any machine on which the Java Virtual Machine
interpreter has been installed. In Java architecture, all details of making the code function on
a specific hardware platform are handled by the Java Virtual Machine (JVM). This is another
example of abstraction.

End of chapter example questions with answers

Example 25

Question

What are the two main categories of software?
Answer

Application and system software.

Example 26

Question
State some main tasks of the operating system.
Answer

recognizing input from the keyboard,

sending output to the display,

managing files and directories on the secondary memory,

controlling peripheral devices such as disk drives and printers,

warranting that different applications running at the same time do not interfere
with each other and

6. providing a platform on top of which application software can function.

UL B RO i

Example 27

Question
State two types of operating system strategies?
Answer

Satch and timesharing.

Example 28

Question
What is a resource in a computer system?

- Answer

Aresource is anything that can be allocated and managed by a computer system.

Example 29

Question
State some examples of resources.
Answer

CPUs, input/output devices and RAM.

Example 30

Question
Explain why the problem of resource allocation is complex?
Answer

Modern computers run several applications simultaneously. All these applications need to
compete for the limited computer resources available, thus producing a complex problem of
resource allocation.

Example 31

Question
Describe an example of abstraction relating to resource allocation.
Answer

When allocating resources, all details of how the hardware operates are hidden. The
Programmer writes an application without bothering with all these details.

Example 32

Question
What is the difference between a program and a process?
Answer

Although the terms are used interchangeably a process is basically a program in execution.

Example 33

Question

What is the process life cycle?

Answer

When a process executes, it passes through start, ready state, waiting state, running state
and terminated.

Example 34

Question
Explain what is a running process, a ready process and a waiting process.
Answer .

The running state means that a process has all the resources it needs for execution and the
operating system has given it permission to use the processor and execute its instructions.

The ready state means a process has all the resources it needs, but is waiting to be assigned
1o a processor.

The waiting state means a process is waiting for a resource, such as input from the useror a
file to become available.

Example 35

Question
What is deadlock?
Answer

Deadlock is a situation that can arise when two processes hold resources and request other
resources, from each other, at the same time. Process A holds a resource that process B
wants, while process A requests a resource that process B holds. The result is that neither
can continue.

Example 36

Question
What is fragmentation?

Answer

Fragmentation is a phenomenon or state in which memory is used inefficiently and is broken
up in small pieces. This leads to files and programs being divided up and stored in various
areas throughout the memory, which results to slower computer systems, when these files
and programs need to be accessed. This happens because processes, which occupy different
amounts of memory, are constantly allocated and deallocated to and from the memory.

Example 37

Question
Explain how a PC can run processes which are larger than the available RAM?
Answer

The system can use secondary storage as if it was primary memory. This is known as virtual
memory.

Example 38

Question

What is the difference between mainframe computers and supercomputers?
Answer

A supercomputer has as a dedicated purpose to run demanding programs (e.g. scientific
research or engineering models). It holds great processing power in order to execute g
program as quickly as possible. It always runs at maximum performance, solving a particular
problem. Its performance is measured in Floating Point Operations per Second (FLOPS).

A mainframe typically runs multiple programs concurrently requested by many concurrent
users. It processes huge amounts of external data and its performance s measured in
Millions of Instructions per Second (MIPS).

Example 39

Question
What is the file manager of an 0S?
Answer

The file manager is responsible for the management and maintenance of the secondary
memory (e.g.: USBs, SSHDs, hard disks). It provides:

* folders and directories to organize files,

® Ccommands to create and delete folders and directories,

® commands to read and write to a file,

® commands to set protection to a file,

® commands to set and change the ownership of a file or folder,
® commands to delete a file.

Example 40

Question

Describe the difference between physical primary memory, virtual memory, and logical
memory.

Answer

Physical primary memory is the memory available by a computer to execute processes.
Virtual memory is a technique through which applications that require space larger than the
available RAM can be executed by using disk memory as if it was primary memory. Logical
memory is an abstraction of the computer’s different types of memory that facilitates
programming.

Example 41

Question
Why is RAM not suitable for permanent program storage or backup purposes?
Answer

RAM is a volatile memory, while disk drives can store data permanently.

Example 42

Question
State one advantage of multi-core processing over multi-processor systems.
Answer

Communication between processors on the same chip is faster than processors on separate
chips.

Example 43

Question

Why is a high level language suitable to implement an operating system?

Answer

The code can be written faster and is easier to understand and maintain.

Chapter References

1.

I

10.

11.

12.

International Baccalaureate Organization. (2012). IBDP Computer Science Guide.
IBM sets new tape storage record. (13, April, 2015). In New Atlas. Retrieved 19:05,
June 13, 2016, from http://www.gizmag.com/ibm-tape—storage-record/36931/

The digital revolution demands a better server. In /IBM. Retrieved 20:05, June 14,
2016, from http://www—03.ibm.com/systems/z/hardware/zlS.htm!

Arnheim, R. (1969). Visual Thinking. University of California Press, USA.

Bishop, P. (1987). Computer science. Nelson. Australia.

Bradley, R. (1999). Understanding computer science for advanced level. Nelson
Thores, UK.

Brookshear, J. (2012). Computer science an overview. Addison-Wesley. USA.

Dale, N. and J. Lewis. (2013). Computer science illuminated. Jones & Barlett
Learning, UK.

Sanders, D. (1988). Computers today. McGraw-Hill, Singapore.

Silver, G. & Myrna Silver, (1993). Computers and information processing.
HarperCollins, USA.

Willis, N. & John Kerridge. (1983). Introduction to computer architecture. Pitman
Publishing, UK.
Wise, H. (1981). Computer Architecture. Blackie, UK.

Chapter 3

TOPIC 7 — Control

»

Topic 7 — Control?

7.1 Control

Centralized control systems

7.1.1 A range of control systems

Exit skills. Students should be

DISCUSS a range of contrei systems

A control system? is one or more devices that guide other devices or systems. This allows for
the completion of various tasks in an automatic manner, without any human intervention.
Control systems are set up once and can then perform the actions that they have been
programmed to do in an automatic manner, relieving humans from repetitive and mundane
tasks, as well as increasing productivity and efficiency. Control systems may include sensors
to gain feedback from the environment and motors to control any actuators in an
appropriate manner.

An example of a control system is
contained in the automatic doors that

can be found in various locations, such as
supermarkets. Instead of humans

manually having to open and close these
doors, a motion sensor is located at the
top of the automatic doors, which allows
the control system to become aware of

any motion. The sensor may use infrared
& s 4 or microwave signals that bounce off of
Image 7.1: Automatic doors objects to determine motion. After

receiving feedback from the

environment, the sensor forwards its signal to a microprocessor and allows the control
system to operate its actuators to open the doors only when motion is detected.
Furthermore, more advanced automatic doors include photocell sensors that can tell if

lnternatlonal Baccalaureate Organization. (2012). IBDP Computer Science Guide.
? Control System. (12, May 2016). In Wikipedia, The Free Encyclopedia. Retrieved 19:05, May 13, 2016,
from https://en.wikipedia.org/wiki/Control _system

someone is at the door, so that the doors do not close on them. This results in a control
system that is very convenient, as well as efficient, when one considers that doors cannot
now be left open accidentally, which may be costly when a heating or air-conditioning
system is operating. Furthermore, automatic doors allow access to both the elderly and the
disabled, since both might find it difficult to open or close a manual door.

Control systems are mostly input, process, output systems. That means that an input is
provided to the system, which is processed by some algorithm, and an action is performed.
The results of the action can then be measured by the control system (through the use of
sensors) and feedback can be provided as input. The control system can then act upon the

new input and the cycle continues as seen in Figure 7.1.

Process =T=» Qutput

Feedback

Figure 7.1: Control System

There are some circumstances however where an action might need to take place while the
control system is performing some other action. For example, when a second person
approaches an automatic door while it is closing, a signal must be sent to the control system
to re-open the doors. In this situation the signal sent to the control system is known as an
interrupt. An interrupt is a signal sent to the control system indicating that the system needs
to attend to the specific signal immediately.

A number of control systems are considered below. All of them use computer systems in
order to operate and so depict the many possibilities for control systems with developments

in computer systems.

¢ Heating system: In any such
control system, be it in a car, a
house or any other place, an
initial temperature is given as
input by the user (eg. 24°C). That
input signifies the ideal value of
the output and the goal of the

control system. That is, the
control system will aim to reach

Image 7.2: Smart heating system

the value provided by the user.
Sensors allow the control system
to measure the temperature of the environment and determine any actions tha: =
might need to perform, in order to reach the desired temperature. For examp's.
given an actual temperature of 18°C (as input from the sensors) and a desires
temperature of 24°C (as input from the user), the control system would turn on ==
heater until the input from the temperature sensors was equal to the desired us=r
temperature. At that point, the heater would turn off and would turn on again o=

when the actual temperature falls below the desired temperature. Having such a
control system allows for the conservation of energy and is more efficient than
turning a heating system on and off manually. This is because the automatic system
would reach the desired temperature once and then turn on to compensate for
even a small drop in the desired temperature. On the other hand, in a manual
system, since there would not usually be a user holding a thermometer and turning
the system on and off, every time the temperature fell or rose above the desired
temperature, the energy wasted would be greater. Furthermore, newer “smart”’
heating systems also have the potential to connect to the Internet, allowing the user
to operate them from afar. For example, one could turn on the heating system of
his/her house as one leaves work, so that the temperature is ideal when the user
arrives home.

Taxi meters: Initially, taxi meters were
mechanical, bulky and made a
characteristic ticking sound. Through-
out the years, and through the use of
computer-operated control systems,
taximeters have improved, preventing
fraud as well as providing a number of
helpful features. For example, receipts
are automatically issued when a fare is
completed. Seat sensors detect the
presence of passengers in order to
prevent passenger journeys that do
not operate the taximeter. Credit
cards are supported, as well as radio
communication and GPS systems, so
to assist drivers, provide security, and
better calculate distance. Taxi meters
have become more efficient, less
error-prone, and automatic, relieving Image 7.3: Old an Wit meters

the driver from hassles that could

distract him/her from driving.

Elevators: Primitive elevators date back to ancient times and were notoriously
dangerous and mostly used to move objects, instead of people. As engineering
improved, so did elevator technology.

3 Smart thermostat. (19, April 2016). In Wikipedia, The Free Encyclopedia. Retrieved 19:25, May 13,
2016, https://en.wikipedia.org/wiki/Smart_thermostat

Developments in computer systems
also played a significant role and
many modern elevators are
controlled by computer operated
control systems. An elevator control
system takes in a number of sensor
readings as well as the desired
destination, in order to turn a winch
motor with the correct number of
revolutions so that the elevator car
reaches its destination. The system
needs to know the initial and the

Image 7.4: Elevator

desired destinations, as well as the
location of each floor. The system
reads the desired destination from the user and uses sensors to detect the current
location, as well as the location of each floor. In many systems, a load (weight)
sensor may also exist that tells the control system how full the car is, so that the
computer system in control may use this information accordingly (ex. not stop to
take more passengers without unloading some current passengers). Finally,
elevators also include automatic doors that open and close only when the elevator
car is at specific floors. They also use motion sensors, as discussed before, to
prevent doors from closing on people entering or exiting the car. Many elevators
include a stop button, that stops the elevator car from moving in emergency
situations (for example, when a dress is caught between the elevator doors). When
pressed, this button sends an interrupt signal to the processor of the control system,
requesting its immediate attention, and stopping the car. As such, even though
elevators are control systems that are being used every day, efficiently and securely,
a number of inputs from sensors and complex algorithms are constantly executed by
control systems to make this possible.
Washing machines: The first washing
machines date back to the mid 18™
century, when manually rotating
drum washers were first introduced.
Washing machines with electro-
mechanical timers appeared in the
mid 20™ century, making automatic
washing possible. In the late 207
century, washing machines with
control systems driven by computer

Image 7.5: Washing machine
systems were first introduced. In

modern washing machines, sensors are used to determine and control the load size,
water level, temperature, as well as the user interface. All these sensors allow for a
finely-tuned washing cycle that better suits the needs of the clothes, as well as take
into account the environment by consuming less electricity and water. Furthermore,
modern washing machines are safer, since the door is controlled by a computer

system that locks it during operation, avoiding accidents. If the door is opened
before the washing machine has finished, or if the stop button is pressed, an
interrupt signal is sent to the processor of the control system, requesting its
immediate attention, and stopping the washing machine.

Process control: Process control
refers to the control of one or more
variables (such as temperature) in a
system. It strives to maintain the
output of a specific process within a
desired range. Open and closed loop
(feedback) controllers exist. An
example of an open loop controller
is a tank with a manual valve that

controls the heat dissipated by a coil
used to heat the ligquid in the tank. In

Image 7.6: Tank with temperature gauge

this scenario, there is no feedback as

to the temperature of the liquid at any one point in time. Only if the relationship
between the heat dissipated by the coil and the temperature increase of the liquid is
known, can one be certain of the liquid’s temperature. On the other hand, in a
closed loop (feedback) controller, the actual temperature of the liquid is detected,
using temperature sensors, and the coil temperature is adjusted to achieve the
desired liquid temperature. In this example, the valve can either be an on/off valve
or a variable one. With an on/off valve the valve is turned on until the desired liquid
temperature was reached, then turned off, and on again after the temperature
dropped below the desired temperature. With a variable valve, the heat through the
coil is proportional to the difference between the current and the desired liquid
temperatures. The coil initially has a higher temperature, that slowly lowers, as the
liquid temperature reached the desired temperature. Developments in computer
systems allow for the automatic adjustments of the valve in order to achieve the
desired temperature, with minimal or no human interaction. If an error happened
with the valve so that it did not work as expected (for example, it did not turn off
and the desired liquid temperature was exceeded by an undesirable amount), an
interrupt could be sent to the processor, indicating that the processor would need to
bring the system to a hold immediately.

Device drivers: Device drivers are computer programs used to control a computer
device of any kind, from keyboards and printers to graphics and sound cards. These
computer programs allow operating systems (OS) and other programs to access the
devices with a layer of abstraction (i.e. without needing to know how the actual
devices are used). The computer bus usually connects the drivers with the devices,
allowing the drivers to send commands and receive data. Since drivers are
developed specifically for each device, they are hardware-dependent, as well as
operating-system specific, so that they are as efficient as possible.

Domestic robots: Domestic robots using
computer guided control systems are already
appearing in households. Vacuum, pool and
gutter cleaning robots are examples of
autonomous domestic robots that one might
come in contact with in everyday houses. A
number of sensors are packed within these
robots to provide “intelligent” behavior. For
example, vacuum cleaning robots use a suite
of sensors to map and find their way around
rooms that may include clutter and
furniture. Using various cameras they can
create house maps, using landmarks, and
know their current position as well as
previous locations. Furthermore, they can
return to their charging base whenever
necessary, and complete the cleaning

afterwards. Sensors can also detect the Image 7.7 [CleaningEabot
material on which the vacuum is currently on

and perform appropriate kinds of cleaning. All these possibilities would not be
available without closed-loop computer-controlled systems.

GPS systems: Every day millions of
people use GPS systems to find their
way around cities, mountains or
even the sea. Whether used to find
a new café or guide a missile, GPS
systems are required to work
efficiently, precisely and with near
100% availability (no down time).

The GPS system is a large, complex,

computer controlled system that
includes both hardware and Image 7.8: GPS satellite system

software elements and needs

constant maintenance and support to work in such an effective manner as it does. It
uses around 30 satellites in orbit around the Earth, as well as a number of extra
satellites that are “fail-safes” (if one of the satellites fails, one of the extra satellites
will take its place until the first one is fixed). These solar-powered satellites circle the
Earth twice per day. A GPS receiver allows a user to know exactly where he/she is on
Earth. It includes a sensor that locates four or more of the GPS satellites, figures out
its distance to each one, calculates the time difference between the satelites and
uses a mathematical principle called trilateration to deduce its location.
Furthermore, modern GPS systems also receive input from their users, pinpointing
their desired destinations, as well as map data that may be updated through
software updates.

e Traffic lights: Traffic lights play a key role in road safety. They manage traffic,
prevent accidents and allow pedestrians to cross the roads without jeopardizing
their lives. Traffic lights are usually control systems operated by computer systems
and can be either “fixed time” or “dynamic control”.

e}

7.1.2 The uses of microprocessors and sensor input in control systems

Fixed time: As the name suggests,
fixed time traffic lights are open
loop control systems, in that they
do not receive any feedback from
the environment in order to alter
their performance. They are
configured to change color after a
given period of time and they do
so repeatedly. Fixed time traffic
lights can be implemented with an
electro-mechanical signal control-
ler and as such does not neces-
sarily need a computer system.

Dynamic control: Using a closed
loop control system to provide
feedback on the amount of traffic
passing by, dynamic control traffic
lights can adapt their settings

gaprs— S

L

Image 7.9: Traffic light with sensor

appropriately, following some algorithm. These kinds of traffic lights are
operated through computer systems and would not be available otherwise.
They can use one of the two different types of sensors to detect traffic

conditions:

either embedded into the surface of the road or mounted on the traffic light
itself (or some other high position). The sensors that are embedded into the
surface of the road have the ability to sense when a car passes over it.
Mounted sensors are less expensive and can provide the same feedback,

including real-time photos or video.

Today, most modern control systems use microprocessors in order to efficiently and
effectively read sensor input, process it according to an algorithm, and finally perform some

action(s).

A microprocessor, as its name suggests, is a “small”

processor, that contains most, or all, of a

central processing unit (CPU) functions on a single chip or integrated circuit (IC). Like a CPU,
a microprocessor performs arithmetic and logic operations, as well as any other data

operations necessary, through the use of registers. This is described in detail in Topic 2 —
Computer Organization in the Core Computer Science for the IB Diploma Program book”.
Therefore, it is a programmable, input-process-output device that also includes some
internal memory.

Various types of microprocessors exist, all of which have been developed with some specific
purpose in mind:

e General purpose: Capable of running a wide range of different programs and usually
integrated into a larger system. The CPU found in a desktop computer is a general
purpose microprocessor. Desktop computers also include various peripheral devices,
as well as external memory, all of which the microprocessor needs to interact with.

e Embedded controller or microcontroller: Microcontrollers are usually stand-alone
chips that may include the main elements of a larger system, such as RAM and ROM,
although smaller in capacity. These controllers are designed to perform some
precise task(s) and do not need, or cannot include, a whole computer system.
Microcontrollers may be found in most of the control systems described in section
7.1.1. Automatic doors, heating systems, taxi meters, elevators, washing machines,
domestic robots, GPS systems and traffic lights, all use microcontrollers to function
in an efficient and timely manner. Microcontrollers, in general, need less power to
function and are smaller in size, compared to desktop computers. They can be
integrated into smaller, lower powered electronic devices.

e Graphics processing unit (GPU): Computer graphics have become so detailed and
realistic in recent decades that an additional, special kind of microprocessor, is
included in most computer systems to handle them. This type of microprocessor is
known as the GPU and includes hardware to allow for faster handling of graphics
related mathematics (such as matrix multiplication and vector arithmetic). GPUs are
responsible for calculating and rendering polygons and pixels on the screen.

Microprocessors improve control systems in a number of ways. First of all, they can
process input data much faster than a human ever could and as such they can react to
changes in the input quickly. Control systems that depend on microprocessors are
automated and as such are error-free compared to manual or mechanical systems.
Furthermore, they can operate throughout the year with little to no off-time (down
time) and in conditions that are harsh or dangerous for humans.

Of course, since embedded microprocessors are pre-programmed systems that follow
some specific algorithms, they would probably not be able to operate in the most
effective way or at all (in an unexpected event). Moreover, as microprocessors need
power to operate, the system would not be able to function if there was a power
shortage.

* Dimitriou K. Hatzitaskos M. {2015). Core Computer Science for the 1B Diploma Program. Athens:
Express Publishing. More information at: https://www.expresspublishing.co.uk/gr/en/content/core-
computer-science-ib-diploma-program

In order for microprocessors to perform any processing, they need to receive input. For
that to be accomplished sensor input is needed. A sensor converts continuous physical
(analogue) quantities (such as speed, temperature, humidity, pressure, etc.) into
discrete digital signals using an analogue-to-digital converter (ADC). These signals can
then be read as input by microprocessors. The input is processed, according to some
algorithm(s), and output is returned.

Although a wide variety of sensors exist’, all of which share a number of common
properties determining their quality:

® Accuracy: Determines whether the measurement of the physical quantity and
therefore the final delivered digital signal is accurate (for example, a
temperature of 18°C should not be measured as 19°C).

® Range: Determines the acceptable range of the physical quantity within which
the sensor may acquire readings (for example, a temperature sensor might be
able to accurately operate between -30°C to 60°C, bt{t not above or below those
temperatures).

* Resolution: Determines the smallest increment that the sensor may detect (for
example, one temperature sensor might be able to determine increments of 1°C
accurately, measuring whether the temperature is 17°C or 18°C, while another
might be able to determine increments of 0.1°C accurately, measuring whether
the temperature is 17.0°C or 17.1°C.

Sensors should also have two more characteristics, without which their readings would be
useless. Firstly, sensors should be insensitive to any other physical conditions present that
could influence the reading. For example, when measuring a temperature, the measurement
should not be affected by wind. Secondly, the sensors should not influence the measured
property in any way. In our temperature-measuring example, the sensor should not
dissipate heat into the environment and influence the temperature around the sensor.

7.1.3 Different input devices for the collection of data in specified situations

Exit skills. Students should be able to':

Scenarios will be based on familiar sit

As described in the previous section, sensors are usually an integral part of control systems
and act as input devices. A growing list of available sensors exists® that can measure
anything from density to heat and motion to magnetic fluctuations. Sensors sense a physical
property and then transform it into an electrical signal.

> List of sensors. (19, April 2016). In Wikipedia, The Free Encyclopedia. Retrieved 19:30, May 13, 2016,
https://en.wikipedia.org/wiki/List_of_sensors

T T e e e e e e e e e mm ww A mw mm m e A s mm e e M e M A M A M S R A e e e e e e e e

Useful Information: An Analogue to Digital Converter or ADC is used by every system
that uses sensors to convert continuous analogue data to discrete digital signals
handled by a microprocessor. ADCs cannot read and caonvert all the data that is
acquired by the sensors, but rather convert analogue data from sensors every few
milliseconds (depending on the sensor). This way, the data converted by the ADCs and
handled by the microprocessor is actually a sample (a part) of the actual physical
quantity being measured. Depending on how frequently the sampling is performed by
the ADCs, a lot of information might be lost.

e e e e e o e e e et

The main sensor categories are discussed below. This list is non-exhaustive and more
categories are available®. Even in the categories presented, a large number of different
sensors usually exist.

Sensor types may be:

e Sound: Sound sensors, as the name suggests, detect sound waves and are widely
used in microphones.

e Motion: Motion sensors detect moving objects. They are widely used in
security/alarm systems, as well as automated lighting control, so that the lights are
only on when necessary to conserve energy.

e Vibration: Vibration sensors detect vibrations and are placed on surfaces that can
vibrate. They are widely used in security/alarm systems (placed on windows), as well
as acoustic musical instruments (instead of microphones).

e Optical/lImage: A wide variety of optical sensors exist, depending on the physical
quantity measured. Two widely-used optical sensors are the following:

o Active pixel sensor (APS): Used in almost all digital cameras, they contain
an array of pixel sensors that can imprint light.

o Infrared (IR): Used to sense invisible radiant energy with longer wavelengths
than those of visible light. Widely used in security/alarm systems to detect
motion at night, where visibility is low or non-existent.

¢ Pressure: Pressure sensors detect pressure. They are used in a variety of settings,
including touch-screen devices, as well as the automotive industry (they regulate the
engine power according to the pressure on the pedals) and others.

e Temperature: Temperature sensors detect temperature. They are widely used
within thermostats to control the temperature of a given setting.

e Proximity: Proximity sensors can detect the presence of nearby objects without any
physical contact. They are widely used in cars to help drivers reverse or park.

7.1.4 The relationship between a sensor, the processor and an output transducer

In the previous chapter, we learnt how a sensor senses continuous, physical (analogue)
quantities (such as speed, temperature, humidity, pressure, etc.) as analogue signals. It then
transforms these analogue signals into discrete, digital ones using an analogue-to-digital
converter {(ADC). These signals can then be read as input by processors. The input is
processed according to some algorithm(s), and output is delivered.

A processor performs arithmetical and logical operations and is the core element of any
computer system. It receives input, in electrical form, from a number of sensors (from
sensors on a tracking device, such as a mouse, to motion sensors above automatic doors)
and performs some sort of output (from moving a mouse cursor to opening doors).

In the process of sensing physical quantities, using sensors, and transforming them into
analogue signals, a conversion takes place. The device that converts one form of energy to
another is called a transducer. Transducers, in computer systems, are responsible for
converting physical quantities (such as speed, temperature, humidity, pressure, etc.) into
electrical signals, as well as vice versa. The conversion process from one form of energy to
another is called transduction.

Sensors can be categorized as transducers, as they sense a physical quantity and transform it
into another form of energy (typically an electric signal). However, other devices (apart from
sensors) can be categorized as transducers. The most common of these are called actuators
and are used during the output. Actuators are the devices responsible for moving some kind
of mechanism. They are transducers in that they receive some form of energy (usually
electric current) and convert it into motion. Control systems use actuators to perform some
actions in an environment (for example, a mechanical motor in an automatic door is an
actuator that receives electric current and converts that form of energy into kinetic energy
so that the motor moves and the doors open).

Input Signal ! Transducer | Fransducer Output
Physical ‘ (ex. motion)
guantity

ADC: Electronic DAC: Electronic
signal signal

Figure 7.2: Input, process, output and transducers

Figure 7.2 depicts how a control system that uses a processor works as an input, process,
and output device. An input signal is recorded by a sensor, which transforms the physical
quantity into an electrical signal. Since it converts one form of energy to another, the sensor

is a transducer. The electrical signal is further converted into an electronic signal, using an
analogue-to-digital converter (ADC), so that it may be processed by the processor. After the
processor runs any necessary algorithm(s) on the input data it outputs an electronic signal.
That output is converted into an electrical signal, using a digital-to-analogue converter
(DAC), so that it may be used as input to an actuator. The actuator will convert the electrical

signal into motion. Since the actuator converts one form of energy to another, it is a
transducer.

7 1.5 The role of feedback in acontrol system

Exit skills. Students should be able to':

i)escnbe the role of feedback in a controi system
| LINK Cannectmg computat;onai t ing and program design.

Feedhack was discussed in section 7.1.1 and described in Figure 7.1. Feedback refers to the
process where information about the result of an output, from a control system, is used as
part of the new input to the control system in order to determine the best course of action
for the next output. Feedback is a loop as shown in Figure 7.1.

Feedback is essential to control systems that need to react to their environment and its
changes. For example, as discussed in section 7.1.1, there can be two kinds of traffic lights,
fixed time and dynamic control. Fixed time traffic lights do not take the environment into
account and just change color after a pre-programmed amount of time. On the other hand,
dynamic control traffic lights use sensors to take the environment into account every time
the lights change color. Imagine the following scenario: A dynamic control traffic light uses a
sensor to identify when no cars are near and changes the car lights from green to red, so
that the pedestrians can pass. This action is the output. The traffic light then receives
feedback from this action (a line of cars starts forming) and uses that feedback as input in
order to turn the car lights green again when a long line has been formed. The input first
affected the output (no cars, so the car lights turned red), the output affected the input (a
line formed), and the new input affected the output (the car lights turned green). After a
while, the output would affect the input again. The feedback keeps the system in a stable,
working state avoiding long queues on the road and helping pedestrians cross safely.

Another example of how important feedback is in a control system, and how it keeps the
system stable, was described in section 7.1.1, during the discussion about process control.

7.1.6 Social impacts and ethical considerations associated with the use of
embedded systems

Exit skllls Students shculd be able to':

. tagging pnsoners, survetllance, CCTV, lmproved safetv systems

 Electronic tagging (tagging prisoners)®”’: Offenders that have been found guilty of
minor offences, inmates that are entitled to leave time (vacation time away from the
correctional center), or individuals under house arrest may be “tagged” with the use
of electronic monitoring devices.
Overcrowding of correctional facilities impacts their ability to provide effective
rehabilitation. Minor offences can be efficiently dealt with using prisoner tagging.
Each individual wears a bracelet or anklet that uses GPS to allow correctional %
officers to monitor their location at all times. Tampering with the device or trying to
remove it raises an alarm.
Electronic tagging has been shown to effectively deter crime, as well as save habitual
offenders from a continued life of crime. Monitored offenders were less likely to
abscond or commit new offences than those not monitored. Electronic tagging
benefits society immensely by reducing crime rates, reducing the money spent on
crime. There are a number of “hidden” costs surrounding any crime; for example,
the time spent by police officers to solve it, instead of working to prevent possible
future crimes. One should also consider court rooms and lawyer’s time, as well as
the occupation of prison cells and the need for the creation of further correctional
facilities if the number of offenders increases.
Electronic tagging could also improve the rehabilitation and reintegration of
offenders, by allowing them to leave the correctional facilities sooner (or not enter
at all), maintain gainful employment, as well as contact with their families.
However, there is plenty of criticism concerning prisoners’ electronic tagging. First of
all, one could argue that it is a very lenient form of punishment. Furthermore, it
does not physically restrain offenders and allows them to perform further illegal
actions, if they want to. Having a large number of offenders outside the correctional
facilities with electronic tags needs a large task force of individuals that can monitor
them and intervene whenever necessary. If the offender performs an illegal action
and raises an alarm (but the task force does not have enough officers to intervene
because they are all occupied with other tasks), the idea behind the electronic
tagging is rendered useless.
Another argument against the
] tagging of offenders is that wear-
ing an electronic tag may add
psychological pressure to the
wearer, especially to the younger
offenders.
Apart from offenders, electronic
tagging could be used to monitor
the whereabouts of people with

health problems such as dementia Image 7.10: A CCTV camera
(ex. Alzheimer’s disease). Finally,

® Electronic tagging. (26, February 2016). In Wikipedia, The Free Encyclopedia. Retrieved 19:30, May
16, 2016, https://en.wikipedia.org/wiki/Electronic_tagging

7 Prisoner e-tagging a 'resounding success'. (23, May 2012). In iTWeb. Retrieved 19:08, May 28, 2016,
http://www.itweb.co.za/index.php?option=com_content&view=article&id=55068

electronic tags could also be placed on immigrants, preventing them from staying in
a country illegally.
Surveillance, CCTV (Closed Circuit Television): Over the past years a large number of
cameras have been installed on highways and cities in various countries around the
world. CCTV cameras can often be spotted on top of or near traffic lights and
intersections, in parks, outside shops or any other position. People are now so
accustomed to them that they do not even notice their existence. Recent advances
in computer graphics and artificial intelligence have enabled CCTV systems to use
algorithms for facial recognition, as well as license plate recognition, to locate or
follow a target.
CCTV supporters claim that by using this surveillance technique, street and shop
crimes are reduced, drivers follow the rules of the road, and in general individuals
are not tempted to perform illegal acts.
However, there are a number of questions to be answered:
© How many CCTV cameras should operate in an area before surveillance
becomes excessive, to the point of loss of priva}:y?
o Can the information from surveillance techniques ever be misused or fall in
the wrong hands?
© Do surveillance techniques actually reduce crimes or do they just alter it (for
example, move it to some other non-surveilled area, or within households,
where CCTV cannot be installed yet)?
o Should workplaces install CCTV cameras or other electronic means to
monitor their workers?
o Should schools install CCTV cameras or other electronic means to monitor
both students and teachers?
O Are citizen rights more important than prevention of potential wrongdoing?

Surveillance has a myriad of social impacts and ethical considerations that must be
taken into account. Most forms of electronic surveillance systems are embedded
control systems.

Improved safety systems: After any system, from an elevator to 3 car, has been
developed and deployed into the wider world, it is subject to everyday use. This use
may not always be as intended. For example, too many people may enter an
elevator, increasing its weight, beyond what can be handled by the elevator’s motor.
Another example could be a car driven into 3 wall. Safety systems are put in place so
as to avoid such unfortunate events. However, since everyday life is full of
unexpected events that cannot be predicted, safety systems improve in order to
anticipate them as much as possible. Sometimes these events are properly dealt
with. For example, when too many people enter an elevator, a warning light comes
on and the elevator does not move until enough people have left. Another example

could be the airbags deployed during a car crash to protect the passengers.

In general, safety systems are put
into place to protect anything that
might be harmed when something
does not go as planned. Safety
systems are upgraded and improved
when they are used but fail for some
reason. For example, front airbags
were developed to avoid injuries
during car crashes. However, in a
number of accidents, cars had been
struck from the sides. The
passengers were injured, since the
front airbags did not protect them.
Side airbags were created to
minimize harm in these accidents.

The airbag, as a safety system, was i . SR
improved. Car brakes are a similar Image 7.11: Airbag safety system
case of the new safety system being

improved from the failure of the previous safety system. Forcefully using the car
brakes resulted in the locking of the wheels which generated the car skidding, which
led to a larger distance covered before the car stopped, compared to when the
wheels did not lock. Following these observations, the Anti-lock Braking System
(ABS) was developed, to improve the car braking safety system, by preventing the
wheels from locking and skidding. This way the stopping distances decreased.

Distributed systems

7.1.7 Comparison of centrally controlled systems with distributed systems

Exit skills. Students should be able to™:

Compate centrally controlled systems with distributed systems.
' Technical hardware details are not expected.

In its simplest form, a centrally controlled system is a system with a dedicated computer
system that is responsible for all the necessary calculations, as well as anything else that
needs to be performed so that the control system can function. On the other hand,
distributed systems have multiple computers, with each one performing part of the
necessary calculations, as well as anything else needed for the control system to function.
There are arguments to be made for both systems.

e Centralized systems: All computer resources reside in a single computer system.
Client devices need to be able to connect efficiently and effectively to that single

computer system.

The benefits are (usually) lower operational costs (as each client needs minima.
hardware), greater security (as all data is centrally stored), less administrative
overhead and backup complexity (since all resources are in a single location), as we!
as greater overall control.
One of the disadvantages is that clients need to connect to the central system 1o
perform any necessary actions, making the connection a probable point of failure. £
the single computer system or the connection to it fails, the whole system is not ablz
to function effectively.

¢ Distributed systems: Computer resources are distributed across various systems anc
each system is self-sustaining for the most part. A central system may exist tha:
coordinates the rest of the systems in some way, but each system has all the
necessary resources to perform any necessa ry action on its own, without heeding to
communicate with the central system every time, Even if there is no connection =
the central system, there would be no catastrophic failure and the distributed
system, as a whole, would still function correctly. Distributed systems are easily
expandable since self-sustained systems may be added or removed at any point in
time without affecting the overall system.
The disadvantage to this approach is (usually) its cost. It requires additiona
hardware to be present at each system, so that it can Operate on its own, as wel| as
special software that allows each system to do so. Backup of the system requires
more bandwidth or resources at each site, adding to the cost and the complexity of
the system. Security can also be an issue, since it is more difficult to control ang
secure a number of systems than a single one.

Cost is a variable factor when comparing centralized to distributed systems. In general,
distributed systems require additional hardware that increases the cost of the whole system.
However, centralized systems require a single computer system that is very powerful in
order to efficiently and effectively coordinate the system as a whole. As such, the cost of 2
very powerful computer system and its maintenance may be higher than the cost of the
additional hardware needed in distributed systems, or vice versa.

Here is an example of traffic signal control systems®, which may be either centrally-
controlled or distributed:

® Centrally controlled systems: Every light on each intersection depends on the
availability of an effective communications network. Every light needs to be able to
communicate with the central computer in a real-time fashion and will not be able
to operate, at least as effectively, if the communication is lost. If the central
computer stops operating, all the intersections are affected and stop operating
effectively. Fault-tolerant Systems exist, with two identical central computers, so
that if one fails the other can take over. Also, a central computer has a maximum
load limit, meaning that it cannot be responsible for real-time coordination of an
unlimited number of traffic lights at intersections. A central control system is not

® Traffic Signal Control Systems, (2011). In United States Department of Transportation, Research and
Innovative Technology Administration. Retrieved 18:50, May 20, 2016,
http://ntl'.bts.gov/lib/jpodocs/edldocs1/13480/ch3.pdf

easily expandable and requires a significant amount of investment in order to do so.
However, centralized real-time adaptive control algorithms may easily be installed
and real-time surveillance of the system allows for better control of the system.

e Distributed systems: A powerful and robust control system at the intersection is
responsible for the traffic lights. It does not receive or transmit mandatory real-time
control commands over the communications network. It can even operate when the
central computer (that is responsible for the grid of traffic signal control systems) is
not available. Connection to the central computer is limited and only necessary for
synchronization purposes. Expansion of the system is easy, just by adding new traffic
lights and their infrastructure, and does not affect the rest of the system.
Centralized real-time adaptive control algorithms and surveillance are not available,
but may be substituted by local adaptive control algorithms runnig at each
intersection.

7.1.8 The role of autonomous agents acting within a larger system

Exit skills. Students should be able to*:

in the role of autonomous agents acting within a larger system.

| : :
t Technical hardware details are not expected.

Agents can be anything that can perceive its environment, through sensors, and act upon it,
through effectors. Examples of agents may be humans (that have eyes, ears and other
sensors) to robotic agents (that have cameras, sonars and other sensors) and software

agents (that have sensors in the form of bits and can sense their digital environment through
those sensors).

Autonomous agents are entities operating on
behalf of an owner (usually a user or another
program) with a degree of autonomy and
with minimal to no interference from the
owner. These agents follow algorithms
supplied by the owner to achieve some
desired goal(s). Examples of autonomous
agents include autonomous robots, software
agents that search the world wide web,
software computer viruses, etc. Autonomous
agents perform actions that depend on their
own “experiences” through their sensors.
They can apply different sets of pre-programmed actions in different situations and even
build their own set of actions through learning algorithms. Autonomous agents display
artificial intelligence in that they need to “reason” according to their acquired knowledge.
The representation of knowledge is a key-concept for those agents.

Image 7.12: Autonomous agent (car)

The environment within which agents operate plays a significant role in the desiz
implementation and effectiveness of the agents. Most of the times, agents do not hawe
complete control over their environments. They can perceive and influence some of =
environment, and the environment may then influence the agents in return. The complexs
of the agent’s decision-making is affected by the properties of the environment®:

o e o

Useful information: The book “Artificial Intelligence: A Modern Approach”™ by Stuar: _
Russell and Peter Norvig is a great read and resource that goes well beyond the IB '
syllabus. Chapter 2, which deals with Intelligent Agents can be read at link: - -
http://www.cs.berkeley.edu/“russell/aimale/chapterUZ.pdf

An environment may be accessible or inaccessible, and may or may not be able ==
obtain complete and accurate information of the environment. Most real wore
environments fall under the inaccessible category, where the environment is too bg
for an agent to be able to sense it as a whole and senses only a subset.

An environment may be deterministic or non-deterministic, according to wheth=
an agent’s action will have a pre-defined, guaranteed, effect without any possibiisy
of uncertainty or not. In 3 deterministic environment, the next state of ihe
environment is determined by its current state and the agent’s action. Most re=
world environments fall under the non-deterministic Category, in that they are oz
complex, are affected by various elements, and probably ever-changing.

An environment may be episodic or non-episodic, according to whether an agen: s
actions are divided into “episodes” or not. If they are divided into “episodes”, the
next episodes do not depend on the previous episodes and an action’s output wit
not depend on what actions the agent took before. Most real world environmenss
fall under the non-episodic category, in that the agent’s earlier actions affect ==
future actions.

An environment may be static or dynamic, and may or may not change while th=
agent is deliberating an action. Most real world environments fall under the dynam
category, in that an environment is independent of the agent and does not wait To-
an agent’s action before it changes.

An environment may be discrete or continuous, depending on the number o
distinct and clearly defined states that it may or may not be in. Most real worz
environments fall under the continuous category.

.._........_....._._._........_...___..-._.....—.—......_..._..___._.._:...._—_-.__...._._.....‘_.....___-—.-‘

Having understood the meaning of autonomous agents and their environment, a number of
examples follow illustrating the role of autonomous agents within a larger system.

® Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern Approach, Upper Saddle River (New
Jersey, 1995)

e Autonomous agents in space missions'’: Autonomous agents may be of help in both
unmanned and manned missions. One type of unmanned mission that needs to take
place every day, all day (24/7) is the control and coordination of satellites orbiting
Earth. Before the wuse of
autonomous agents, 2-3 persons
were needed per satellite. With
the increase in the number of
satellites this led to a large
number of staff responsible for
their control, which resulted
{amongst other things) in a large
financial burden.

Another type of unmanned .
missions with difficult and/or Image 7.13: Autonomous space agent
restricted time frame commu- 3

nication with the device(s) launched in space, are the deep space missions. Sending
a message from Earth to a planet far away, such as Mars or Jupiter, takes minutes or
even hours, and may only be available for only a few hours per day. The bandwidth
of the connection is also limited. As such, these devices cannot be controlled in a
real-time manner. However, they need to be able to act in a real-time manner, as
well as be able to face any situations when communication with Earth is unavailable.
Autonomous agents allow deep space mission devices to perform real-time tasks

when connection to Earth is limited or non-
existent, preventing pitfalls and unwanted
situations.

In manned missions, the crew spends a long
period of time, each day, in monitoring and
maintaining. Monitoring is a repetitive and
mundane task. Furthermore, most mistakes in
manned missions are made by humans that may
let something go unnoticed due to negligence or
tiredness. Autonomous agents can be
responsible for monitoring both everyday tasks,
as well as human actions while performing some
maintenance tasks.

Of course, it is impossible to take into account all
the possible events that could occur. As such,
autonomous agents that do not request human

intervention in unfamiliar circumstances could Image 7.14: Probable future

; o autonomous agent picker robot
lead to errors and to the detriment of a mission.

1% stefan Bittcher. Autonomous Agents in Space Missions. Course project for CS886 — Multi-Agent
Systems for Real-World Applications, University of Waterloo, Spring 2004. Retrieved 19:25, May 31,
2016, http://stefan.buettcher.org/cs/cs886/project.pdf

® Autonomous agents in warehouses': Autonomous agent robots named “Kiva” (or
Amazon robots or bots) are already operating in Amazon’s warehouses. These
robots carry shelves of products to human workers, who in turn pick the items that
need to be shipped. This automation allows for the shipping of a far larger number
of items to costumers than just using human workers. Apart from these bots,
Amazon created the Amazon Picking Challenge (APC), in which researchers
competed for building a new bot that would be able to perform the item picking
process, instead of human workers. The challenge was hard and most teams failed
completely, while the ones that managed to perform better still performed a lot
worse than humans. However, the challenge showed that these difficulties might
soon be overcome. In all likelihood, bots controlled by autonomous agents will soon
be used in warehouses around the world.

® Autonomous agents in cars'® ** . The idea of fully autonomous cars has been a
worldwide endeavor for many years. The DARPA (Defense Advanced Research
Projects Agency) Grand Challenge was the first ever competition to formalize this
aim, offering prize money to the team able to build a driverless car that could avoid
obstacles and reach a certain goal. Since that time, a number of autonomous vehicle
prototypes and tests have been conducted, in both urban and rural settings, with
increasing success. Autonomous agents are the “brain” of every such autonomous
vehicle. Agents use sensors to read information about the car’s internal and external
states, process the information, and act on it. Agents need to act correctly in an
inaccessible, non-deterministic, non-episodic, dynamic and continuous environment
that is extremely complex.

® Autonomous agents in video games™: As video games have improved in quality
throughout the years and the industry has grown to be one of the most important in
the entertainment business, games have pushed the barriers further in various fields
of computer science (including graphics and T B 5
artificial intelligence), in order to get better,
more realistic appearances and behaviors,
This need for complex and sophisticated

environments cannot depend on pre-
programmed elements that loop or always
repeat the same patterns of behavior.
Agents need to be installed reacting in a
manner that will not repeat over time. Image 7.15: Autonomous agents in games

= Amazon, robots and the near-future rise of the automated warehouse. (26, January 2016). In
TechRepublic. Retrieved, 18:00, May 31, 2016, http://www.techrepubfic.com/article/amazon-robots-
and-the-near-future-rise-of-the-a utomated-warehouse/
** DARPA Grand Challenge. (25, April 2016). In Wikipedia, The Free Encyclopedia. Retrieved 19:52,
May 31, 2016, https://en.wikipedfa.org/wiki/DARPA_Grand_ChaI!enge
Y Autonomous car. (26, May 2016). In Wikipedia, The Free Encyclopedia. Retrieved 19:55, May 31,
201s6, https://en.wikipedia.org/wiki/Autonomous_car

Google Self-Driving Car project, https://www.google.com/selfdrivingcar/
" Thannia Blanchet. Autonomous Agents in Videogames. Retrieved 19:25, May 31, 2016,
http://www.cs.unm.edu/"‘pdevineni/papers/Blanchet.pdf

End of chapter example questions with answers

Exercise 1: A control system is used to control an elevator car to allow people to go to their
desired floor in a building.

1. Identify various types of sensors in this system.
Identify other pieces of hardware, other than sensors, that are part of the
control system.

3. Outline the sequence of steps that will take place within the computer control
system, when a person presses the button to call the elevator.

4. Define the term interrupt, as well as a situation in which it may occur in this
system.

Answer to Exercise 1:

1. Three sensors that will be present in this system are: proximity, motion and
pressure. '

2. Other pieces of hardware may include a microprocessor, actuators, transducers,
as well as analogue-to-digital and digital-to-analogue converters.

a. When a person presses the button, the pressure sensor is activated.

b. The signal is sent to the microprocessor that determines when the
elevator car should arrive at the floor where the person resides.

. Asignalis sent to the actuators/transducers to move the car to the floor
on which the person pressed the button.

d. After arriving on the floor, another signal is sent to the actuators of the
automatic door to open the car doors.

e. After a fixed time and if there is no other input in the motion sensor of
the automatic doors, the doors close.
A signal is sent to the actuators to move the car to the desired floor.

g. After arriving on the floor, another signal is sent to the actuators of the
automatic door to open the car doors so that the person steps out.

This sequence of steps is a simplified version of what might happen in
real life, since a microcontroller must take into account a number of
other factors. For example, other people may need to be served at the
same time or an indication that the maximum elevator car weight was
reached.

4. A signal sent to the processor (by either software or hardware) requesting the
processor’s immediate attention to a specific event is an interrupt. An example
of where this might be used in the elevator control system is the following. After
the elevator reaches a desired floor and opens its automatic doors to unload
and load people, the doors start closing. At that point a person that wants to
enter the elevator puts his/her foot between the two closing doors. A (light or
pressure) sensor would sense that the doors did not close and that there is an

object between them and would send an interrupt to the processor to open the
doors.

Exercise 2: Discuss how computer control systems have been used throughout industries to
replace human workers in various accounts.

Answer to Exercise 2: Computer control systems can work 7 days a week, 24 hours a day
(24/7), all year round. They also work tirelessly and accurately, performing monotonous
tasks without any complaints. They can also be used in dangerous environments, such as
radioactive, or where there are a lot of fumes, fires, etc., or in environments that cannot be
(easily) reached by humans, such as deep sea, space, etc. The initial cost of a computer
control system is usually considerable, but once set up, the system will be more economical
in the long run. Also, it will reduce labor cost, may increase the quality of work, as well as
performance and productivity. Finally, since there will be fewer workers involved, safety will
increase. However, such systems may lead to an increase of unemployment and workers
made obsolete will need to retrain in order to find a different kind of job.

Exercise 3: Describe how a GPS device can locate its position.

Answer to Exercise 3: Read section 7.1.1.

Exercise 4: Describe how control traffic lights can function dynamically.

Answer to Exercise 4: Read section 7.1.1.

Exercise 5: An intersection of a main road and a secondary road is regulated by a set of
traffic lights. The secondary road is a one way street. Pedestrian lights are also present
allowing people to cross the secondary road.

e By the press of a button, the pedestrian lights, as well as the traffic lights on the
main road change to green (Go), while the traffic lights on the secondary road turn
red (Stop), allowing people to cross the road.

e If no pedestrians want to cross and there is a vehicle on the secondary road, the
pedestrian lights and the traffic lights on the main road turn red (Stop) and green
(Go) on the secondary road.

e Otherwise, on all other accounts, every two minutes the traffic lights on the main
road, as well as the pedestrian lights, change from green (Go) to red (Stop), while
the traffic lights on the secondary road change from red (Stop) to green (Go), and
vice versa.

Traffic lights

Main road

188~ \

l Pedestrian lights

Secondary road

Button

1. Suggest how the sensors and the microprocessor controlling the traffic lights
may “sense” a vehicle approaching on the secondary road and perform all the
necessary steps.

2. Define the term interrupt, as well as a situation in which it may occur in this
system.

The intersection is located in a small town, far from any major cities. As such, its
communications network is not very good and is constantly unavailable.

3. The traffic lights installed in the intersection can either belong to a centrally
controlled system or a distributed one. Discuss the advantages and
disadvantages of both.

Answer to Exercise 5:

: a. Either a touch/weight sensor in the road or a camera on top of the
' traffic lights may be installed to detect an approaching or waiting vehicle
on the secondary road.
~ b. An analogue-to-digital converter is used to convert the analogue signal
from the touch/weight sensor to its digital counterpart. The same
applies to the camera.
c. The digital signal (either the weight or an image) is processed by the
microprocessor.
d. Finally, a signal is sent to the traffic lights so that the pedestrian and the
main road traffic lights turn red (Stop), while the traffic lights on the
secondary road turn green (Go).

2. A signal sent to the processor (by either software or hardware), requesting the
processor’s immediate attention to a specific event, is an interrupt. An example
of where this might be used in the traffic lights control system is the following:

A vehicle approaches from the secondary road and the sensors send a signal to
the microprocessor. At the same time, a pedestrian that wants to cross the

secondary road presses the pedestrian lights button. An interrupt signal is sent
to the microprocessor req uesting the processor’s immediate attention, changing
the traffic lights on the secondary road to red (Stop), while the pedestrian lights
turn green (Go).

3. Since the intersection is located in a small town, far from any major cities, and as
such, its communications network is not very good and is constantly unavailable,
running the town'’s traffic lights on a distributed system may lead to poor traffic
light performance due to connection failures. Even if a powerful central
computer is installed, if the connection to the traffic lights is not reliable, the
traffic lights would not function properly. For further advantages and
disadvantages read section 7.1.7.

Exercise 6: Discuss the ethical and social implications of forcing people to carry GPS devices.
Provide specific examples.

Answer to Exercise 6: Read section 7.1.6.

Exercise 7: Discuss the ethical and social implications of countries and/or individuals
installing CCTV cameras throughout cities and/or around their homes.

Answer to Exercise 7: Read section 7.1.6.

Exercise 8: A number of control systems may be used around the house such as:

® smart heating systems that turn on/off automatically as needed

® automatic doors/windows that open/close or even lock as needed
¢ lighting that turns on/off/dim or even changes colors as needed

® air conditioning that turns on/off as needed

¢ automatic cleaning that turns on/off as needed

1. Discuss how a user may access these systems.
Discuss two advantages of incorporating such tech nology inside the house.

Answer to Exercise 8:

1. The control systems described, as well as any other control system centered around
the house could be accessed and controlled in one of the following ways:
® Via aremote control:
o May be misplaced within the house.
o Needs batteries or to be charged to function.

© Portable enough to access the systems from anywhere in the house.

e Via a fixed remote control:
o Installed on a wall in the house.
o The user knows where the control is, as he/she cannot move it.
o Does not need batteries to operate.
e Via computer/smartphone:
o May be misplaced or lost.
Needs to be charged to function.
Requires internet/Wi-Fi connection to function.

Control systems may be accessed from far away.

(@} ilor (0) @)

Extremely portable.

2. The advantages of incorporating such technology inside the house include the

following:
a. Cost reduction: By scheduling exactly when these control systems function,
one can control expenses, reduce costs and save energy.

b. Improved comfort: By scheduling exactly when these control systems

function, one can cater for his/her specific needs. For example, he/she can

turn the heater on just before leaving work and arrive to a warm house.

Chapter References

10.

11.

12.

13.

14.
15.

International Baccalaureate Organization. (2012). IBDP Computer Science Guide.
Control System. (12, May 2016). In Wikipedia, The Free Encyclopedia. Retrieved
19:05, May 13, 2016, from https://en.wikipedia.org/wiki/Control_system

Smart thermostat. (19, April 2016). In Wikipedia, The Free Encyclopedia. Retrieved
19:25, May 13, 2016, https://en.wikipedia.org/wiki/Smart_thermostat

Dimitriou K. Hatzitaskos M. (2015). Core Computer Science for the IB Diploma
Program. Athens: Express Publishing. More information at:
https://www.expresspublishing.co.uk/gr/en/content/core—computer—science—ib—
diploma-program

List of sensors. (19, April 2016). In Wikipedia, The Free Encyclopedia. Retrieved
19:30, May 13, 2016, https://en.wikipedia.org/wiki/List_of sensors

Electronic tagging. (26, February 2016). In Wikipedia, The Free Encyclopedia.
Retrieved 19:30, May 16, 2016, https://en.wikipedia.org/wiki/Electronic_tagging
Prisoner e-tagging a 'resounding success'. (23, May 2012). In iTWeb. Retrieved
19:08, May 28, 2016,
http://www.itweb.co.za/index.php?option=cochontent&view=article&id=55068
Traffic Signal Control Systems. (2011). In United States Department of
Transportation, Research and Innovative Technology Administration. Retrieved
18:50, May 20, 2016, http://ntl.bts.gov/lib/jpodocs/edldocsl/13480/ch3.pdf
Stuart Russell, Peter Norvig. Artificial Intelligence: A Modern Approach, Upper
Saddle River (New Jersey, 1995)

Stefan Bittcher. Autonomous Agents in Space Missions. Course project for CS886 —
Multi-Agent Systems for Real-World Applications, University of Waterloo, Spring
2004. Retrieved 19:25, May 31, 2016,
http://stefan.buettcher.org/cs/csSSG/project.pdf

Amazon, robots and the near-future rise of the automated warehouse. (26, January
2016). In TechRepublic. Retrieved, 18:00, May 31, 2016,

http://www.tech republic.com/article/amazon-robots-and-the-near-future-rise-of-
the-automated-warehouse/

DARPA Grand Challenge. (25, April 2016). In Wikipedia, The Free Encyclopedia.
Retrieved 19:52, May 31, 2016,
https://en.wikipedia.org/wiki/DARPA_Grand_ChaIIenge

Autonomous car. (26, May 2016). In Wikipedia, The Free Encyclopedia. Retrieved
19:55, May 31, 2016, https://en.wikipedia.org/wiki/Autonomous_car

Google Self-Driving Car project, https://www.google.com/selfdrivingcar/

Thannia Blanchet. Autonomous Agents in Videogames. Retrieved 19:25, May 31,
2016, http://www.cs.unm.edu/“‘pdevineni/papers/Bfanchet.pdf

3 Topic D - Object-oriented programming?

~ Chapter 4

T riented programming

Tool used
All Java programs were written and tested in Bluel, which can be downloaded from the
following link:

http://www.bluel.org/

The Bluel development environment was created by the University of Kent and is ideally
suited for students.

,--.,...__.....__..._...-.-.._._..—..._-....__....__..__......_....____..,_..._..__...._..____...._...___.

-~

Useful Information: Although it is assumed that all students who choose to take Topic
D — Object Oriented Programming have mastered (up to a point) coding in Java, there
is no easy or slow introduction in the syllabus content.

As such, it is up to the students or the teachers to find books, online material or
presentations on programming with Java. This is not always easy to do and although
there is a plethora of tutorials on the Internet, some may be very advanced, some
may not be complete and some may not even be accurate. As such, a list of helpful
resources are given below. These free resources are most helpful and should be at
least considered by any student learning lava. They are presented in the order in
which they should be studied. They also include exercises.

1. Introduction to Java Programming:
http://www.ntu.edu.sg/homé/ehchua/progra mming/java/Jla_Introduction.h
tml

2. Java Programming Tutorial:
http://www.ntu.edu.sg/home/ehch ua/programming/java/J2_Basics.html

3. Java Exercises:
https://www3.ntu.edu.sg/home/ehchua/p_rogramm‘ing/java/JZa_BasicsExtérci
ses.html

4. Java —Tutorial:
http://www.tuto-rialspoint.com/java/index.htm

e e Vil o os” b e S T

o e S I

....._...__.__....._.__.__............_._...........__,..._....-.u___..........___..__...._.___.......____....._.....__—

! International Baccalaureate Organization. (2012). IBDP Computer Science Guide.

D.4 Advanced program development

D.4.1 The term “recursion”

Exit skills. Students should be able to:

| Define the term recursion.

Recursion was identified and explained in sections 5.1.1 to 5.1.3, “Thinking recursively”.
Situations where recursion is useful were presented and recursive algorithms were traced.

Recursion is a specific approach to problem solving in computer science. In this approach,
the solution to a problem depends on solutions to smaller instances of the same problem.?

In programming, recursion happens when a procedure (method) calls itself until some
terminating condition is met. This is accomplished without any specific repetition construct,
such as a while or a for loop. Recursion follows one of the basic problem solving
techniques, which is to break the problem at hand into smaller subtasks (divide and
conquer). Most algorithms that may be presented in a recursive manner may also be
presented in an iterative manner and vice versa.

D.4.2 Application of recursive algorithms

Exit skills. Students should be able to:

| Understand that recursion can be applied to a small subset of programming problems
| to produce elegant solutions. ;

| Understand that recursive algorithms are rarely used in practice.
LINK Think abstractly, think recursively.

In some cases, recursive algorithms can produce “simpler” and “cleaner” code compared to
their iterative counterparts if used wisely. This code is easier to understand and maintain
and, as such, useful to have, when possible. Sometimes “simpler” and “cleaner” code is
preferred even if it is not the most efficient. Below, a number of algorithmic examples are
compared, solved in both iterative and recursive versions:

® Factorial: A factorial function is defined mathematically as follows:
e { 1,ifn = 0
nx(n—1),ifn>0

41 = 4%3%2%1%*1 = 24, The following two code snippets find the factorial of a positive
integer number n. The left-hand is an iterative version, while the right-hand is a
recursive version,

? Recursion (computer science). (27, May 2016). In Wikipedia, The Free Encyclopedia. Retrieved 13:39,
June 3; 2016, https://en.wikipedia.org/wiki/Recursion_(computer_science)

Time s S

public int fact{int n) { public int fact(int n) {
int answer = 1; § if (n == 0) return 1;

return n * fact(n - 1);

Il

for (int i 2; 1 <= n; i++)
{ iy
answer = answer * i;

}

return answer;

Both of these versions are “simple”, “clean” and can be understood easily enough.
The iterative version is a little longer and uses a while loop, while the recursive
version includes a base case {(when n is equal to 0) and calls itself n times. Each time
the recursive version calls itself, it causes some memory to be allocated.

Figure D.1 presents how memory is allocated every time a recursive function calls
itself, assuming that the factorial of number 4 is to he found (so £act (4) is called).
After fact (4) needs toreturn 4 * fact(3).To do that, fact (3) is called, while
fact (4) is still running (it has not returned yet, since it has called fact(3)).
fact (3) needs to return 3 * fact(2) and so fact(2) is called {with fact (4)
and fact (3) still running). fact(2) needs to return 2 * fact(1l). So, fact (1)
is called that needs to return 1 * fact(0). n == 0 is the base case and so
fact (0) simply returns 1. The base case is the case that stops the recursion from

Memory used

s

A% aiEie e
Axfaet (3) 3 e 42 2 & 1*fact (0)

A i 451

d*Fact (3)

dxfact (8

Figure D.1: Memory allocation in recursive function

running infinitely. It does not call another fact method. At this point, fact (4),
fact(3), fact(2),

fact(l) and fact(0) are all taking up space in the
memory. Finally,

fact (0) first returns, so fact (1) may then return, so fact (2)
may return, so fact (4) may return at the end with the final result. The recursive
version of the factorial algorithm to compute the factorial of n generates n-1

recursive calls, rendering this algorithm inefficient compared to its
implementation.

iterative
As it is becoming apparent, calling methods recursively uses up memory quickly and
can result in the system stack running out of memory (as explained in sections 5.1.6-
5.1.7). In this example, this could happen if a large number were given to the
recursive version of the factorial algorithm. Recursion is a powerful concept and tool

that allows for elegant, simple solutions to problems, but may result in inefficient
algorithms if not used wisely.

Fibonacci: A Fibonacci function is defined mathematically as follows:
0,ifn =0
i = Lifn=1
Fpa+ Fo oifn>1

Every number after 2 is the sum of the preceding two numbers. So, the first
Fibonacci numbers are the following: 1,1, 2, 3, 5, 8, 13,21 ..

The base cases of a recursive algorithm would be F, and Fi.

Public int fib(int n) { . public int £ib(int n) {
int fib = 0;
int temp = 1;

if (n < 2) return n;

Lo XA RO i++) {
fib = fib + temp; g}
temp = f£ib;

return fib(n-1) + £ib (n-2) ;

}

return fib;

}

Comparing the iterative to the recursive version for the Fibonacci numbers, one can
appreciate the simplicity and cleanness of the recursive code. The recursive code isa

lot more intuitive and can be easily understood. It resembles the mathematical

definition closely and it is also shorter than its iterative version. As such, the

recursive version of the algorithm that computes Fibonacci numbers is much more

elegant. Unfortunately, the time difference required for the computation of a

Useful Information: |t might be useful to return to section 5.1.3, where 3 recursiv

e
algorithm was traced to €xpress a solution to a problem.

-_.......__....._._....___........__....._....___........_.......__........._.........__....._.____..__......___.._.___...__—

Fibonacci number between these two versions is enormous, with the iterative
version being a lot faster.

Euclidean greatest common divisor (GCD): A Euclidean GCD function is defined
mathematically as follows:

xifx =y
Forx,y > 0,gcd(x,y) = {gcd(x,y — x),if x <Yy

ged(x—y,y),if x>y

It is probably the oldest recorded recursive algorithm in history (around 300 B.C.). To
find the greatest common divisor of two numbers, xand y:

o Subtract the smaller of the two numbers from the larger one repeatedly,
until the resulting difference d is smaller than the smaller of the two initial
numbers, x and y.

o Repeat the same steps with d and the smallest of the two numbers from the
previous step.

o Continue until the two numbers are equal. That number is the GCD of the
two initial number.,

For example, if initial x is 420 and y is 96 then the algorithm would work as follows:

Step 1: 420 —96 = 324,

324 -96 =228,
228 -96 =132,
132 — 96 = 36.

Therefore d = 36.
Step2: 96-36=60,
60 —36 = 24.
Therefore d = 24,
Step 3: 36—24=12.
Therefore d = 12,
Step 4: 24-12=12.
Therefore d = 12 and both the smallest of the two numbers of this
step (24 and 12) and d are 12.

As such, 12 is the GCD of 420 and 96.

A W WO U = S e '

lterative version Recursive version

public int ged(int m, int n) { public int ged(int m, int n) {
while (m != n) { | if (m == n) {
if (m > n) { | return n;
m=m - n; } else if (m < n) {
} else { ; return ged(m, n-m) ;

}
}

} else { //m > n.
return ged(m-n, n);

}

ne= n. = 1m;

return m; ;

Both of these versions are simple, clean and can be understood easily enough.
However, the recursive version follows the mathematical definition and as such it is
probably easier to think of and implement in the first place. On the other hand, the
recursive version does call itself multiple times, taking Up more memory space.

Towers of Hanoi: The Towers of Hanoi is a
puzzle in which the elegance of recursion shines
through, compared to an iterative method.

This classic game consists of three vertical pegs
attached to a board, as depicted in Image D.1.
The pegs are usually labelled in some way. (ex.
A, B, and C). A number of n disks that have a
hole in their centers, so that they can slide onto
the pegs, are mounted on peg A, from largest (at
the bottom) to smallest (at the top). The
objective of the game is to move all disks from

peg A to peg C, one at a time, without having a
larger disk on top of a smaller one at any pointin
time. Image D.1 presents the initial configuration
of the game with 7 disks on peg A, a middle state

in which the disks are placed in various pegs, and
the final configuration of the game, the winning
state, with 7 disks on peg C. Image D.1: The Towers of Hanoi
This seemingly complicated problem becomes

easy when seen through the lens of a recursive

approach. There are only three steps that need to be performed in order to solve it:

Step 1: Move the smaller n-1 disks from peg A to peg B.
Step 2: Move the remaining disk from peg A to peg C.
Step 3: Move the smaller n-1 disks from peg B to peg C.

The solutions to the Towers of Hanoi problem for one (n=1), two (n=2) and three
disks (n=3), using the above algorithm, are outlined below:

o Eor one disk, where n=1:
1. Move the one disk from peg A to peg C [Step 2]
(steps 2 and 4 do nothing since n-1, for n=1, is equal to 0).
o Fortwo disks, where n=2:

1. Move the top disk from peg A to peg B. [Step 1]
2. Move the remaining disk from peg A to peg C. [Step 2]
3. Move the top disk from peg B to peg C. [Step 3]

o For three disks, where n=3:
1. Move the top disk from peg A to peg C.

Move the second disk from peg A to peg B. [Step 1]
Move the top disk from peg C to peg B.
Move the remaining disk from peg A to peg C. el [Step 2]
Move the top disk from peg B to peg A. =

Move the second disk from peg B to peg & [Step 3]

o= S TR (ot i

Move the top disk from peg A to peg &

Step 1 of the algorithm is made up from moves 1 to 3, step 2 from move 4
and step 3 from moves 5 to 7.

In order to implement the solution to the Towers of Hanoi problem using recursion,
a method would be needed that would move n disks from one peg to another. That
method could be called moveDisks and would include the following parameters:

moveDisks (int n, char from, char to, char excl)

n would represent the number of disks to be moved.
£rom would represent the peg from which the disks would move
+o would represent the peg to which the disks would move

(o) (@) Oy 50)

excl would represent the peg that would not be used for the move

When n would be equal to 1, then the single disk would be moved to its designated
peg and moveDisks would stop. This would be the base case of the recursion.

The three steps described above that would solve the Towers of Hanoi problem, in a
recursive manner, are rewritten using the moveDisks method described above, as

follows:
Step 1: Move the smaller n-1 disks using moveDisks (n-1, A, B C).
Step 2: Move the remaining disk using moveDisks (1, A, C, B).
Step 3: Move the smaller n-1 disks using moveDisks (n-1, B, C, A).

Taking into account these three steps, the Towers of Hanoi problem could be
implemented in the following manner:

public static void moveDisks (int n,char from,char to,char excl)

{
if(n == 1) {

System.out.println(“Move disk from “ + from + ™ to ™ + to);
} else {

moveDisks (n-1, from, excl, to);

moveDisks (1, from, to, excl);

moveDisks (n-1, excl, to, from);

An example output of the above code for three disks that are to be moved from peg
A to peg C would be the following:

1. Move disk from A to (&,

2. Move disk from A to B. [Step 1]
3. Move disk from C to B.

4. Move disk from A to C. S [Step 2]
5. Move disk from B torn o

6. Move disk from B to C. [Step 3]
7. Move disk from A to cA

An iterative version of the Towers of Hanoi algorithm is much more complicated
than the elegant, simple and clear solution presented above. Usually, if statements,
loops, arrays and/or queues are needed for such an implementation®.

Through the previous examples one can understand that recursion can be applied to a
nhumber of programming problems to produce simple and elegant solutions. However,
because recursive algorithms are usually very inefficient, when compared to their
iterative counterparts, it is important to note that recursive algorithms are rarely used in
practice. In real life computer systems, that have a fixed amount of resources, the
algorithms used should be as efficient as possible in order for the system as a whole to be
as efficient as possible. In real life, the elegance, “cleanness” and “simplicity” of an
algorithm usually come second to efficiency.

D.4.3 Construction of algorithms that use recursion

In section D.4.2 a number of recursive algorithms were described as well as traced. In this
section, a simple recursive algorithm is constructed that can be used for the evaluation of
exponents of a number (i.e. raising a base number to a power).

Raising a base number a to the power of n is defined mathematically as follows:

* Peter Smith. An iterative solution to Towers of Hanoi. Course Comp 151, California State University
Northridge, September 2002. Retrieved 22:20, June 5, 2016,
http://www.csun.edu/”psmith/lSlhandouts/ha noi3out.pdf

The base number a is multiplied n times by itself.
The following example depicts 3 raised to the powers of 0, 1, 2, 3 and 4 respectively:

o 3%°=1

o 3 -3-3

e 32 —atenisg

o 33=3%3%3:=77

e 3°=3%3%¥3%3:-81

A recursive relation may be deduced and defined as: a®> = a*a™*'. The base case for this
recursive relation is when a®, which always equals to 1.

The example of 3 raised to the powers of 0, 1, 2, 3 and 4 respectively, described through the
lens of the deduced recursive relation a® = a*a®™?, is presented below:

0

1

1-23%30-3%1=3

ZogHRl 3 3 ERs sl ic g
3_3%32-3*%3*3'-3%3%x3%30_3%3%3%1-77
4_g%33_3+%3%32_3%3%3%31_3%3%3x3%30_343%k3%3%7-8]

L
W W w w W
1l

From the examples, the recursive relation deduced, as well as the base case, the recursive
algorithm could be written in Java in the following manner:

public static int power(int a, int n)
{

//Base case
if(n == 0) {
return 1;

} else {

/ fRecursive step
return a * power(a, n-1);
}
1 N

In any recursive algorithm there is always a base case. Otherwise the algorithm would not
stop and would continue forever or until the resources of the computer system running the
algorithm would deplete. As such, there usually exists an if..else statement, that
determines whether the base case or the recursive step needs to run. It is very important
that the base case is always checked first (in this example, the if(n == 0) clause is run
before the else clause).

D.4.4 Trace of recursive algorithms

Exit skills. Students should be able to':

| All steps and cails must be shown clearly.

In section D.4.2 a number of recursive algorithms were described as well as traced. In this
section the simple recursive algorithm that was constructed in section D.4.3, which can be
used for the evaluation of exponents of a number (i.e. raising a base number to a power)

traced for when base 3 is raised to the power of 2. The Java method power that
implemented in section D.4.3 is used (i.e. power (3,
presented below:

, s
was
2) is called). The trace table is

SRR e Somemerl@ o T o

| 3 | power(3, 0) | trus | s VLS ERR R ey
L a soniln, g ' I 3.
[7_Sfp3w§i§;_2)__ B e s Y

 Table D.1: Trace table for the power (3, 2) method

There are five steps in the above trace table. power (3, 2) iscalled, nis not equal to zero,

and 3 * power (3, 1) is returned. However, before it can return, power (3, 1) needsto

be called. So, power(3, 1) is called, n is not equal to zero, and 3 * power (3, 0) is

returned. However, again, before it can return, power (3,
power (3,

0) needs to be called.
0) is called and this time n is equal to zero, so 1 is returned. power (3, 1)
returns 3 * power (3, 0) =

3 * 1 = 3.Finally, power (3, 2) returns 3 * power (3,
1)ie=" 3 X E = Hq)

power {3, 1) power (3, 0)

T aredibe. o iR

Figure D.2: Tracing the power (3, 2) method

It is very important to understand that a recursive method will keep on calling itself, and
consuming more system memory, until the base case is reached. At that point the last
method called will return, and only then will the second-to-last method return and so on
until the initial method can return the final result. When the base case is reached and the

methods called return, one by one, in the reverse order they were called, the memory
allocated to those methods will be deallocated and freed.

D.4.5 Define the term object reference

Exit skills. Students should be able to':
; Define the term object reference, as typified by si
| referential. :

Reference signifies a value that points to or refers to some data. That data is present either
in the computer’s memory or its data storage, and may be accessed through the reference.
For example, take the following simple program into consideration:

public class HelloWorld5Times {
Public statie void main (String(] args) {
int times = 5;

for(int i = 0; i < times; i++) ¢
System.out.println(“Hello World!”) ;
}
}
}

A variable named times exists fhat determines how many times the for loop is going to
run and how many times the “Hello World!” message is going to appear as output.
times is a name that refers to the number 5 in this example. Since times is an int, itis a
primitive data type. That means that the variable references a memory location and in that
location the value is stored. So, 5 is stored in the memory location that is referenced by

times.

In a similar manner, object reference signifies a value that refers to some memory location
that holds another memory location where an object’s details are stored. For example, take
into consideration the following simple object, which describes a (book or magazine)
publisher:

Public class Publisher

{
//Instance variables
Private String name, address, website;
pPrivate int telephone;

//Constructor

public Publisher(string name, String address,
int telephone, String website)

{ \

setName (name) ;

setAddress(address);

setTelephone(telephone);

setWebsite(website);

}

public String getName () {
return name;

}

public wvoid setName (String name) {
this.name = name;

}

public String getAddress() {
return address;

}

public wvoid setAddress(String address) {
this.address = address;

}

public String getWebsite() ({
return website;

}

public void setWebsite(String website) {
this.website = website;

}

public int getTelephone() f{
return telephone;

}

public void setTelephone (int telephone) {
this.telephone = telephone;
}

}

The Publisher object includes four private properties/instance variables {three of type
String and one of type int). These instance variables cannot be accessed directly but can
be accessed indirectly through the use of the get/set methods. Every Publisher is defined

as having a name, address, telephone number and a website. The constructor method
Publisher (String name, String address, int telephone, String website)

therefore takes in four parameters. These parameters populate the instance variables of the
current object using the set methods. These set methods (ex. setName (String name))
make use of the this keyword. The this keyword works as a reference to the current
object instantiation and therefore the current object’s instantiation variables. For example,
if there are two Publisher objects pl and p2, pl has its own instance variables,
unaffected by p2’s instance variables.

The Publisher object is used by the following simple program to create a Publisher and
output its details. p is a variable that refers to the publisher object created. Every object of
this type includes some instance variables that may be accessed using the
object.propertyName rule if they are public. For example, the publisher’s name of the
publisher object referenced by p could have been accessed through p.name if the
property name was public. However, most object properties, as is the case in our example,
are private. As such, they can only be accessed through the get/set methods. This
approach is safer as it allows various checks to be completed before a property is read or
set. For example, when setting a telephone number there may be some rules that need to
be followed, such as that telephone numbers cannot be negative numbers. These rules may
be placed inside the setter method of the telephone variable (i.e. setTelephone (int
telephone)). Accessing or setting a variable directly may lead to undesired results.

public class ObjectReferenceExample {
public static void main (String[] args) {
Publisher p = new Publisher (“Express Publishing”,
“Gardenias 25, Aharnes, Menidi”,
00302102120800,
“https://www.expresspublishing.co.uk”) ;

System.out.println(“Publisher ™ + p.getName () + % with
address “ + p.getAddress() + ", telephone number “ +
p.getTelephone() + “ and website " + p.getWebsite())

It is important to understand that a reference is distinct from the data itself. It is only a

name used to refer to the data.

D.4.6 Construct algorithms that use reference mechanisms

Exit skills. Students should be able to™:

Expanding on the Publisher example described in the previous section, D.4.5, a new
ObjectReferenceExample class is defined below, which creates two Publisher
variables p1 and p2 that refer to two different Publisher objects. Each Publisher object

has its own instance properties.

public class ObjectReferenceExample {
public static void main (String[] args) {
| Publisher pl = new Publisher (“Express Publishing”,
“Gardenias 25, Aharnes, Menidi”,
00302102120800,
“https://www.expresspublishing.co.uk”);

Publisher p2 = new Publisher (“Random Publishing”,
“Random St. 42, Random Location”,
0015100000000,
“https://www.randomPublishing.com”) ;

System.out.println (“Publisher “ + pl.getName () + ™ with
address “ + pl.getAddress() + V, telephone number “ +
pl.getTelephone () + © and website “ + pl.getWebsite()):

System.out.println(“Publisher ™ + p2.getName () + ™ with

address “ + p2.getAddress() + %, telephone number “ +
p2.getTelephone() + “ and website ™ + p2.getWebsite()) s

}

The output of the above program would be:

Publisher Express Publishing with address Gardenias 25, Aharnes,
Menidi, telephone number 00302102120800 and website
https://www.expresspublishing.co.uk

Publisher Random Publishing with address Random St. 42, Random
Location, telephone number 0015100000000 and website
https://www.randomPublishing.com

Searching and sorting algorithms

This section presents algorithms that may use reference mechanisms, such as linear search,
binary search, bubble sort and selection sort. An array named students of Student
objects is taken into consideration. The Student with grade 85 is found, with the use of
the searching algorithms, while the array is sorted in descending grade order, with the use
of the sorting algorithms. Each Student object has two instance variables (name, which is a
String that holds the name of the student, and grade, which is an int that represents the
student’s grade). For simplicity, it is assumed that no two Student objects may have the
same grade in this particular students array. The Student object is defined as follows;

public class Student

{
//Instance variables
Private String name;
private int grade;

//Constructor
public Student(String name, int grade)
{
setName (name) ;
setGrade (grade) ;
}

public String getName () {
return name;

}

public void setName (String name) {
this.name = name;

}

public int getGrade() {
return grade;

}

public void setGrade (int grade) ({
this.grade = grade;
}

e Linear search: Searches every element of the student array. If the search key
matches an element, its index is returned. Otherwise -1 is returned. Since linear
search is used to find the student with score 85, the search key in this example is the
grade of the student.

public int sequentialSearch (Student student, int[] students)
{

boolean found = false;
int place = 0;

while (place < students.length && !found)
{
if (student.getGrade() == students|[place] .getGrade ()) {
found = true;

} else {
pPlace = place + 1;
}
}

if (found) {
return place;

} else {
return -1;

}

A similar algorithm was presented in Topic 4.2.1 — Searching, sorting and other
algorithms on arrays in the Core Computer Science for the IB Diploma Program
book®. However, whilst in that version of the searching algorithm only integers (or
other primitive data types) were compared, in the algorithm presented above
objects are compared. Objects cannot be compared in the same manner as primitive
data types. That is, one cannot test for equality between two objects by simply using
the equality operator (==). So, in order to determine if the student in the array is the
one that is being searched for (i.e. has a score of 85), the grade instance variable of
the student object is compared to the grade of the student at the place
position in the array. The equality operation is displayed in red letters.

e Binary search: Searches a sorted version of the students array for the student with
score 85. For binary search to work, the array under examination needs to be
sorted. In this example, the array is sorted in descending grade order (i.e. the
student with the best grade is first, whilst the student with the worst grade is last).
The binary search algorithm checks the middle element in the array. If that element
matches the search key, it is returned and the algorithm stops. Otherwise, the
algorithm determines if the element to be found could be located “to the right” or
“to the left” of the middle element and proceeds to repeat the aforementioned
algorithm for that portion of the array, disregarding the rest of the elements.

public int binarySearch(Student student, int[] students)
{

boolean found = false;

int low = 0;
int high = nums.length -1;
int middle = 0;

while (high >= low && !'found) {
middle = (low + high) / 2;

if (student.getGrade() > students[middle].getGrade()) {
high = middle - 1;

} else if (student.getGrade() < students[middle].getGrade()) {
low = middle + 1;

} else {

* Dimitriou K. Hatzitaskos M. (2015). Core Computer Science for the IB Diploma Program. Athens:
Express Publishing. More information at: https://www.expresspublishing.co.uk/gr/en/content/core-
computer-science-ib-diploma-program

found = true;
}
1

if (found) {
return middle;
} else {
return -1;

}

Again, a similar algorithm was presented in Topic 4.2.1 — Searching, sorting and
other algorithms on arrays in the Core Computer Science for the IB Diploma
Program book”. Since objects cannot be compared in the same manner as primitive
data types, the grade instance variable of the student object is compared to the
grade of the student at the middle position in the array. This comparison is
displayed in red letters.

* Bubble sort: Compares every element of the student array to its next. If they are
not in the correct order, they are swapped. This process is called “a pass”. The
algorithm continues until an entire pass is completed without any swaps taking
place. As such, all elements are in the correct order.

public void bubbleSort(int[] students)

{
Student temp;
boolean done;

do {
done = true ;

for (int current=0; current<students.length-1; current=current+l) {
if(students[current].getGrade()<students[current+1].getGrade()) {
temp = students[current];
students[current] = students[current+l];
students[current+l] = temp;
done = false;
}
}
} while (!'done) ;
}

e Selection sort: Finds the student with the best grade and swaps him/her with the
student at the first position of the array. The student with the second best grade is
then found and is swapped with the student at the second position of the array, and
so on, until there are no more students to be sorted.

public void selectionSort(int[] students)
{

int first, least;
Student temp;

for(first = 0; first < size; first = first + 1) {
least = first;
for(int current=first+l; current<students.length; current++) {

if (students[current] .getGrade () >students[least] .grade) {
least = current;

}
}
temp = students|[least];
students[least] = students[first];
students[first] = temp;

D.4.7 Identify the features of the Abstract Data Type (ADT) list

Exit skills. Students should be able to™:

| Understand the n _ ADT - where no implementation details are known but
| the actions/methods are standard.

Abstract Data Types (ADTs) include the phrase data type that has been encountered before.
For example, Java build-in primitive data types, such as int, have already been discussed.
The int data type includes whole-number values between -2,147,483,648 and
2,147,483,647, as well as arithmetic operators +, -, *, /, etc. These arithmetic operators are

an essential part of the int data type, as they describe what operations can be performed
on it.

Through the use of object-orientated programming one may create classes that represent
custom data types. For example, a class that represents time, which includes fields for hours,
minutes and seconds, can be considered a custom data type. This class may be added or
subtracted just like the int data type. However, instead of using operators such as + and -,
one would use methods like add () and subtract().

Data types may be considered as any class that consists of data (fields/properties) and
operations on that data (methods/functions).

.-_..........___.__....._._._.........___...._...-____....___.__._.__.____...__....___-w..._..___...._

Useful Information: It is important to understand how objects can be compared. One
cannot test for equality between two objects by simply using the equality operator
(==). Take into consideration the following object:

public class Person

{
public int idNumber;
public String name;
public int age;
public Student(int idNumber, String name, int age)
{
this.idNumber = idNumber :
this.name = name;
this.age = age;

}

In the following program, two Person objects are created and compared as follows:

public class ObjectEqualityExample {
public static void main(String[] args) {
Person pl = new Person (318, “Kostas”, 18) ;
Person p2 = new Person (318, “Kostas”, 18);

if (pl == p2) {

System.out.println(“pl is the same as P27) ;
} else {

System.out.println(“pl is not the same as p27) ;
}

}

Both pl and p2 refer to Person objects that have an idNumber variable instantiated
to 318, a name variable instantiated to “Kostas” and an age variable instantiated to
18. Although these objects are similar, and from the idNumber one could assume that
they are the same person, they are not the same. They are two different Person
objects. Comparing these two objects using the equality operator (==) returns false.
If the ObjectEqualityExample program above is run the output is:

Pl is not the same as p2

A simple way to compare two objects is to compare all their instance variables or
some specific one that identifies an object beyond any reasonable doubt. For example,
the idNumber of a Person object can be assumed to be unique, and so if two
Person objects have the same idNumber they would be equal. As such, instead of
comparing pl to p2 by using the equality operator, one could test the equality of the
idNumber between the two objects as follows:

if (pl.idNumber == pP2.idNumber) { .. }

Useful Information: Since one cannot test for equality between two objects by simply
using the equality operator (==), but Strings in lava are objects, it is interesting to
look at how one can go about comparing Strings.
The String lava class includes a number of methods that help a developer compare
the text of the String object to the text of another String object. The most helpful
method, in our case, for the comparison of two String objects is the .equals ()
method.
For example:

gtring sl = “My name is Markos”;

String s2 = “My name is Markos”;
System.out._println(“sl is equal to s2:” + sl.equals(s2));

The output of this program snippet would be:

sl is equal to s2: true

Of course, since String objects are used widely and come bundled with Java, they are
sometimes treated in a special manner, which is beyond the scope of this book. Due to
that special treatment one may find that under some circumstances the equality
operator (==) may be used to effectively compare two String objects. However,
since this is not always the case, it is recommended that the .equals () method is
always used to compare Strings, in order to avoid any unwanted results.

Mt il il i e e e e M e e e e e he e e o e b e A s R A e e e e e e e e A M A N M e e e e e e e P

e e e e e e i

Abstraction, which was also presented in Topic 4 — Computational Thinking in the Core
Computer Science for the IB Diploma Program book”, relates to the essence of something,
without considering specific or unwanted implementation details. For example, the act of
double-clicking on an application icon and requesting its launch, is an abstraction. The same
action is taken for any application that a user may want to run, but the actual processing
that happens behind the scenes (from the input/output devices to memory allocation and
processing) is abstracted from the user. In a similar manner, in object-oriented
programming, an Abstract Data Type (ADT) is a class that may be used without knowing its
implementation details. The ADT describes the data (fields/properties) and operations that
can be performed on that data (methods/functions), but hides any details as to how the
data is stored and the operations performed. As such, any users that may use the ADT do
not know how exactly the ADT works. They are only aware of the data and operations, as
well as the expected results of the operations on data.

An important ADT that is extensively used in computer science is the ADT list. The ADT list
defines the interface, which means that it defines the methods that a list should encompass
to be called a list. A (linear) list is a group of elements arranged in a linear fashion, one after
the other. Fundamental operations on the elements of the list include the insertion, deletion
and observation of an element, as well as the size of the list. An ADT list may be

implemented in one of two ways; either statically or dynamically. For the static
implementation the one-dimensional array may be used, while for the dynamic
implementation the single linked list may be used. One-dimensional arrays are linear and
allow for the insertion, deletion and observation of their elements, as well as the array size.
As such, one-dimensional arrays are a specific implementation of the ADT list. Theoretically
an ADT list cannot be filled up. However, arrays, which have to be initialized using a specific
finite, number of elements, can and do indeed become full. There are a number of ways to
work around this issue. On the other hand, single-linked lists allow for the insertion, deletion
and observation of their elements, as well as the list size, and do not fill up. Sections D.4.9
and D.4.10 go into the specifics of static and dynamic ADT list implementations, respectively.

D.4.8 Describe the applications of lists

Exit skills. Students should be able to*:

In a list (or a one-dimensional array) any element may be accessed if its index position is
known. However, in both stacks and queues, only one specific element may be read,

inserted or removed at any given time. Stacks and queues are ADTs that are designed
specifically in order to follow these restrictions.

Stacks

Stacks are Last-In-First-Out (LIFO) structures,
meaning that the last element that goes into
a stack is the first element to come out. For
example, in a stack of plates one may add
another plate on top of the stack, but he/she
may remove only the topmost plate, which
also happens to be the last plate added to the
stack. Another example might be a stack of
magazines in a waiting room. The people
waiting may only remove the magazine at the
top of the pile and read it. Anyone finishing
reading their magazine will return the
magazine to the stack and add it to the top of
the pile. As long as no one adds another
magazine to the stack, the returned magazine
will be the one at the top of the pile.

Figure D.3 visually presents how an empty
Image D.2: A stack of magazines stack may fill with elements. In this specific
example, a magazine is placed on top of the
stack every time. Adding elements on top of a

i Magazine 82 . Magazine #3 Magazine #4

: Magazine #1 |

Magazine #4 |

:M.agazi'he #3 B Magazn
Stack Stack tak

. Magazine #2 W Magazine #2 Magazine #2

Magazine #1 Magazine #1 Magazine #1 B Magazine #1

Figure D.3: Pushing a magazine to the stack

stack is called pushing.

Figure D.4 visually presents how a stack with elements may become empty. In this specific
example, a magazine is removed from the top of the stack every time. Removing elements
from the top of a stack is called popping.

Magé-ie # ?Mag:"azine'#?s .Magazi_ne # B Magazine #1

| Ma g‘az--ihe #4

| Magazin Magazine #3 :
Stack

Magazine #2 Magazine #2 Magazine #2

Magazine #1

Magazine #1 Magazine #1 Magazine #1

Figure D.4: Popping a magazine from the stack

ADT lists described in section D.4.7 can be used to to represent a stack. The fundamental
operations of an ADT list upon its elements include the insertion, deletion and observation
of an element, as well as the array size. A stack essentially needs the same operations, but
with some restrictions so that only the top element may be inserted, deleted or observed. If
the stack is empty, an error message should appear if the user tries to delete or observe the
top element of the stack. In order to provide this restriction, a pointer variable needs to be
in place that will always keep the index of the last element that was added to the stack, and
be updated accordingly. This pointer variable will restrict the stack operations to that
element.

The main methods of a stack that may be implemented using ADT lists are the following:

e push(): This method adds an element to the stack as the topmost element.

The element is added according to the list index signified by the pointer variable.

® pop(): This method removes the topmost element. That is, the last element that
was added to the stack.
The element of the list at the index signified by the pointer variable is removed and
the pointer variable updated to point to the second-to-last element of the stack,
which then becomes the last element (top-most element).

¢ peek(): This method returns the top-most element, that is, the last element that
was added to the stack, but does not remove it.
The element of the list at the index signified by the pointer variable is returned.

® isEmpty (): This method returns whether or not the stack is empty.
If the pointer variable is equal to -1 then this method returns true, otherwise false,

® size(): This method returns the size of the stack. That is, how many elements
there are in the stack.
This method returns the index of the pointer variable plus one.

Queues

Queues are lines, like the one that is shown in Image D.3. Queues are First-In-First-Out
(FIFO) structures, meaning that the first element that goes into a queue is the first element
to come out. For example, when waiting in a queue at the supermarket cashier, the first to
arrive at the cashier will be the first to be served and exit the supermarket. Customers that
join the queue must join at the end, while the customer that leaves the queue is at the front.

In computer science, both
Peaple join at the o People leave from

stacks and queues are used in

rear of the queue ; g the front of the

various cases. For example,
an operating system uses
queues to keep track of
documents to be printed.
Mouse clicks or keyboard
strokes are also put in a
queue so that the computer
system is aware of which
clicks or keyboard strokes

happened and in what order.

Figure D.5 visually presents
how an empty queue may fill
with elements. In this specific

Image D.3: A queue (line) of people

example, a customer s
inserted at the back of the queue every time. Adding elements to the back of the gueue may
be called inserting, putting, adding or enqueuing.

Figure D.6 visually presents how a queue with elements may become empty. In this specific
example, a customer is removed from the front of the queue every time. Removing
elements from the front of a queue may be called deleting, getting or dequeuing.

The front of a queue may also be the head of the queue, while the back may also be the tail.

Customer #i . .

Back Customer #4
customer #3 B Customer #3 |
Queue ' Queue ~ Queue _ . -
Customer #2 Customer #2 B Customer #2

¥ Customer #1 Customer #1 Customer #1 Customer #1

Front
Figure D.5: Inserting a customer into the queue
Back | Customer #4
3 @ Customer #4
L Customer H2 ustarer 4

LB Customer #1 Customer #2

Front |

i Customer #1

Figure D.6: Removing a customer from the queue

ADT lists (described in section D.4.7) can be used to to represent a queue. The fundamental
operations of an ADT list on its elements include the insertion, deletion and observation of
an element, as well as the array size. A queue essentially needs the same operations, but
with some restrictions so that an element may only be inserted at the tail of the queue,
while only the element at the head of the queue may be deleted or observed. If the queue is
empty, an error message should appear if the user tries to delete or observe the element at
the head of the queue. In order to provide this restriction, two pointer variables need to be

in place and updated accordingly, that will always keep the index of the head and the tail
elements of the queue.

The main methods of a queue that may be implemented using ADT lists are the following:

e insert():This method adds an element to the queue as the last element.

The element is added according to the list index signified by the tail pointer variable.
e remove (): This method removes the first element. That is, the first element that
was added to the queue.

The element of the list at the index signified by the head pointer variable is removed
and the pointer variable updated to point to the second element of the queue,
which then becomes the first element.

e peek(): This method returns the first element, but does not remove it. That is, the
first element that was added to the queue.
The element of the list at the index signified by the head pointer variable is
returned.

® isEmpty (): This method returns whether or not the queue is empty.

e size(): This method returns the size of the queue. That is, how many elements
there are in the stack.

D.4.9 Construct algorithms using a static implementation of a list

Exit skills. Students should be able to*:

As discussed in section D.4.7, an ADT list may be implemented statically using an array.
Static arrays need to have a specific maximum length that cannot be altered at run time.
Items are ordered within the array in such a way that its index represents the position of the
item in the list (remember, the first element of the list will have an index of 0). Two variables
are needed: one to keep the maximum number of elements that may be present in the array
(so, the array length) and one to keep the current number of elements in the array.

A list may be ordered or unordered. Ordered lists contain elements in ascending or
descending order, whereas unordered lists contain elements in no specific order. Adding an
element to an ordered list requires that the element be placed in the correct position so that
the order of the list is maintained. On the other hand, any element can be added to an
unordered list either from the head or the tail of the list.

The following code represents a static implementation of a list using a static array. The
variable MAX LIST holds the number of maximum elements that may be present in the
array, while the variable numItems holds the current number of elements in the array. The
array in this example is named items and holds integers (for the sake of simplicity). It could
have just as easily held some other primitive type or user-defined object.

public class ADTListStatic

{
private final int MAX LIST = 50;
private int numItems;
private int items[];

public static void main(String[] args) {
System.out.println("") ;
System.out.println("Unordered list");
System.out.println("") ;

ADTListStatic unorderedlist = new ADTListStatic() ;

//RAdding elements to the head of the list.
unorderedlist.addHead (3) ;
unorderedlist.addHead (4) ;
unorderedlist.addHead (5) ;
unorderedlist.addHead(2) ;
unorderedlist.addHead (6) ;
unorderedlist.present() ;

//Removing element from the middle of the list.
unorderedlist. remove (4) ;
unorderedlist.present() ;

//Adding elements to the tail of the list.
unorderedlist.addTail (1) ;
uncrderedlist.present() ;

System.out.println("") ;
System.out.println ("Ordered list");
System.out.println("") ;

ADTListStatic orderedlist = new ADTListStatic();

//2dding elements to the list.
orderedlist.insert (3) ;
orderedlist.insert (4) ;
orderedlist.insert (5) ;
orderedlist.insert (2) ;
orderedlist.insert(6) ;
orderedlist.present() ;

//Removing element from the middle of the list.
orderedlist.remove (4) ;
orderedlist.present() ;

//Adding elements to the tail of the list.
orderedlist.insert (15);
orderedlist.present() ;

}

public ADTListStatic() {
items = new int[MAX LIST];
numItems = 0;

}

public boolean isEmpty() {
return numItems == 0;

}

public boolean isFull() {
return numItems == MAX LIST;
}

public int size() {
return numItems;

}

public int peek(int index) {
if (index >= 0 && index < numItems) {
return items[index];

}

System.out.println("out of range: 0 - " + (numItems-1));
return -1;

1
/>

* Method for adding an element to the head of an unordered list.
* Before adding the element, all the elements to the right
* of the head are shifted to the right to make way for the
* new element.
o
public void addHead (int item) {
if (isFull()) {
System.out.println("List is full.") ;
} else {

int index = 0;

for (int pos = numItems; pos >= index; pos--) {
items [pos+l] = items[pos] ;

}

items[index] = item;

numT tems++;

}
/*

* Method for adding an element to the tail of an unoxdered list.
* No shifting is necessary in this case.
i/
public void addTail (int item) {
if (isFull()) ¢{
System.out.println ("List is full.");
} else {

int index = numItems;
items[index] = item;
numItems++;

* Method for adding an element to a specific index.
* Before adding the element, all the elements to the right
* of the specific index are shifted to the right to make
* way for the new element.
7
public void add(int index, int item) {
if (isFull()) {
System.out.println("List is amelal o GE5) o

} else {
if (index >= 0 && index <= numItems) {
for (int pos = numItems; pos >= index; pos--) |
items [pos+l] = items[pos] ;

}

items[index] = item;
numItems++;

} else {
System.out.println("out of range: 0 - " + (numItems-1);

}

}

// Method for adding an element to an ordexed list.
public void insert (int item) {
if (isFull()) {
System.out.println("List is full.");
} else {
if (isEmpty()) {
add (0, item) ;
} else {
int index = 0;

for (int pos = 0; pos < numItems; pos++) {
index = pos;

{

index = pos;
break;
} else {
index = pos+l;
}
}

add (index, item) ;

}

* Method for removing an element from a specific index.
* The element is removed by shifting all the elements to
* the right of the specific index towards the left, to take up
* the space created by the removed element.
<7
public void remove (int index) {
if (index >=0 && index < numItems) {
for (int pos=index+l; pos<=size(); pos++) {
items|[pos-1] = items[pos];
}
numItems--;
} else {
System.out.println("out of range: 0 - " 4+ (numItems-1));
}
}

public void present() {
System.out.println("List elements:");
for (int pos = 0; pos < numlItems; pos++) {
System.out.print (items[pos] + " ");

}

System.out.println();

}

The above static implementation of a list using a static array includes the following methods:

e ADTListStatic (): This method is the constructor. It initializes the array to be
used as the list with MAX LIST positions. It also initializes the variable numItems,
which counts the number of elements in the list, to zero.

e boolean isEmpty (): This method checks whether the list is empty by comparing g
numItems to zero.

¢ boolean isFull(): This method checks whether the list is full by comparing
numItems to MAX LIST.

e int size ():This method just returns numItems, which holds the number of items
in the list.

e int peek(int index): This method returns the element of the list at the
specified index. If the index provided is outside the bounds of the list then an error
message appears.

e void addHead(int item): This method first checks whether or not the list is full.
Then it shifts all the elements one position to the right and adds the element
provided to the beginning of the list.

e void addTail (int item): This method first checks whether or not the list is full.
It then adds the element provided to the end of the list.

s void insert(Node node) :This method adds the Node provided to the correct
position in the list in order to maintain list order (ascending or descending).

e void add(int index, int item):This method is a private method that
adds an element to a specific index.

e void remove (int index): This method shifts all the elements to the right of the
specified index one position to the left, so as to take up the space of the element
that needs to be removed.

e void present(): This method just prints out the list, using a for loop that runs
from zero to one less than numItems.

e void main(String[] args): This method is added for testing purposes. It
creates a new ADTListStatic object and adds numbers 3, 4, 5, 2, 6 to the head of
the list. It then presents the list, which will be the following:

6 2543

It then removes the element at index 4 and once again presents the list (remember,
the first element of the list has an index of zero):

6 2 5 4

Finally the method adds number 1 to the tail of the list and presents the following
output:

6 25 41

The main method then creates a new ADTListStatic object (1istOrdered) and

adds numbers 3, 4, 5, 2, 6 using the insert method. This way the list remains
ordered. It then presents the list, which will be the following:

2 345¢6

It then removes the element at index 4 and once again presents the ordered list
(remember, the first element of the list has an index of zero):

2345

Finally, the method adds number 15 to the ordered list and presents the following
output:

2 3 4515

Stacks using a static implementation of a list

Remember, stacks are Last-In-First-Out (LIFO) structures, meaning that the last element that
goes into a stack is the first element to come out. A stack needs the same operations as the
ADT list, but with some restrictions so that just the top element may be altered or examined.

For the sake of simplicity, a stack that may include integers will be presented in this section.
Of course, the algorithms could easily be altered for the stack to include some other
primitive data type or even user-defined objects.

The main methods of a stack that may be implemented using ADT lists are the following:
void push(int item), int pop(), int peek(), boolean isEmpty() and int
size().

The implementation of a stack using static arrays is quite simple:

public class ADTListStaticStack
{
private ADTListStatic list;

public ADTListStaticStack() {
list = new ADTListStatic();
}

public void push(int item) {
list.addHead (item) ;
}

public int pop() {
int item = peek() ;
list.remove (0) ;
return item;

}

public int peek() {
return list.peek(0);
1

public boolean isEmpty () {
return list.isEmpty () ;
}

public int size() {
return list.size():;
}
}

Pushing an element to the stack involves just adding the element to the head of the list.
Popping the element from the stack involves peeking at the top element of the list, storing it
in a variable, removing the element from the list and returning the value in the variable. So,
popping an element is different from removing an element from the stack in that popping
also returns the value of the element. Peeking at the element at the head of the stack
involves just peeking at the head of the list. Finding the size of the stack and whether or not
it’s empty involves simply calling the respective list methods and returning the results.

The following example could be used to test out the ADTListStaticStack:

public static wvoid main (String[] args) {
ADTListStaticStack stack = new ADTListStaticStack() ;

stack.push (5) ;
stack.push (4) ;
stack.push(3) ;
stack.push(2) ;
stack.push (1) ;

System.out.println("Top element is: " + stack.peek()) ;
System.out.println("Popping top element: " + stack.pop()) :
System.out.println("Top element is now: " + stack.peek()) ;

A new stack is created and the numbers S5, 4, 3, 2,1 are pushed giving the following stack:

Headl 2 3 4 57Tail

The top element is printed using the peek () method, then popped, using the pop ()
method, and then the new top element is printed again, giving the following output:

Top element is: 1
Popping top element: 1
Top element is now: 2

Queues using a static implementation of a list

Remember, queues are First-In-First-Out (FIFO) structures, meaning that the first element
that goes into a queue is the first element to come out. A queue needs the same operations
as the ADT list, but with some restrictions so that an element may only be inserted at the tail
of the queue, while only the element at the head of the queue may be deleted or observed.

For the sake of simplicity, a queue that may include integers will be presented in this
section. Of course, the algorithms could easily be altered for the queue to include some
other primitive data type, or even user-defined objects.

The main methods of a queue that may be implemented using ADT lists are the following:
void insert(int item), int remove (), int peek(), boolean isEmpty () and
int size().

The implementation of a queue using static arrays is quite simple:

public class ADTListStaticQueue
{
private ADTListStatic list;

public ADTListStaticQueue () {
list = new ADTListStatic():;
) L

public void insert(int item) {
list.addTail (item) ;
1

public int remove() {
int item = peek()
list.remove (0) ;
return item; ¥

}

public int peek() {
return list._ peek(0);
}

public boolean isEmpty() {
return list.isEmpty ()
}

public int size() {
return list.size();

}

Inserting an element into the queue involves adding the element to the tail of the list.
Removing the first element of the queue involves peeking at the first element of the list,
storing it in a variable, removing the element from the list and returning the value in the
variable. Peeking at the first element of the queue involves just peeking at the first element
of the list. Finding the size of the queue and whether or not it’s empty involves simply calling
the respective list methods and returning the results.

The following example could be used to test out the ADTListStaticQueue:

public static void main(String[] args) f{
ADTListStaticQueue queue = new ADTListStaticQueue () ;

queue.insert(5) ;
queue.insert(4) ;
queue. insert(3);
queue.insert (2} ;
queue.insert(l);

System.out.println("First element is: " + queue.peek()) ;
System.out.println("Removing first element: " + queue.remove ()) ;
System.out.println("First element is now: " + queue.peek()):

A new queue is created and the numbers 5, 4, 3, 2, 1 are inserted giving the following
gueue:

Front5 4 3 2 1Back

The front element is printed using the peek () method, then removed, using the remove ()
method, and then the new front element is printed again, giving the following output:

First element is: 5
Removing first element: 5
First element is now: 4

D.4.10 Construct list algorithms using object references

Exit skills. Studen should be abl

(head and tail}, msert {in order), Geléte, i:si' lsﬁmpw, rsFuﬂ

As discussed in section D.4.7, an ADT list may be implemented- dynamically using a linked
list. In section D.4.9 an ADT list was implemented using static arrays. Static arrays need to
have a specific maximum length that may not be altered at run time. That means that
although, in theory, due to array implementation restrictions, ADT lists do not have a
maximum number of elements that they can hold, they do have a maximum number of
elements that they can hold when implemented in a static manner, using static arrays.
Dynamic implementation of ADT lists overcomes these limitations.

A linked list is made up of two parts: the head (a.k.a. reference variable) and the nodes. The
head includes a variable that points to the first item of the list, as well as, sometimes,
another variable that holds the number of items currently in the list. The nodes are the
elements of the list. They include a data variable (that holds some kind of data, from
primitive types to user defined objects) and another variable that points and links to the
next node in the list.

of items first item next item next item next

head nodes

Figure D.7: An example of a linked list with three nodes

Figure D.7 displays an example of a linked list with three nodes that hold integers. The head
of the list holds the number of elements in the list (i.e. three), as well as a link to the first
node of the list. The first node of the list includes some data (i.e. 1), as well as a link to the
next (second) node of the list. The second node of the list includes some data (i.e. 2), as well
as a link to the next (third) node of the list. The third, and last, node of the list includes some

data (i.e. 3), but does not link to another node, since there is no other (fourth) node. As
such, the value of the link is null.

Figure D.8 displays an example of a linked list where the pointer of the head’s first variable is
null. In this case, the head does not paint to 1t of the list, as there is no first

)

of items first

1 }

head

Figure D.8: An example of an empty linked list

A linked list may be ordered or unordered. Ordered lists contain elements in ascending or
descending order, whereas unordered lists contain elements in no specific order. Adding an
element to an ordered list requires that the element be placed in the correct position so that
the order of the list is maintained. On the other hand, any element can be added to an
unordered list either from the head or the tail of the list.

The code below represents a dynamic implementation of a list using a linked list. Two classes
are needed:

e Node class: Represents a node of the linked list. It includes a data variable named
item (that holds an integer for the sake of simplicity) and another variable, next,
that points and links to the next node in the list.

e ADTListHead class: Represents the head of the linked list. It includes a variable,
numItems, that holds the number of elements in the list, as well as a variable,

first, that links to the first Node object of the list. If there is no first node, the list
is empty and the first variable is null.

public class Node {
private int item;
private Node next; .

public Node (int item) {
this.item = item;

}

public void setItem(int item) {
this.item = item;

}

public int getItem() ({
return item;

}

public void setNext (Node next) {
this.next = next;

}

public Node getNext () {
return next;

}
}

public class ADTListHead i
pPrivate Node first;
pPrivate int numItems;

public ADTListHead () {
first = nulil:;

L numItems = 0;

}

public Node find(int index) {
if (index >= 0 &g index < numItems) {
Node current = first;
for(int i=0; i<index; i++) {
current = current.getNext () ;

}

return current:;

}

System.out.println("out of range: 0 - " 4 (numItems-1)) ;
return null;

}

//Methods for adding elements to an unordered list,
public void addHead (Node node) {
node,setNext(first);
first = node;
numItems++ ;
}

public void addTail (Node node) {

if (size() == 0) {
node.setNext(first);
first = node:

} else {
Node last = find(size()—l);
last.setNext{node);

}

numlItems++ ;

}

// Methods for adding elements to an ordered list.
public void insert (Node node) {
Node current = first;

node.setNext(first);
first = node;

} else {

current = current.getNext () ;

}

node . setNext (current.getNext ()} :
current.setNext (node) ;

}

numItems++;

}

public int peek(int index) {
Node node = find(index) ;
return node.getItem() ;
} ;

public void remove (int index) {
Node nodeToRemove = find (index) ;

if (index == 0) {
first = nodeToRemove .getNext (} ;

} else {
Node previousNode = find (index-1) ;
if (index == size()-1) {
previousNode.setNext(null);
} else {
previousNode.setNext(nodeToRemove.getNext());
}
}
numltems--;

}

public boolean isEmpty() {
return first == null;

}

public int size() {
return numltems;

}

public wvoid present() {
System.out.println("List elements:") ;

Node current = first;

while (current != null) {
System.out.print(current.getItem() R
current = current.getNext();

}

System.out.println();

public static void main(String[] args) {
System.out.println("") ;
System.out.println("Unordered list");
System.out.println("") ;

ADTListHead listUnordered = new ADTListHead() ;

//Adding elements to the head of the list.
listUnordered. addHead (new Node (3)) ;
listUnordered. addHead (new Node (4)) ;
listUnordered.addHead (new Node (5)) ;
listUnordered.addHead (new Node(2)) ;
listUnordered.addHead (new Node (6)) ;
listUnordered.present() ;

//Removing element from the middle of the list.
System.out.println("Remove element at index 4.");
listUnordered. remove (4) ;

listUnordered.present () ;

//Adding elements to the tail of the list.
System.out.println("At element 1 at the tail.");
listUnordered.addTail (new Node (1)) ;
listUnordered.present() ;

//Peek at the 2nd node's data.
int secondNodeData = listUnordered.peek (1) ;
System.out.println("Second node's data: " + secondNodeData) ;

System.ocut.println("") ;
System.out.println("Ordered list") ;
System.out.println("") ;

ADTListHead listOrdered = new ADTListHead() ;

//Rdding elements to the list.
listOrdered.insert (new Node(3)) ;
listOrdered.insert (new Node(4)) ;
listOrdered.insert (new Node(5)) ;
listOrdered.insert (new Node(2)) ;
listOrdered.insert (new Node(6)) ;
listOrdered.present() ;

//Removing element from the middle of the list.
System.out.println("Remove element at index 4.");
listOrdered.remove (4) ;

listOrdered.present () ;

//Adding elements to the tail of the list.
System.out.println("Add element 15.");
listOrdered.insert (new Node (15)) ;
listOrdered.present ()} ;

The above dynamic implementation of a list using a linked list includes the following
methods:

e ADTListHead(): This method is the constructor. It initializes the variable first to
null and also initializes the variable numItems, which counts the number of
elements in the list, to zero.

e boolean isEmpty(): This method checks whether the list is empty by checking
whether first is null.

e int size():This method just returns numItems, which holds the number of items
in the list.

e int peek(int index): This method returns the data of the node at the specified
index. If the index provided is outside the bounds of the list, then an error message
appears.

e void addHead(Node node): This method adds the Node provided to the
beginning of the list.

e void addTail (Node node): This method adds the Node provided to the end of
the list.

e void insert(Node node) -This method adds the Node provided to the correct
position in the list in order to maintain list order (ascending or descending).

e void remove (int index): This method removes the Node at the specified
index. For that to happen, the previous node in the list is found and its Next variahle
is set to point to the Node that comes after the one to be removed, as shown in
Figure D.S. Two special cases exist:

1. If the node to be removed is the first node in the list, then the
first variable of the ADTIListHead object is changed so that it
points to the second node in the list.

of items first

of items first item next item next item

of items first item next item

head nodes

Figure D.9: Deleting a linked list node

2. If the node to be removed is the last node in the list, then the next
variable of the second to last node is set to null.

void present (): This method just prints out the list. It uses a while loop until
the null item is found as the next node, meaning that there is no next node and as
such the end of the list has been reached.
void main(String[] args): This method is added for testing purposes. It
creates a new ADTListHead object (1istUnordered) and adds numbers 3, 4, 5,2,
6 to the head of the unordered list. It then presents the unordered list, which will be
the following:

6 2 5 4 3
It then removes the element at index 4 and once again presents the unordered list
(remember, the first element of the list has an index of zero):

6 25 4

The method adds number 1 to the tail of the unordered list and presents the
following output:

6 25 41
Finally, the method peeks at the second node’s data and prints it out, as follows:
Second node's data: 2

The main method then creates a new ADTListHead object (1istOrdered) and
adds numbers 3, 4, 5, 2, 6 using the insert method. This way the list remains
ordered. It then presents the list, which will be the following:

2 345@6

It then removes the element at index 4 and once again presents the ordered list
(remember, the first element of the list has an index of zero):

2 345

Finally, the method adds number 15 to the ordered list and presents the following
output:

2530457115

Stacks using a dynamic implementation of a list

Remember, stacks are Last-In-First-Out (LIFO) structures, meaning that the last element that
goes into a stack is the first element to come out. A stack needs the same operations as the

ADT list, but with some restrictions so that only the top element may be inserted, deleted or
observed,

For the sake of simplicity, a stack that may include integers will be presented in this section.
Of course, the algorithms could easily be altered for the stack to include some other
primitive data type or even user defined objects.

=

The main methods of a stack that may be implemented using ADT lists are the following:
void push(int item), int pop(), int peek(), boolean isEmpty () and int

size().

The implementation of a stack using linked lists is quite simple:

public class ADTListDynamicStack
{
private ADTListHead list; ;

public ADTListDynamicStack(} {
list = new ADTListHead() ;
}

public wvoid push (int item) {
list.addHead (new Node (item)) ;
}

public int pop() {
int item = peek|();
list.remove (0} ;
return item;

}

public int peek () {
return list.peek(0);
}

public boolean isEmpty() {
return list.isEmpty ()’
}

public int size() ({
return list.size();
}
}

It is easy to notice that the above implementation is very similar to the static version

discussed in section D.4.9. Nothing changes, apart from the fact that when pushing an item
to the stack, a new Node object must be created.

The following example could be used to test out the ADTListDynamicStack:

public static void main(String[] args) {
ADTListDynamicStack stack = new ADTListDynamicStack();

stack.push (5) ;
stack.push (4) ;
stack.push(3) ;
stack.push(2) ;
stack.push (1) ;

System.out.println("Top element is: " + stack.peek()}):
System.out.println("Popping top element: " + stack.pop());
System.out.println("Top element is now: " + stack.peek());

A new stack is created and the numbers 5, 4, 3, 2, 1 are pushed, giving the following stack:

Headl 2 3 4 5Tail

The top element is printed using the peek () method, then popped, using the pop ()
method. Then the new top element is printed again, giving the following output:

Top element is: 1
Popping top element: 1
Top element is now: 2

Queues using a dynamic implementation of a list

Remember, queues are First-In-First-Out (FIFO) structures, meaning that the first element
that goes into a queue is the first element to come out. A queue needs the same operations
as the ADT list, but with some restrictions so that an element may only be inserted at the tail
of the queue, while only the element at the head of the queue may be deleted or observed.

For the sake of simplicity, a queue that may include integers will be presented in this
section. Of course, the algorithms could easily be altered for the gueue to include some
other primitive data type or even user-defined objects.

The main methods of a queue that may be implemented using ADT lists are the following:

void insert(int item), int remove (), int peek (), boolean isEmpty() and
int size().

The implementation of a queue using linked lists is quite simple:

public class ADTListDynamicQueue
{
Private ADTListHead list;

public ADTListDynamicQueue () {
list = new ADTListHead() ;
}

public void insert(int item) {
list.addTail (new Node (item)) ;
}

public int remove() {
int item = peek();
list.remove (0) ;
return item;

}

public int peek() {
return list.peek(0) ;
}

public boolean isEmpty() {
return list.isEmpty () ;
}

public int size() {

160

S N e

T S e s e

return list.size() ;
}
}

It is easy to notice that the above implementation is very similar to the static version
discussed in section D.4.9. Nothing changes apart from the fact that when inserting an item
to the queue a new Node object must be created.

The following example could be used to test out the ADTListStaticQueue:

public static void main(String[] args) {
ADTListDynamicQueue queue = new ADTListDynamicQueue () ;

queue.insert (D) ;
queue.insert (4) ;
queue.insert(3) ;
queue.insert(2) ;
queue.insert(l) ;

System.out.println ("First element is: " + queue.peek()):
System.out.println ("Removing first element: " + queue.remove());
System.out.println("First element is now: " + queue.peek()):

A new queue is created and the numbers 5, 4, 3, 2, 1 are inserted giving the following
gqueue:

Frontb 4 3 2 1Back

The front element is printed using the peek () method, then removed, using the remove ()
method. Then the new front element is printed again, giving the following output:

First element is: 5
Removing first element: 5
First element is now: 4

D.4.11 Comstruct algorithms using the standard library collections included in
JETS

Exit skills. Students should be able to™:

implement algorithms using the classes Arraylist and LinkedList. Students should have

a broad understanding of the operation of these lists and their interface {methods)
 but not of the internal structure.

Common programming tasks that will most likely be needed by any kind of project are
usually packed in libraries. These libraries can be loaded by a programmer so that he/she
may take advantage of any programming tasks they include and avoid rewriting them for
his/her project. Libraries allow for various programming tasks to be written once and then
easily reused whenever necessary. Furthermore, bugs are avoided as known working
libraries that have been carefully tested may be used as “black boxes”. Most programming

languages include a standard library, which includes the programming tasks most widely
used. Java’s standard library collection included in JETS eéncompasses, amongst others,
ArrayLlist and LinkedList classes,

Classes (a.k.a. package members) from standard library collections may be imported using
the import statement at the top of the file in which the classes are to be used, as such:

import java.util. ArrayList;

After that, one can create ArrayList objects. The following example creates two
ArrayList objects, 1istl and 1ist2 respectively, that will hold Integer objects.

//Creates an ArrayList object.
ArraylList<Integer> listl = new ArrayList<Integer>() ;

//Creates an ArrayList object with an initial capacity
//0f 10 elements.
ArrayList<Integer> list2 = new ArrayList<Integer>(10) ;

ArrayLists may include only objects as elements and so do not support primitive types. They
can, however, include any number of elements. Even if an initial capacity has been
determined, it can change during run time without the programmer noticing. So, compared
to static arrays, ArrayLists may include any number of elements.

A full list of all the methods included in the ArrayList class can be found in the official Java
documentation®. However, the most common methods are described below:

* Adding elements to an ArrayList:

© boolean add(Element e): Adds element e to the end of the list.
Element e may be any kind of object, even user defined objects. It returns
true if the element is added successfully.

O void add(int index, Element e): Adds element e to the list at the
position specified by index. Shifts the element at the specified index and
all subsequent elements to the right.

®* Removing elements from an ArrayList:

© wvoid clear():Removes all the elements from the list.

© E remove(int index): Removes the element at the specified index. All
elements to the right of the index are shifted to the left, to take up the
space of the removed element. The element removed is returned from this
method. The return type, E, may be any kind of object, even user defined
objects.

O protected void removeRange (int start, int end) : Removes the
elements between the start (inclusive) and end (exclusive) indexes. Shifts to
the left any elements to the right of, and including, the end index.

® Retrieving elements from an ArrayList:

® Class Arraylist. In Java Documentation. Retrieved 19:00, July 8, 20186,
https://docs.oracle.com/javase/S/docs/api/java/util/ArrayList.html

C

E get(int index): Returns the element at the specified index. The
return type, E, may be any kind of object, even user-defined objects.
<T>T[] toArray (T[] a):Populates a static array a with all the elements
in the list in proper sequence.

Setting an element in an ArrayList:

o

E set(int index, E element): Replaces the element at the specified
index with the specified element E. The element previously occupying the
specific index is returned.

Searching for an element in an ArrayList:

e

boolean contains (Object o): Returns true if the specified object o is
found in the list.

int indexOf (Object o): Returns the index of the first occurrence of the
specified obhject o in the list. If o is not in the list, then -1 is returned.

int lastIndexOf (Object o): Returns the index of the last occurrence
of the specified object o in the list. If o is not in the list, then -1 is returned.

Iterating an ArrayList:

O

O

Iterator iterator ():Returns an iterator over the elements in the list.
ListIterator 1listIterator(): Returns a list iterator over the
elements in the list.

Checking whether an ArrayList is empty:

o boolean isEmpty ():Returns whether the list is empty or not.

Getting the size of an ArrayList:

(@]

int size(): Returns the number of elements in the list.

i

-

Useful Information: Iterators are the easiest way one can cycle through the elements
of a collection, including ArrayList and LinkedList. There exist two types of
iterators:

e lterator: allows programmers to cycle through a collection, as well as remove
any elements they may want.

o An iterator, initialized to the beginning of the collection, is obtained
by calling the collection’s iterator () method.

o lterator methods:

®* boolean hasNext(): Returns true if there are more
elements in the collection.

= Object next():Returns the next element.

= void remove (): Removes the current element.

e Listlterator: extends the Iterator to allow bidirectional traversal of a
collection, as well as additional modification to its structure and elements,
including addition of objects to the collection.

o A list iterator, initialized to the beginning of the collection, is
obtained by calling the collection’s listIterator() or
listIterator (int index) methods.

o List iterator methods:

= boolean hasNext(): Returns true if there are more
elements in the collection.
= boolean hasPrewvious: Returns true if there is a previous
element.
= Object next ():Returnsthe next element.
= Object previous ():Returns the previous element.
= int nextIndex(): Returns the index of the next element.
If there is not a next element, it returns the size of the list.
® int previousIndex(): Returns the index of the previous
element. If there is not a previous element, it returns -1.
= vyoid remove ():Removes the current element.
= void set(Object o): Assigns o to the current element,
which is the element returned by a call to either next () or
previous ().
Both Iterator and ListIterator classes are part of the java.util standard
library collection. As such, in order to use ArrayList, Iterator and
ListIterator for our example, the following import statements need to be present
at the top of the file:

import Jjava.util.Iterator;
import jawva.util.ListIterator;
import java.util.ArrayList;

n A e e v wm ne e s A e e e e e e e em e e S ke e b e mm n b e e A e e A e e e e e e e e A e S A A B M W e e s e e e e e e em e

1
I
1
1
I
1
1
1
1
I
¥
¥
'
i
I
i
]
!
i
1
1
1
1
1
1
1
I
1
1
i
i
I
H
H
i
i
i
i
1
i
1
i
1
1
1
1
1
I
1
!
1
1
1
i
I
1
]
1
i
]
i
b
i
E
]
1
i
1
1
1
1
1
1
I
I
1
1
1
1
I
i
1
I
i
i
I
3
3
1}
I
]
i
I
1
i
i
!

-

Useful Information cont.: In order to avoid writing many import statements at the
top of each file, one may use the asterisk (*) symbol to import all package members
as follows:

import java.util *;

All package members under the java.util, including ITterator, ListIterator
and ArrayList are imported using a single statement.

The following example illustrates how an Iterator may be used to cycle through all
the elements of a collection. Furthermore, it depicts how a ListIterator may be
used to modify an object of a collection, as well as how it can be used to cycle
through all the elements backwards.

import java.util.*;

public class IteratorExample {
public static void main(String[] args) {
ArrayList<Integer> list = new ArraylList<Integer>() ;
Integer one = new Integer (1) ;
Integer two = new Integer(2) ;
Integer three = new Integer(3);
list.add (cne) ;
list.add (two) ;
list.add (three) ;

//Iterator example.
Iterator<Integer> iterator = list.iterator();
while(iterator.hasNext()) {
System.out.print (iterator.next () + “ “):
}
System.out.printlin() ;

/fList iterator example.
ListIterator<Integer> literator = list.listIterator();
while (literator.hasNext()) {
Integer e = literator.next() ;
literator.set (e.intValue () +10) ;
}

while (literator.hasPrevious()) {
System.out.print(literator.previous() + » %) ;

}
System.out.println() ;

The output of the above program is the following:

{28
il atz alil

Bt i

|
L}
1
1
L}
[}
L}
1
i
1
i
L}
£
L}
]
i
14
I
i
i
I
3
[}
I
I
[
i
I
1§
I
I
I
I
i
I
I
i
i
i
I
I
i
i
i
I
I
i
I
I
I
|
I
1
1
1
i
i
H
i
L}
L
1
I
1
]
[}
i
L}
|
4
[}
)
3
I
1§
13
I
§
]
i
I
I
i
I
I
i
I
I
I
I
I
i
I
i
i
]
S

The LinkedList class from standard library collections may be imported using the import
statement at the top of the file in which the class is to be used, as such:

import java.util.LinkedList;

After that, one can create LinkedList objects. The following example creates a
LinkedList object, 1ist, that will hold Integer objects.

//Creates a LinkedList object.
LinkedList<Integer> list = new LinkedList<Integer>();

LinkedLists may include only objects as elements and do not support primitive types. They
can, however, include any number of elements. Compared to static arrays, LinkedLists may
include any number of elements, just like ArrayLists.

A full list of all the methods included in the LinkedList class can be found in the official
Java documentation®. However, the most common methods are described below:

e Adding elements to a LinkedList:

0 boolean add(Element e): Adds element e to the end of the list.
Element e may be any kind of object, even user defined objects.

o wvoid add(int index, Element e): Adds element e to the list at the
position specified by index. Shifts the element at the specified index and
all subsequent elements to the right.

0 void push(Element e):Pushes (adds) element e to the beginning (head)
of the list.

e Removing elements from a LinkedList:

o woid clear (): Removes all the elements from the list.

o E remove(int index):Removes the element at the specified index. All
elements to the right of the index are shifted to the left, to take up the
space of the removed element. The element removed is returned from this
method. The return type, E, may be any kind of object, even user defined
objects.

o E pop(): Pops (removes) the first (head) element from the list and returns
it.

e Retrieving elements from a LinkedList:

o E peek(): Returns the first (head) element of the list.

o E get(int index): Returns the element at the specified index. The
return type, E, may be any kind of object, even user defined objects.

o <T>T[] toArray (T[] a):Populates a static array a with all the elements
in the list in proper sequence.

e Setting an element in a LinkedList:
0 E set(int index, E element): Replaces the element at the specified

index with the specified element E. The element previously occupying the
specific index is returned.

% Class LinkedList. In Java Documentation. Retrieved 19:00, July 8, 2016,
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.html

e Searching for an element in a LinkedList:
O boolean contains(Object o): Returns true if the specified object o is
found in the list.
© int indexOf (Object o): Returns the index of the first occurrence of the
specified object o in the list. If o is not in the list, then -1 is returned.
O int lastIndexOf (Object o): Returns the index of the last occurrence
of the specified object o in the list. If o is not in the list, then -1 is returned.
¢ |terating the LinkedList;
O Iterator descendingIterator(): Returns an iterator over the
elements in the list from last (tail) to first (head).
O ListIterator 1listIterator(): Returns a list iterator over the
elements in the list.
e Checking whether a LinkedList is empty:
O boolean isEmpty ():Returns whether the list is empty or not.
e Getting the size of a LinkedList:
o int size():Returns the number of elements in the list.

As it is easily apparent, both ArrayList and LinkedList classes have great similarities.
Both are used to implement list structures, and both may be used in real world applications
without the programmer having to think about what is happening in the internal structure of
the classes (“under-the-hood”). Furthermore, both have more or less the same methods.
Small differences exist, such as the fact that the E get (int index) method is faster in
the ArrayList class, whereas the void add(int index, Element e) is faster in the
LinkedList class. These small differences are negligible and beyond the scope of this
book.

Useful Information: Two small programs are included in Appendix A, that present how
stacks and queues may be implemented using the ArrayList class. These programs
also include a text user interface.

A

D.4.12 Trace algorithms using the implementations described in assessment
statements D.4.9-D.4.11

st

-

 methods will be given when necessary.

The algorithms described and implemented in section D.4.9 used a static implementation of
a list. The following two main methods are traced, which are similar to those of section
D.4.9, and make use of ADTListStaticStack and ADTListStaticQueue objects
respectively.

public static void main(String[] args) {
ADTListStaticStack stack = new ADTListStatieStack():;

for(int i=5; i>0; i--) {
stack.push (i) ;

}
System.out.println("Top element is: " + stack.peek()):
System.out.println ("Popping top element: " + stack.pop());
System.out.println("Top element is now: " + stack.peek());
}
N true [5] | M
4 true [4,5] i
- = : e o
b e TR
1 i true 231 5] !
0 false |
CHeE o Gl AT fTop element is: 1“mmm
'Popplng top element: 1
S ' Top element is now: 2

Table D.2: Trace table for static stack example
public static void main(String[] args) {
ADTListStaticQueue queue = new ADTListStaticQueue() ;

for (int i=5; i>0; i--) {
queue.insert (i) ;

}
System.out.println("First element is: " + queue.peek()):;
System.out.println("Removing first element: " + queue.remove()):;
System.out.println("First element is now: " + queue.peek());
}
5 | true - [5]
4 kv [5,4]1 g
73 77757 CEmE NMIS 4, 3]
.hzmhm_rmm ”truemm"m"“'{S o e fm,mm
1 1 itrue {5[@,3,2,1] i y
0 false R

Flrst element is: 5
Remov;ng first element: 5
First element is now: 4 i
Table D.3: Trace table for statlc queue example e S

The algorithms described and implemented in section D.4.10 used object references for the
implementation of a list. The following two main methods are traced, which are similar to
those of section D.4.10, and make use of ADTListDynamicStack and
ADTListDynamicQueue objects respectively.

public static void main(String[] args) ({
ADTListDynamicStack stack = new ADTListDynamicStack() ;

for (int i=5; i>0; i--) {

stack.push (i) ;

}
System.out.println("Top element is: " + stack.peek()):;
System.out.println ("Popping top element: " + stack.pop()):
System.out.println("Top element is now: " + stack.peek()):
}
s 5 :
g '"true'"""” A g 0 R
BRI O o
2 true 12,3,4,5 |
= e L e ; 1
o false

; "'po""éié}né'rit' s w
Popplng top element: 1
Top element is now: 2

e s S TS , S

Table D.4: Trace table for dynam[c stack exampie

public static void main(String[] args) {
ADTListDynamicQueue queue = new ADTListDynamicQueue() ;

for(int i=5; i>0; i--} {
queue.insert (i) ;

1
System.out.println("First element is: " + queue.peek());
System.out.println("Removing first element: " + queue.remove ()} ;
System.out.println("First element is now: " + queue.peek());
}
5 | true 5
4 E true 5,4
3 | true 5,4,3
olEar e T 5,0,5.5 e
= - e St A -
5 i Dl
First element is: 5
o SU D NG s L 7f;RemDVLng first element: 5
o First element 13 now: 74WWWWWH

Table D.5: Trace table for dynamlc queue example

Trace Tables D.2 and D.4 are exactly the same, as are Tables D.3 and D.5. Stacks and queues
can be implemented either statically or dynamically, without any apparent differences in the
trace tables. The main difference between static or dynamic implementations of lists, that
could play a role, is the fact that static implementations need to have the size of the list
defined before run time. As such, they can reach a limit where no other elements may be
inserted into the list. This is not the case with dynamic implementations of lists, since in that
case, the lists may expand at run time to take any number of elements.

Section D.4.11 dealt with algorithms that used the standard library collections included in
JETS. The following two main methods are traced, which are similar to those of section

D.4.11, and make use of ArrayList and LinkedList objects respectively.

‘ public static wvoid main(String[] args) {
‘ ArrayList<Integer> list = new Arraylist<Integer>();

for(int i=1; i<4; i++) {
list.add(new Integer(i)) ;
}

//Iterator example.

Iterator<Integer> it = list.iterator();

while (it.hasNext()) {
System.out.print(it.next() + ™ “);

}

System.out.println() ;

//List iterator example.
ListIterator<Integer> lit = list.listIteratoz ()
while (lit.hasNext()) {
Integer e = lit.next():;
lit.set(e.intValue()+10) ;

}

while(lit.hasPrevious()) {
System.out.print(lit.previous() + ™ “);

)f
System.out.println() ;

T 1
i T D
> T ; s e e
e s e 7
"""" i s T
@ s e T s
[11;12 193] o W
T 13
3 - T T
A S T SIS

~ Table D.6: Trace table for Arraylist example

public static void main(String[] args) {
LinkedList<Integer> list = new LinkedList<Integer>():

for(int i=1; i<4; i++) {
list.add (new Integer(i)) ;
}

//Iterator example.
Iterator<Integer> it = list.iterator();

while (it.hasNext()) {
System.out.print(it.next() + " ");

}

System.out.printin() ;

//List iterator example.
ListIterator<Integer> lit = list.listIterator():;

while(lit.hasNext()) {
Integer e = lit.next():
lit.set(e.intValue () + 10);
}

while (lit.hasPrevious()) {
System.out.print(lit.previous() AL |

}

System.out.println() ;

e el
hasNext () hasNext ()} hasPrevious ()

? g e

iz 11,12,3 | g

- Sl 5

f 13 | et

B el e el L N e e S

i =i , ? Sh e
Table D.7: Trace table for LinkedList example

Trace Tables D.6 and D.7 are exactly the same. Arraylists and LinkedLists can be used
interchangeably, without any apparent differences in the trace tables. Both may hold any
number of elements.

D.4.13 Explain the advantages of using library collections

Exit skills. Students should be able to':

' Understand that libraries provide convenient and reliable implementations of

' common programming tasks.

Anybody implementing a project of any kind does not want to “reinvent the wheel” and do
extra unnecessary work. This is the case in computer programming as well. For example, if

one has written a sorting algorithm for integer arrays for a previous project, one wants to
avoid having to rewrite it for another project that may need it. Ideally, pre-written code,
tried and tested under scrutiny, does not need to be rewritten but may be used as it is. This
code may be used as a “black box” in that the programmer does not need to know the

internal workings of it, but rather only the input required, as well as the output to be
delivered. For example, in a theoretical sorting algorithm for integer arrays, a programmer
may call the function sort with an integer array as an argument in this way:
sort (integerArray). The programmer only needs to be aware of the existence of the
sort function, its arguments, if any, as well as the fact that it is going to sort the elements
of integerArray array in ascending order.

Since searching and sorting, as well as a number of other programming tasks (ex. accessing a
file, sending data over a network, etc.) are common, most programming languages, Java
included, come with a number of “program sets” that allow for the easy completion of these
programming tasks. These “program sets” are also widely known as libraries or library
collections.

As was previously seen in section D.4.11, classes (a.k.a. package members) from standard
library collections may be imported using the import statement at the top of the file in
which the classes are to be used, as such;

import Java.util .ArraylList;

This import statement allows a Programmer to access all the functionalities provided by the
ArrayList. In a similar manner the following import statement at the top of a file allows
the sort (int[]) function described before to be used:

import java.util.Array.sort(int[]);

In order to avoid writing lots of import statements at the top of each file, one may use the
asterisk (*) symbol to import all package members as follows:

import java.util. *:

All package members under the java.util, including Iterator, ListIterator and
ArrayList are imported using a single statement.

Libraries provide convenient and reliable implementations of common programming tasks
since:
® Code in libraries can be written and tested independently of any specific
applications.
® Code in libraries may be used as a “black box” since it is known to be working. If a
bug is present in the application, it exists in the application and not in the library,
reducing testing and debugging time.
® Code in libraries may be used in a number of applications and programmers do not
need to “reinvent the wheel”.

® Code in libraries reduces the size of the application files. Programmers can call
library code and avoid writing it as application code, which would make the
application files long and cumbersome.

D 4.14 Outime the features of ADT’s stack, queue and binary tree

Exit skills. Students should be able to™:

| Provide diagrams, apphcatmns and descnpt:ons of these ADTs. For example, they

| should know thata binary tree can be used to efficiently store and retrieve unique
| keys.

The features of ADT’s stack, queue and binary tree have been discussed in detail both in
Chapter 1 (Topic 5), as well as in the current chapter (Topic D). A list of these features is
briefly provided below:

e Features of Stack ADT:
o Stacks are made of a "chain" of data.
Elements can be "pushed" onto the top of the stack.
Elements can "popped" from the top of the stack.
Elements follow the LIFO approach.
Trying to access an element from an empty stack causes error and should be

(@) {0} (0L (0]

avoided.
e Features of Queue ADT:
o Queues are made of a "chain” of data.
Elements can be "enqueued" at the back of the queue.
Elements can be "dequeued" from the front of the queue.
Elements follow the FIFO approach.
Trying to access an element from an empty queue causes error and should

(@), (0] el (o]

be avoided.
e Features of Binary Tree ADT:

o Trees are made of nodes which have two pointers. One pointing to the left
of the node to elements smaller than itself, and one pointing to the right of
the node to elements greater than itself.

Trees assemble themselves from the root node.

In case of a balanced tree, the root node contains the middle value of the
whole set.

They are naturally sorted.

Searching can be done in a binary manner.

O

entions in code

D.4.15 Explain the importance of style and naming conv

Exit skills. Students shouid be able to':

Understand that meanmgful ldentlfners, proper mdentatwn and adeguate comments
all improve the readability of code for humans and save money, time and effort in

| programming teams.
INT, AIM 5 The need to develop a common “language” to enable collaboration across
international frontiers when resolving problems.

Standards and conventions are established to make life easier. They allow people to function
and collaborate at an international level without difficulty. For example, the traffic light
convention dictates that a vehicle must stop if there is a red light, pass if there is a green
light and be cautious at an amber light. This international convention allows people to drive
in any part of the world without any problems. On the other hand, height measurements do
not follow a single international convention. Some people, in some countries, use the metric
system and measure height in meters and centimeters, while in other countries they
measure height in feet and inches. There are a number of situations that do not follow a
single international convention. This leads to difficulties in understanding and
communication between people using different conventions for the same thing. Of course, a
lot of these conventions go a long way back in human history, before globalization, and have
been embedded so deeply in local cultures that they are difficult to change. For example,
while in most of the world people drive on the right-hand side of the road, there are some
countries where people drive on the left-hand side. This difference leads to drivers having
difficulties switching between the two conventions, as well as increased economic costs for
the car industry as a whole, since two types of cars (i.e. some With the steering wheel on the
left-hand and some on the right-hand) need to be created for every car. As such,
international conventions are important and allow for a common “language” that enables
easier communication and collabaration between individuals across the globe.

Programming has its own conventions to allow people from around the world to easily
exchange code and be able to work around the same projects. The reduction of cost,
especially during the maintenance phase, is also a key reason for following coding
conventions. Since most of the cost of a piece of software is taken up with the maintenance
phase’ and because the maintenance is almost always performed by someone other than
the original author, code conventions are necessary to improve readability and allow for any
engineer to understand previously written code quickly and fully. Code that is “clean” and
follows the internationally established conventions is easier for another programmer to
understand and alter, and is therefore easier and less costly to maintain.

The most common coding conventions include the following:

e language conventions: All programming languages (except from some educational
programming languages) use the English language, so as to remove a language
barrier.

e Comment conventions: Comments can either be “block” (a.k.a. prologue) or “line”
(a.k.a. inline) comments.

o Block comments in Java need to be delimited by /* and */ and may span
multiple lines.
Line comments in Java need to be delimited by //.
The best use of comments is subject to dispute, but overall they are used to
summarize code.

” Robert L. Glass. Facts and Fallacies of Software Engineering, Addison Wesley (2003)

o

o Block comments can be used before every class or method to provide a
general description. Line comments can be used on top or next to a line of
code whose workings may not be apparent. An example is shown below:

!’*
The main method loops through numbers 1 to 10
and outputs whether the number is even or odd.
x/
public static void main (String[] args) {
int a = 0;

//Loops through numbers ¢ to 2.
for(int i=0; i<10; i++) {

//a is incremented in every loop.
a = atl;

//Checks if a is even or odd and outputs
//the result.
if(a%2 == 0) {
System.out.println(a + “ is even.”);
} else {
System.out.println(a + ™ is odd.”);

}
}
}

o Comments should be simple and to the point. The need for a lot of
comments may signify complex code that may need to be rewritten. The
code on its own, using sensible naming conventions, should not need
extensive commentary to be understood.

e Indent style conventions: Although in most programming languages it can be
omitted, indentation of programming blocks conveys the program’s structure and
makes the code easier to read. There are a number of indent style conventions
available®, but all use spaces to signify that code is contained inside some other
code, as can be seen by the following example:

public static void main(String[] args) {
int a = 0;

for(int i=0; i<10; i++) {
a = at+l;
System.out.println(a) ;
}
}

The code inside the main method is indented two white spaces to the right. The
code inside the for loop is indented two further spaces to the right, signifying that
it is both inside the main method and the £for loop construct.

e Line length conventions: These refer to the maximum number of characters that
may appear on a single line. Although these conventions probably originated due to

® Indent style. (16, July 2016). In Wikipedia, The Free Encyclopedia. Retrieved 15:05, July 20, 2016,
from https://en.wikipedia.org/wiki/Indent_style

older technical limitations, such as various punch cards that could only consist of 80
characters in one line, they still play a role in modern programming. Screen sizes and
resolutions have increased, allowing for a larger number of characters to be easily
presented in one line without having to wrap around to a second. Most
programming style guides define a desirable number for characters per line to be in
the range of 72 to 100°. Having to read code that spans more than one line is hard
and should be avoided when possible.

Naming conventions: A set of rules for naming identifiers. Identifiers can be of any
type of entities, such as variables, method and classes. Giving sensible names that
follow specific conventions, to variables, methods and classes reduces the time and
effort needed to read and understand code. It can also provide additional
information for the identifier. For example, classes may always start with a capital
letter, whereas object instantiations of classes may always start with a lower case
letter. Naming conventions lead to consistency between individuals working on the
same code, enhance clarity and reduce ambiguity. They also help avoid “naming
collisions” between identifiers, leading to two identifiers with the same name.
Overall, following naming conventions and using sensible names for identifiers, that
describe the specific use of the identifiers, leads to better understanding of the code
after a long interval of time and as such, to easier and less costly maintenance.

® Characters per line. (7, July 2016). In Wikipedia, The Free Encyclopedia. Retrieved 15:10, July 20,
2016, from https://en.wikipedia.org/wiki/Characters_per_line

176

End of chapter example questions with answers

Exercise 1: Consider the following method, method, where a is a non-negative number and
bisa String.
public static String method(int a, String b) {
if (a == 1)
return b;
} else { ‘
return b + " " + method(a-1l, b);
}

Define recursion.
Trace the call to method (5, "hi"), showing all steps and the final output.
Using method method, construct a method with the following signature:

String method2 (int a, String b, int ¢, String d)
that obeys the following specification:

e ifa > cthen it first prints String b c times, then prints String d, and
finally prints String b a-c times.

e ifa <= cthenitprints"a must be greater than c".

For example, the a call tomethod2 (5, "hi", 3, "hello") will output:
hi hi hi hello hi hi

Answer to Exercise 1:

1. Recursion is a programming technique where a method calls itself.

2.
method (5, "hi")
hi + " " + method(4, "hi")
hi + " " + hi + " " + method(3, "hi")
hi + " " + hi + " " + hi + " " + method(2, "hi")
hi + " " +hi +" " +hi +" " 4+ hi + " " + method(1l, "hi")
hil e h gy psatEn R L Sh R s e e i
Qutputis:hi hi hi hi hi
3.

public static String method2(int a, String b, int c, String d) {
if (a > c) {

return method(c, b) + " " +d + " " + method(a-c, b);
} else {
return "a must be greater than c";

}

}

Exercise 2: Taking into account ADTListDynamicQueue from D.4.10, trace the following
code below.

b public static void main(String[] args) {
1 ADTListDynamicQueue queue = new ADTListDynamicQueue () ;

for (int i=5; i>0; i--) {
queue.insert(i) ;

}
System.out.println ("Elements in queue:") ;

for(int i=0; i<queue.size(); i++) {
System.out.println (queue.remove()) ;
}
}
}

Answer to Exercise 2: A new ADTListDynamicQueue object is created named queue. The
first for loop populates the queue, adding the elements 5, 4, 3, 2 and 1. As such, the
elements in the queue after the first for loop are:

front—-5 4 3 2 1-back

In the second for loop i begins from 0 to one less than the queue size. However, during
every loop an element is removed from the queue. As such, after every loop, i increases by
one, but queue. size () decreases by one as well.

The trace table is the following:

o
L ‘ |
4 |54 S e i i
g 8§49 . 3 - |
L2 5 s ol e e i 1
L5 o e - 1
. SEAR o 5 Eleméiﬁ‘:s in queue
W AgAal "0 < 5 — true g :
i 3 20T 1 < 4 - true A :
2 2 a3l ‘?2<3—_true g
________ *3 < 2 - false o

Exercise 3: Construct a program that checks whether a given email address is valid. An email
address is valid if it adheres to the following rules:

e The @ character is included once.

e A period isincluded once after the @.

e Atleast 2 characters are included after the period.

e There are at least 2 characters between @ and the period.
e There are at least 3 chars before the @ character.

178

Answer to Exercise 3:

public class email validation

{

public static void main(String [largs)

{

the

String email = "kdimitrioufhaef.gr";
int length = email.length():;
boolean correct = false;

int counter = 0;

int c_counter = 0;

for (int i=0;i<=length-1;i++) {
if (email.charAt(i) == '@"')
{

counter= counter + 1;
}
}

if (counter==1) ({
System.out.println("The @ character is included once");
¢ _counter = c_counter + Ly

}

int at_index = email.indexOf('@Q") ;
String a = email.substring(at_index+l,length);
int counter 2 = 0;

for(int i = 0;i<a.length() ;i++) {
if(a.charAt(i) == ('."')) {
counter 2= counter 2 +1;
}
}

if (counter==1) {
System.out.println("A period is included once after the @y ;
c_counter = c_counter + 1;

}

int index period = a.indexOf('.");
int length a = a.length(); !
int distance = (length a-1) - index period;

if (distance>=2) {

System.out.println ("At least 2 characters are included after
period") ;

c_counter = c_counter + 1;

}

if (index period>2) {
System.out.println("There are at least 2 characters between @

and the period");

c _counter = c_counter + 1lr

}

if (at_index>3) {
System.out.println("There are at least 3 chars before the @

character") ;

c_counter = c_counter + 1bg

}

if {c_counter !'= 5) ({
System.out.println("Email is incorrect") ;
} else {

System.out.println("Ok") ;
}

Exercise 4:

Consider the following problem:

Mr. Joe Doe is a high-school teacher in Athens, Greece. He teaches all school grades and is
also responsible for all the computers in the school. The school started a school bookstore
around ten years ago, where schools could buy and sell second hand books and magazines,
to keep the prices low. Since it began as a side project and was initially small, there was no
need for keeping a digital record of the books and magazines.

Currently, all reading material (books and magazines) are allocated a unique identification
number and a paper card is created for each one of them that includes all their details.
Whenever a student buys a book or magazine, the paper card is removed. When a student
brings a book or magazine for sale, a paper card is created.

The school bookstore has grown a lot since the economic crisis hit Greece in 2010. Each year
more and more students prefer to sell their books from the previous year and buy used
books, for their new school year, at a lower rate. The school bookstore has grown so much
and so much paper card housekeeping needs to be managed by Mr. Joe Doe alone that he is
having a hard time keeping up with it. Although the school bookstore is a vital part of the
school, Mr. Joe Doe cannot be offered any help, since the school is a public one and there
are no funds available to recruit a full-time employee. As such, the current system, under
the current circumstances is inadequate. The new application should be maintainable and
there should be a way to back up all the data. The new application would need to handle all
the aspects of the bookstore in a digital manner so as for Mr. Joe Doe to remove the paper
cards currently in place and limit the time spent in housekeeping. The computer available for
the school bookstore is an old one and running Windows XP. It has Java installed.

Develop a Java program that will correspond to the above scenario. The program should
fulfil the following citeria:

A friendly command line interface that allows for easy use of the application.
A list of all the reading material in the bookstore.

A list of all the reading material of some specific publisher.

A list of all the publishers of the books or magazines in the bookstore.

A data entry form to allow the addition of a publisher to the bookstore.

The ability to remove a publisher from the bookstore.

A data entry form to allow the addition of a reading material to the bookstore.
The ability to remove a reading material from the bookstore.

The ability to sort the reading material in the bookstore, according to price.
10. The ability to search for a reading material, using its ID or title.

{CE COBBSIN D LR B CIRRIS L

Answer to Exercise 4:

ReadingMaterialFile

ReadingMaterialFileRAF |

< ey T TR S T LinearSearch
........ e '
iitei PublisherFile 5 0
e > ; T R—— Lh :
e ~> < T q
H ; il !
i e * il .
iR T 1
if ~ <<abstract>> It Bookstore i
i ReadingMaterial | (i i
- i |
1
';_ _________ l________,ﬁé} Magazine Jil !
oo S S S : : T a3 |
! R S — Hi 5 3 i h
y el =i ! i
..... t ":..‘.:.‘_‘_"’J‘""""""'“""'_ ==..—-—--——.._.._I—.---....u.._..........--.-.u---- ! ::
|| S I % E 0 A
e e e o e e e e £ 11
e [
i B LT & e ! S e i
; ! = } i
L e = ——
== : I il
' i P i i i i
111 I Selectlbl‘lsort :(! H; - =
i H g i AL L i ARG InputTerminal
1 = 'I"" +
i i ! o> '
i i | |
i i 1 {
i i : ;
oL e [| j
i e R
(RRN !
tie i
il i
Piie 1
|
i
|
1

Cem

e PublisherFileRAF

Figure D.10: Bookstore classes

ReadingMaterial, Book, Magazine and Publisher classes

The main data structures surrounding the bookstore can be the ReadingMaterial, an
abstract class, that just describes the basic information related to anything that may be part
of the bookstore. Since it is an abstract data structure, more concrete data structures need
to be created that can be used to create actual data objects in the bookstore. These
concrete data structures are the Book and the Magazine. Since they extend the capabilities
of the abstract class ReadingMaterial, both will have all the variables and methods
included in this class. As such, both will have an id, title, pages, price and a
publisher, as well as the getter and setter methods for these variables. A book will also
include chapters and a list of authors, while a magazine includes a list of additional resources
it may come with (ex. a cd, recipe guide, etc.).

I0 class
In order to describe a publisher, one will need more than just a primitive data variable, such
asan int or a String. 50, a Publisher data structure will be needed. It will include the id,

name, address, telephone number and website of the publisher. Every Book or Magazine
will have a single Publisher.

In order for the product to communicate with the user through a command line interface it
will need a way to output and input data:

e The output is easy, it’s a single standard command provided by the Java
environment: System.out.print() and System.out.println(). The later will
terminate the current line with a newline character. Any String that appears
between the parenthesis of those commands will be printed to the terminal.

e The input is a bit more complicated. For that a public IO class will be created that
will include a static method named input. That method will receive a String that

will be shown as a prompt to the user (ex. “Please enter the title of the
book:).

ReadingMaterialFile and PublisherFile classes

The product will hold information regarding books, magazines and publishers. In order to do
so, all this information will need to be stored in files so that they may be retrieved and
persist after the application quits.

There are two classes that will be responsible for the reading and writing of all this
information to specific files:

e ReadingMaterialFile will write/read and output all the information regarding
the reading material (books and magazines). The information will be placed in two
separate files, one for the books and one for the magazines, respectively.

¢ PublisherFile will write/read and output all the information regarding the
publishers.

LinearSearch and SelectionSort classes

In order to be able to search through or sort any kind of data some kind of algorithm is
needed:

e The LinearSearch class will encompass different static methods that will allow the
user to search through a number of arrays holding different kinds of data, such as
Publisher, Book or Magazine objects.

¢ The SelectionSort class will encompass different static methods that will allow

the user to sort a number of arrays holding different kinds of data, such as Book or
Magazine objects.

Queue class

In order to be able to read the bookstore information from the files, one needs a data
structure that may handle any number of elements and not just a static array that may hold
a predefined number. Since the number of elements that will be read will be unknown the

Queue class will play that role. It will provide a simple implementation of a Queue data
structure.

InputTerminal class
This will be the class that will handle the communication of the user with the product while
creating new Book, Magazine or Publisher entries. It will be comprised of static methods

that will be called from the Bookstore class, where the main method of the application will
reside.

Bookstore class
Will be the entry point of the application. It will hold the main method and will be
responsible for most of the communication between the user and the product. It will
present the main menu, read in the user selections and orchestrate the correct functioning
of the application.

ReadingMaterialFileRAF and PublisherFileRAF classes

These two classes will have the same functionality as ReadingMaterialFile and
PublisherFile, respectively, but will use RandomAccessFile.

Using the RandomAccessFile is not necessary and is not used by default. It can be turned
offfon by making withRandomAccessFile, in Bookstore and InputTerminal,
false/true, respectively. The RandomAccessFile functionality is included just to present
the different ways one may read/write to a file.

The code solution for this question, provided below, can also be digitally found online at:
http://www.expresspublishing.co.uk/ibadvancedcomputerscience

This code is copyrighted and should not be copied and pasted as part of any assessment, but
may only be used as a guide.

The code solution, provided below, may be improved in a variety of ways that are beyond
the scope of this book. However, some improvements are considered below:

e Additional input validation and error handling: At the moment, the product only
performs a small amount of input validations. For example, if the user does not
input anything for the title of a book it will request the title again. However, there
are a number of occurrences where input validation and error handling could be
better. For example, when the user inputs text instead of an integer when the
program is expecting the latter, or when the user inputs a decimal point number
instead of an integer. The application should be able to handle such input and
output a useful error message.

e Addition of a graphical user interface (GUI) instead of command line interface
(CLI): Visual interactive elements such as buttons, lists, menus would make the use
of the application a lot easier.

e Introduction of some sort of encryption/decryption algorithm that would allow
the bookstore data to be stored even more securely.

e Ability to make automatic backups: At the moment backups can be performed
manually by copying the three data files that have to do with books, magazines and
publishers. This could be done automatically by the application to make life easier
for the user. For example, it could create a copy of the files on the desktop.

e Publisher removal if no reading material links to it.

® Publisher removal disallowance if there are reading materials that include it.

Another aspect that could be improved, although it would be transparent to the users,
would be the actual code of the product. There is some duplicate (identical) code in various
classes (especially ~ReadingMaterialFile, ReadingMaterialFileRAF and
InputTerminal) that could be combined and simplified.

e
o
=

o]
=}
-
o
Q

=
=

Y
[=]
@

©
=]

| &)

tetxejeRbutpesy 2yl 30 PT Sul

pr weaed§ .

E3

poujsu To3EIng &

{ 'pT

zxf

uInlsx }

()pr3eb 3jut orrgnd

TeTIdERbUTPESE Ul IO PT SuU3

/=

HINIBIF «

¥

POYISN IOSSBOOY x

{zoystTaqnd = xoystTqnd

wxf

{
"STUR

!aotad = =oTad sTYR
!sabed = sebed sTyuz
9T3T3 = ST3ATI STUR

‘PT = PT STU2

}

(zoystTand z°ystigng ‘sotxd jutr ‘ssbed qur ‘sT3T3 Butazs ‘pT Jut) TRTILjRRbUTPERSY

TeTasaepbutpesy syl Fo zsystignd su3z asystiqnd
Tetxelenbutpesy syl Jo sotad syl aotad
Terxojenburpesy oyl Jo sebed jc Jsqunu Byl sebud
TeTIsgebuTpesy oyl IO BT3ITI AU 91313

TetIesenbuTpRey 9yl IO PT =3

br

ZOQONIYSUCH

/=
wezedsy
uezeds
muxedy
mezedy
wezedy

* K X kK Kk X

wx/

fzoystTqnd FoystTTqng o3eatad
!2pTad j3ut o3eaTad

!sabed jut =o3eatad

{@T313 butazg ejeatad

TeTIoleWbUTPE®y SSBTD joBIlSqe DTIgnd

sgeTo TeIIsgenbuipesy//

!pT 3ut o3eatad

}

Terxelew Hurtpesy 8yl 1o eotxd eyl UanN3eId

3
poyl el IOSS800Y »

wx/

{ !sobed = ssbed-sTysz }
(sebed jut)sebegies proa orTdnd
/o
terxelewburpesy syl Jo sabed yo zequmnu syl sebed wexedpy i
*
POUISW IOJBINH »
.1:1\

{ !ssbed uanjex }
()sebegaeb jur orTqnd
/x
Tetaolerbutpesy syl yo ssbed yo rsqunu syl uInyeIy »
X
PoYIBW IOSSHOOY

xx/

{ ‘®1313 = ®T3T3 STY3 |
(31313 BuTazg)sT3TIIes PToa oTTqnd
/x
teraxejepburpesy 8y} Jo °I3TI BYI 87313 wexedy x
2
poylew I03RInK «x
YY)

{ !oT3T3 uwanji=ax }
()e1atz3sb Butays orignd
I/ x
TeTIelENbuTpeEsy °Yy3 FO ©T3T1 oyl uIn3exy
N}
poyjl sl I0SS8D0VY g

2/

{ {PT = pT"sTUY3 }
(PT Jut)pIies proa orTgnd
/%

jooq |y3 FO 13T BYL o137 weaedy 4
joeq eyl Jo PT 8yI pr uwexedp

L

IOZONIISUOCD x

vx/

!saoyane []lbutxzg s3eatad
tgxo3deyo jur ejeatad

}
Tetazejerbutpesy spuajlxs jood sSseTo oTTand

sseTo jood//

{
{ {xoystTqnd = zeystT1qnd STU3 }
(zoysTTand I9YSTTNd)IOYSTTGNd3es pPToa OTTqnd

TeTaojenburpesy syl Jo asystTgnd sy3 aeystTand wexedg

poyzew IOJEBINW x
xx/

{ !xaystTqnd uaniax }
() xoysTIgng3sb zeystIqng oTEqnd

[
Tetzeqew Burpesy oy3z zo zeystiqnd =yl UINIDIP &

*
PoY3BW JOSSVOOY &

wxf

{ ‘o5tad = =otad- sty }
{(eotad 3ut)aDTIglss proa oTiqnd

/%

TeTIazebutpesy 9yy o eotad 8yl sotaxd wexedy i
%

poy3sw IOFBINN »

sx/

{ ‘eoTad uingsx }
()eotag3eb jut or1qnd
/%

poyjew FO03EION 4
xx/

{ {sazoyane uxngax }
/ {)sazoyanyysb []Butazs orrgnd
/x
¥oogq 8yl Fo saoyine syl IT¥® FO ISIT uInleay o
k'
poylsill XOSSIDOY

wx/

{ {sasadeyo = sxsjzdeyo-stys }
(saezdeys 3jur)sasideypiss proa oTTand
f¥
yoog =y ut szejdeyo yo asqunu 8yl sxondeys weaedp s
)
poylew Iojelnp x
vx/

{ !saeadeyo uanjax }

() sasgdeynisb jut orTand

/%

}yoog syl ur saeadeyo JO ILBqUNU SYG uINISIP &
pPoulsl I0SSan0y H

Y

{SIOYJNEe = SIOYJNE STYIF
!sazozdeyo = saejzdeyo sIyl

{(zeystignd ‘sotTad ‘sebed ‘o133 ‘pT)aadns

‘xojonxjsuop TRTIeepburpesy oyl STT®D//

}

(zoysTtTand asystiqnd ‘sxoysne []Butals ‘saezdeys jur ‘eotad jur ‘sebed jur ‘eT3T3 bBurtaas ‘prT jurt)yoog orrTand
[

jooq eyz go xeystiand ayj zeustrand wexedp i

Jyooq |yl Jo saoylne aylx I IO ISIT v szoyzne wexedp

joog 2y3 ur saeadeyo o aequnu 8yz sxegdeyo wexedp

yooq ayg zo @otad Syl sotxd wexedy

jooq syyz go ssbed yo asqunu syl sobed wexedp

¥ k Kk ¥

{ {s8DanoseyYTRUOCTITIPPE UIN3laI }
() seoanoseyTRUCT3TPPY3SL []BuTtazg orTgnd
/=
surzebew sy] IO S/OINOSSIX YR TIE FO ISIT UINISAP 5

E'3
POY}BW IOSSVDDY y

wxf
{
! $9DINCSDYTRUOTITPPR = SIOANOSSYTBUOTIITPRE STUI
! (zoystiand ‘eotad ‘ssbed ‘sT3T3y ‘pT)aedns
‘zo3onIjsucs TeTIolENbuTpESY 8yl STTRD//
) }
(zoystTand I9YSTIONd ‘SecanoseyTeuoT3TPPE []Butazs ‘eotad jur ‘sebed jur ‘sy3ry butx3s ‘pr 3ur)surzebel oTTand
/=
surzebew ayz yo aeystTand oyz seystrend weaedy x
(‘o3® ‘sungxad Trews ‘optnb adrosx ‘eprnb AL - x8) %

sutzebew syz go zarvd se pepniout og Avw eyl ™
§90INOSRI BIIXD AUR JO ISIT P SSOINOSOYTBRUCTITPPE weiedd i
yooq eyl Fo soTad =yl antad wesedy x

jjooq oyz o sebed jyo xsqumu 2yl sabed wmaedy s

; HOOg BYY} JO |TJITI |y 87313 wexedy x

oo 8Y3 IO PT 9l pr wezedy x

'3

IOAPNISUOD 4

exf

!sopanosayTeucT3iTPPe []Hurals ojeatad

}
e TeTaxeleRbuTtpesy spusixs surtzebey ssero orrgnd

ssein sutzeben//

{
{ !saoyane = saoyane 'styl 1}
(szoyane []Butx3s)saoyanyaes proa oTTand
/%
joodg By JO SIOURNE |YJ TTE FO IASTT szoyane weaedp i
£'3

*
POU3BW JOSSVDOY

r5/

!{93TSgeM = 93 TsgeM’ STYZ
‘suoydeTd3 = suoydeTel ' sTyul
!{£89appe = SSaIPPR STUI
!sueu = SWEU' STY3
‘PT = PT STIY3
}
(o3 Tsgem mnﬂuum,\wsosmwﬂmu 3uTr ‘sseappe burajlg ‘sweu Burals ‘pPr IUT)ISYSTTANG oTand
' /x
aeystyiqnd Y3 Jo e3TSgOM Y3 a3tsgon wexedp .

xaystTIqond 2y3 Jo suoydeten oy suoydsTen wezedy x
zaysTIqnd 8yl o ssaappe a8yl ssoappe wexedp
aeystrgnd 9y3x Jo sweu oY3 suweu weiedp
asysTiqnd sy3a 3o pr SY3 pr wexedy
X
I0JONAFSUCD

wx/

!{e3Tsqgqem butazg ejearad
!suoydeTey jutr =3eaTad
/ !ssaappe burxiygs sjywatad
/ ‘sweu Butizs sgeatad
!PT 3uT ojearxad

}

IBYSTTqng ssero orrand

sseTD I9ySTIqna//

{ /S®DINOSSYTRUOTITPPE = S9OINOSOYTEUOTITPPE STYL }
(ssoanosex []bButals)ssoanosayTerucT3lIPPYLISS ptoa orrgnd
e
sutzebew 8Yj} JO SUDINOSSI BYJ TTE JO ASTT © 398 sooanosax weaedp .
*
poU38w Xo03einy x
rx/

o |
9..
e |

%
poylsu IOIBINN x
i.f\

{ {ssa3Ippe uinisx }
() sseappy3ieb butazs orTand
/x
aeystTand syl Jo ssaxppe oyl uIn3oIy
X’
poylew IOSSVOOY

xx/

{ {sweu = sureu'sTyl }
(oureu Hutalg)eueNies proa oriqnd
[
ZaysITgnd Y3 IO sweu Iy sureu wexedp x
*
poyijsw I03e3nH x
xxf

{ ‘oureu uaniax }
()ewen3®b Burazs orTqnd
/=
zsystTand 8yl 3O Sweu a8yl UIn}exp x
3%
poylaW IOSSIOIY »
xx/

{ {pT = pT STY3 }
(pT 3uTr)pIass proa orrand
/*
zoystTand syl Fo PT BUYR pr wexedp «
>
PoOY3IsW I0FeINH &
xx/

{ !pT urnieax }
()pr3sh jut orignd
! /#
xeystTand 8yl Jo PT SU3 uan3aIP

{ {e3Tsgem = =3Tsgem’sSTU3 |}
(o3 tsgem Butayg)e3Tsgemiss proa orrand
/x
asystignd syz Jo s3TBgEM SYZ sarsgen wexedy i
A
POUlsul IOFBRINON »
wxf

{ {e3Tsqem uinjzsx }
()®31sgemasb bButazg orpqnd
/%
xsystiqnd BY3 JO DITSgSM IUI UINIDIEH »
*
POUISU ICSSVIOY

Py

{ ‘suoydeTel = suouyderoz‘'stysz }
(sucydeTa3 jur)suoydeTeries prtoa orTqnd

/%
zsystignd sy3 o suoydersl oyl sgoappe weaedp iy
¥
poygsw xO03eINH »
s

{ !suoydestey uxniax }
()suoydstagisb jur ortgnd
S u
xsustyand =y 3o suoyderel syl uInysIs a
X
DOULBE JI0SSBODY 4

.ﬁ&.\

{ !{ssaippe = SS2IppPER STY3 |}
(ssexppe DBbuTajg)sseappylas proa oTTqnd

e
zeysTignd 8Yy3 JO SSLIPPE SY} sgoappe weIedg g

}
() sTTadoogpesx [13joog oT3Eas orTdnd

I
{exo3syooq BY3 UT X004 SHI TTF i
sTTA¥OOY BYF IO SjusjzuoD LUy TIE yatm Amige uINABIH »

#
oz0a85300q 9Y3 IO SHTIFUS ooq I3 TIE spesl - STTAHOOHUESI 4

e/
- gpoyasi peleTes yoog//

| orrgeurzebew, = AWVNETIE ANIZVOWW BUTIIS TBUTF OTITIS
LueTTaYeed, = AAYNATIA 00" Pputazg TRUTIF OTIEAS

}

sTTATETISleNbuTPE®y SSETD ortand

uumﬁmwmmaﬂm.OH.mbmn axodwut
“HmUMQMUmHmmmam.OH.mbmm axodut
{13 TIMIUTI] "OT BaARL axodurt

SSEID mmﬁhﬂmanwumﬁmuﬁﬁmwm\\
{

{PUTT UINISDX
{

|N il = wnl.ﬂﬁ
} (= uot3deoxd) YoIeD {

mAvmﬁﬂﬂvmwu.AAﬁnﬁ.EmpmhmvHoﬁmmmsmwupmuﬁm:H.oa.m>mﬂ 3mnvn@ﬁmwmvwnwumsm.Oﬁ.mbmﬂ MaUu) = DUIT
} &3

“AmmmmmmEvnnﬂnm.uﬁo.Emumhm
{.u = ourf Butaag
}
(abessau putagzs)andut Butals DTIES

}
or sser> orrand

gsBTO 01//

! ()enend maUu
! ((usyozaxesu ‘[+usxolx)burtazsgns-surT)aurssaed asbejur

't} FOXSPUT "SUTT
{uSo I Xou

! ((usyog3xeu ‘T+udyoz)butaisqns -outT)juresaed xebsiur

fatu) JOXOPUT 'RUTT
!usyoJ3xsu

! {(usyoraxau ‘T+usyol)burtazsqns -suTT)3urssaed-asbsjur

:4) FJOXSPUT ‘SUTT
!{uayor3ixau

{{(usyogaxau ‘ T+usyol)burtajsgns ‘surT)jzuIrssaed - xsbsjur

$ us :w FOXSPUT " @UTT
!usyoI3xeu

fwiu)FOXSPUT BUTT
{uin)FOXBSPUT "SUTT = USYO3 JUT

3STTIOUINE =n=nd

grasystiqnd 3ut

usyoIIxoU

sxojdeys jur

It

|

! (ueyog3xau ‘' T+uoyol)burajsgns -surT = °T3T3 Dbutaazs
{ ((usyo3z ‘g)burtazsgns-esuti)izuresaed aebequl = PT JUT

uSyOL3XSU JUT

‘{1 + yabusat = ysbuar

(()sutTpeaa " yooginduT

} (TT0u =|

! (ST TANooHIY]) I9pESYPSIsIINg MU
! (AWNYNETIIA MOOS) ISPESYSTTA M3U

usyoLIXau

sotxd jurt

usNOIIXOU

ueyoL3xXau

SUTT)) T TUM

‘0 = yabuat juTr

jyoogandut xspesypaisaiing
sTTANOOCHSY] ISpPRaYeTTd

!euty buTtaas

sjoogjoliexae []3joog

! ()onand mMou

syooq onend

mﬁ:zvaﬁpﬂﬂum.pﬁo.EwumMm

f(, " -mou 3T Burjeeao ‘31sT*S JOU S°OP aTT3 jooq oyt .)utautad- gno we3sis
Wﬁ==vnﬂuqﬂnm.uﬂo.ﬁmumhm

: ()Butazgoa e = xae bButazs

‘pojESsID ©g 30U UED IO ISTXS JOU SI0P sTTAN0Oq//

} (o uortadeoxgm) uyojeo {

{
!snanpuorgyooq = mﬂumxoomMOhmnum
unvmﬂmuwwﬁ.mxoonﬁxoomu = snanjwoxgiyocq Hood
} {++T ‘uy3abus>T ‘0=T 3IUT)IOF

! [yzbust]oodg msu = syoogIoheae

: (Azzua) snenbus ' sjooq

{{zeystTgnd ‘sIoyine rgxezdeyo ‘eootad ‘sebed ‘®T3T3 ‘PT)HO0H MSU = Kxjzus oog

! (qrzousTTand) AIUF TMASUSTTANdPeSa oTTATEYSTIqRd = TousTTand ISUSTIANd

{
mAgmumnvmﬁ.umﬂqu0£usmAwdanamv = [T]saoyane
} (++T {y3zbueT saoyine > T /0 =T JuT) 203

;[()ozTs 3stIIOoyine] butalzs msu = sIoyane [1Butaas
{(T+ue3old ‘,:,)JOXSPUT SUTIT = USHOLIXSU
{ueyoL}¥XdU = uS}Oo]
uhuonuzmvmﬁmawﬂw.pmﬂﬂn0£uﬁm
! (uayoL3xaU {{4uoyol) buraizsqns SUTT = Ioyzne butxasg

} (T- =i uejor3XsU)STTUM

! (T+uea03 {41 L) JOXSPUT "BUTT = USHOIIXSU
!usjol3X9U = UIYO]

o
ok

} £x3

{ITnu = 3ndano a8l TIMIUTIL
(s3ooq []xood)oTTANOOHOLSHOOHSITIM PTOA DTIBIS oﬂﬂnsw
sjooq 3o Avaze ue g300q. Emummwxw
mmﬂﬂm JO0g DY 0% sHooq FO AvIIw UR SOITIM - STTANCOHOILSMOCHSITIM H
xS

! (j0OEPAPPYUI TMSHOO]) STTIHOOHOLSHOOTSF TIM

‘q = [0]yocHPePPYUITMSHOOq
{[1]300"g Mou = JyoOgPSPPVYI TMSH0OQ
} es1e {
{q = [T-yabusT joodpPsPPYY3 TMSICO]] OOgPSPPYYA TMSH00q

:[t]lsyooq = [TlyccdPepPPYUITMSIOO]
} (++T ‘uyzbusy-syooq > T Q=T 3FUT)I0F

! [T+y3bueT " syooq]lyoog meU = JOOHPEPPYYITMSIOO]
} (TTnu =; syooq)st

{joogpeppyUl TMSYooq []3joodg
! ()eTTayoogpeax = sjyooq []xood
}
(q 3oog)oTTANOOEOLOITAM PTOA DT3E3S DITgnd
/%
Axjue jooq meu v g wezedp x

¥
*STTF ¥ooq =43 03 AZJus HOOQ MBU B FOTIM - OTTIHOOHOLSITIM
wxf

!gjqoogI0ARIIR UINZDI

!{uw:4 + [L]saoyane)jurad-jndino
ssT®

f{uw:y + [[]szoyzne)urzurxd-jndino
{T-u3buet - saoyine == [)3T

} (++C ‘uy3bust-saoyanesl !o=[3jut)aoz
! () szouanyyeb dwey = szoyane []Butaas

f(uta + (Jp139b z8ystrand)jutad-indano
{{u!u + sxoazdeyo)jurtad-andino

f(yin + @oTad)zutad: andano

Hyiu + sebed)zurad:andano

!(uin + 2T13713)3utad: jndino

!{utu + Pr)3urad-3ndino

*STTF STTAN0OY 8yl o3 wsyy puadde//

! ()yaeysTTqngasb - duey = xsystTgnd I8YSTTAnd
!{{)saoqdeypysb-dwey = sasydeyo jur
{{)ootagayeb duey = sotad jur

! () sebegyeb dwey = sebed jur
{()o13Tr3eb dwey = s13T3 Butaag
{()prasb-duey = pT 3UT

! [T]lsyooq = dueg xoog

} (++T {yabusT-sjyooqg > T Q=T JuUT)IOF
} (0 =i y3abusT'sjooq 3% TINU = S300q)IFT

! (,u)uT3utad- gno-welsis
{(, " "mou 3T BurjEsIo ‘3STX® jou S8Op OTTI 0oq °YL,)ulzutad-jno- weilsis
! {wu)uTautad: ano-weysds
! ()butazgol's = zxo bButalg
"pelESID 8¢ 30U UBD IO 3STX® 10U Seop eTTayoodq//
} (2 uotadedxy) yojzeo {
! (ANUNT'TIA MOOH) I93TIMIUTI MSu = 3nd3no

! (sebed + ,:gEOV4,)uTiutad -3no wa3sig
({97313 + , !TILIL.)uT3utad 3no walsig

‘(PT + ,:QI.)ur3urad-3no we3sis

-\A:

u)ur3utad-ano-weilsig
A{ua) .G.Hu..ﬂ..n.Hm ‘3no-u=3sis

{ () z9ysTTang3eb duwey = aeysTIqnd ISYSTIANd

{(, A3dws st

BUTIIOS INOYITH TEUTULISY SYZ O DSIOFSHOOY SUT UT SHOOG

! ()saeadeypzshb-dusy = sasjdeyo jur
! ()eoTxgasb-dwsy = soTad jut

! ()sebegaieb -duey = sebed jur

! ()oT3TL3®b duey = =13713 butaas
{(}p13eb dwey = pT 3juUT

{[T]syooq = dweoy 3oog

} (++T ‘yabusT'sjyooq > T {Q=T IJUT)I0F

! (wu)ur3utad: gno-weasis
axo3sjooq 9yjl,)ur3iutad- jno ueisis
{ (yu)uT3utad 3no - we3sis
} (0 == u3bust-syooq)IT
} (ITnu =i s}ooq)IT

{()oTTaYoogpEST = S}0oO0g

{TInu = syooq []3iood
}
() TeuTWIBTOLSYOoCHTTYINdaNO pPTOA DT3E3s DTIqnd
e
syz Ti¥ sandine - TEUTHISIOLSNOOHT TWatidane 4
Y

{

{ ()osoTo '3ndano

1(,**'mou 3T BurjeeaD ‘3STX® 30U SIOP STFF Hooq 2YIL,)Iutad-indino

} este {

} este {
{ (wu)urT3aurad-3no- wa3sds
(. A3dwe sT sxozsjooq =y,)urzurad 3no wslsig
! (wu)uTaurad-3no-weysis
} (0 == yabuet syooq)IT
} (TTnu =j syooq)IT

! () eTTagyoCogpPERI = SYOoOoq

{TTnu = sjooq []3oog
}
() TeUTWISIOLSOTI TLSAISHoogTTYINdIno proa oT3els orrand
/%
M
Burgaos 300ULTH TRUTWIDY Byl O3 DIXORESHOO SYJ UT
S013T3 pue SAT ,8¥00q oyl TTe sandino - TRUTWISLOLSOTITLSALSHOOHTTYINdINO 4«

wx/
{
{
{(yu)uTdutad: ano welsisg
! {,"©30383100q BY3 UT SHYOOQ OU 3B sx9yy,)uTzutad 3no 'we3sisg
H A: :u .ﬂ._”n—._ﬂ.wnnm “3no .Emu.mhﬁm
} esto {

{{,.)uT3utad gno -weasis
f(a J)uTautad ano-uwe3sig
{ (()ewen3eb - zoystIgnd + , :i¥IFHSITINL,)uT3utad jno we3sds

:([Clsaoyzne + ,: (S)H¥OHIANV.)uTFuTad 3no weasis
({(,u)sTEnbS" (Jwrxy- [L] saoyane) {) It

} (++C {yabuet saoyanexl :g=C 3ur)xoz
i () szoyanyysb-dwey = saoyane []bButxag

‘({saegdeys + , :SYALAVHO.)UTIUTId 3no walsis
{(eotad + ,:($) =EOr¥d.)urlurad-3no usisig

! (}eTITANoOHPESI = Syooq

/TInu = syjooq []yoog
}
(3sbae3 jut)g9YSTTgNAFOTRUTWISIOLS YOOI TYIndano PToa DT3E3s orTqnd
/x
Burazos jnoy3zTm Teurwasy eyz o3 ‘Ieystrqnd UTBIIDD B JO
‘ax038300q Y3 ur syooq oyl TTe sandano - IBYSTTAnIFOTRUTWIRLOLSHoogT TYandino
%/

{

H A wu)UT3uTad 3n0- welsig
! (. ®I035300q BY3 UT SYOOQ OU o' ®a8yl,)ur3iutad-jno-ueisis
i o ._u .ﬂHn_..ﬂ._uNnm "3no ‘wel Mhm

} este {

! (wu)uT3utad-jno-wa3sis
N WYurT3zutad-3no-wsysks

(9T3T3 + . HEILIL w + PT + ,:0QI.)ur3utad:3no-weisis

! ()xoyusTIanglsb - dwey = xeystiqnd IeysTIqng
! ()saeadeypyeb -duey = sxeideyo jutr
{{)eoTxgzesb -dweg = sorxd jur

{ () sebegyeb-dwey = sebed jur

f()e13atI3eb -dwey = o13713 Butaas
{()prisb-dwey = pt jut

{[T]s3ooq = duey jyoog
} (++7 {yabuat-'sjyooq > T Ip=T 3uT)I03
fHu JuT3zutad ano - uwegsis

{(u"S5¥00q oTqeTTEAY,)uTjurad-3no welsis
H A wn} ._.._".Hn_.._...n...n-.‘_"m "3no’ Emu.m;mw

{([C]sxoyane + ,:(S)HOHINY,)uT3uTad 3no welsis
(((uu)sTEnba' (Jurxa-[[]saoyane))3T

} (++€ ‘uyzbust-saoyzne>l !g=[jut)zoz
! ()saoyanyzsb-dwsy = saoyjzne []JDButaas

! {sxeadeyo + , :SYALAYHD,)ui3urtad jno weysis

!{eotad + ,:(4) FOI¥d.)uraurtad'jno welsis

! (sebed + , :s®9Vd,)urjurad jno walsig

{(9T3T3 + :iEILIL,)urdutad ino-wsisds

{(PT + ,:QI,)ur3aurtad ino-ualsis

fa === a)urzurad-qno-welsis
! {ua)urdurad - gno-ualsis

‘T + punogsiyooq = punojgsjyooq
} (()pr3a=sb-aeystiand == 38bxel) st

! (yxoysTIangiob-dwey = asystrqnd IoysTIAnNdg
! ()sasadeypisb-duey = sxsideyo jut

! ()sotxgasb-dusy = sotad jut

! () sebegysb-dusy = ssbed jut

! (}®13TI396 dwey = 1313 Butrals
{()p13eb-dwey = pt jJut

! [t]syooq = dwsy 3oog
} (++7 ‘uabust-syooq > T Q=T JUT)IOF
{0 = punogsyooq 3ut

} esT® {
{{(un)ur3urad-3no wolsds
{ (. £3due sT 3x03830Oq BYL,)urluTtad-ino ws3lsig
! {ua)ur3zurad-jno-wajisis
} (0 == uy3zbusa1 syooq)IFT
} (t1nu = s3jooq)IFT

R R s =

‘0 = yzbust jur
{autT bButaag

“ﬁmﬂﬁhwaﬁnmmmzwzuvumvmmmUmnmmmam mdu = surzebeyindurt Iopeaypaisyyng

! (AWYNETIA ENIZVOVW) I9PEoysTTs mou = STTasutrzebeyeyy zopesyeTrg
} &xq

‘TIRu = ssurzebenroieize [1sutzebey
{()ensnd msu = ssurzebew ansng

}

() oTTasuTzebeypeas [l1eutzebey oT3eqs oTtTand

/#
(sxogsdeoq syy ur seurzebew 8Yl TTR '®°T) &
®ITdeutzeben oyy zo sausjuon 83 TTe yite Avaxe UINIOIH

#
8XOBA0OY BYY O sBTIIUS duTzebew sy T1® speez - eytgeurzebenpeex ,

wf

‘BpoulBw pejeTex sutzeben//

{
{
(60 } uTjurad- 3no- ueg sig
! (n°®x038300q °y3 uTt s3jooq ou axe 3194y,) UT3uTad 3no - weisis
A{lmm v ﬂ._un_.ﬂ._uu.,m. 3no - uej M\ﬂm
} est18 {

{
! (u-aaysTrand stym WoIzF punoy sjyooq oz:vnﬁuqﬂnm.uno.swumhm
} (0 == puncasiooq) 3t

) utjutad-ano ‘wa3shg
S5 w) UT3UTaId 3no we3sig
“(()sueN3ob-zoysTtrqnd + uMIHSITENG,) uT3uTad 3no weqsig

202

} (++T {yabueT ' seoinossx > T {(Q = T IUT) IOF
{[()ozTs '3sTIseoanoseax]butails mau = ssoanosaa []Hutaas
{(T+usyol ‘., :,) FJOXOPUT SUIT = USIOLIX3U
U)oL 3IXIU = USYO3]
! (spanosex)enanbus 3sTTS80INOSSI
! (usjorixsu ‘T+udjyojx)buraysqns surr = soanosex Hutaas

} (I- =i usjyor3xSU)STTYM

{(T+usyol ‘1,) JOXOPUT BUIT = USYOLIXBU
{UBNOLIXDU = USOF

! {)onend Meu = 3ISTTS9OINOCSII anand
! ((udyorixau ’‘T+usiyol)burtalsgns -ouTT)jurssxed-xsbsjul = grasystrTgnd JUT

f(T+usyeq ‘,!,)FOXOPUT 'SUTT = USYOTIX3U
!usyoLlxXau = u3ayo3j

! ((ueyogixeu ‘I4+ueyol)butaisqns - surT)jurssaed- xebejur = @oTad jut

J(T+usdo] Y, ,) FJOXSPUT 'SUTT = USYOLIXIU
!usyorixeu = usyol

! ((usyogaxou ‘T+ueyol)burtagsqns-sutT)jurssaed-asbajur = sobed jut

{(T+uayolq ‘i,) FOXSPUT ' SUTT = USYOJIXDU
{U9yOL3IX9U = Uuay0o3]

! (usjogayxsu ‘T+usyol)burtazsqns-surT = 9T3T3 Butals
! ((uoyoy ‘p)butazsqns-sury)jurssaed: zebequl = pr Jut

{(T+usy03 ‘,:,)JOXSPUT BUTT = USHOLIXSU UT
! (u}u) FOXOPUT "SUTT = USYO3 JuUT

/T + yabust = yzbust
} (TTnu = (()surTpeea surzebeyindut = SUTT))STTUM

} (TInu =i ssutrzebew)sT

!surzebeHpoppYYlTMsouTzebeu []autzebey
! ()o1Tdoutzebeypesa = sourtzebew []eutrzebey
(wn sutzebeR) 9TTISUTZELBHOL 93 TIM PTOA DIZE]S Uﬁﬂnsw
Axjue surzebew mou ® w Emnmm®\H
‘8113 sutzebew sy o3 Arjus surzebew mou ' solTam - STTisutzebeorsaTam H

xx/
{

!soutzebeyyodeiae uinjzex

f{uu)uT3utad ano-welsig
{(,"""mou 3T Burlesad ‘3STXS 30U s9op OTIF eurzebew ayy,)uriurid'ino weisis
! (ww)uT3utad: 3no - ue3sis
! ()butazsol e = axe bButajzs
‘PelESID 8q 30U URD IO 3STXS J0uU $9op srrisutzebew//
} (o uotjdsoxd) yojeo {

!onenfuoxgoutzebeu = [T]ssurzebeproliexzxe
! ()oneonbep- ssutzebeu (autzebey) = anenjwoageurzebew sutzebey
} (++T ‘y3abusr>T Q=T 3uT)IO0Z

! [yabusT]ouTZzRbRel MaU = ssurzebeyjyoleaze

! (Axzaus)enanbua- ssutzebeu
!{(asysTtTqnd ‘sepanosex ‘soTad ‘ssbed ‘sT3Ta ‘pr)ourzeben mou = Axjus surzebeR

! (arxaysTIqnd) AIYI TMISYST[GNIPEDI BTTIISYSTTANd = ToUusTIqnd IoysTTqnd

! () ononbop "3sTIsooanosex (butazs) = [T] sodinosax

!

{(ypr3sb dwe3 = pT 3UT
i [T]ssurzebew = dwey sutzebey

} (++T {yzbuey sourzebew > T /(=T 3JUT)IOF
} {0 =i yabue1-seurzebew 33 TTnuU =; saurzebew)IT

{
! (yu)uT3utad: jno welsAs
{(u" " "mou 3T Burjesad ‘3STX® 30U S90P OTTIF sutzebew syg,)ur3jutad’ino wsysisg
{{uu)urT3zutad: ano-wazsis
{()burajzsoz e = xx9 butilg
‘pejEeaD 8g 30U UED IO JSIX® 30U s90p orrgsurzebeu//
} (@ uotrideoxm) yojzeo {

! (AWYNZTIE GNIZYOVH) I93TIMIUTIg Mdu = 3ndino
} Axa

!T1nu = 3ndjno ISl TIMIUTIG
(seutzebew []outzebey)srTdsurzebeyolssurzebeW21TIM PTOA DTIELS Uﬂﬁﬂsw
sautzeberw Jo Aepaxe ue sautzebew Emnmm®\H
‘2713 ourzebew syy o3 ssurzebew Fo Amwaze ue SI3TIM - s1TgouTzebeo SauTZzRbENO TIA H
xx/

{
! (sutzebeNpepPYYl IMSauTzebew) sTTasuTzebejosaut zebeal TIn

{
‘m = [glsurzebeRpoppyUl TMssuTzebew
{[1]sutzebey mou = surzebeHpoppYulTMSautTzEbew
} st {
o= _HISHmcmH.mcﬂNMUMZﬁmﬁﬁdnuﬂammnﬁnmmMEumnﬂummmﬂﬁwﬂvmnuﬂxmwaﬂNmmME

{
! [T]soutzebeu = [T]ourzebeNpoppyyliMsauTzebew
} (++T {uzbuey:ssurzebew > T Q=T JIuUT)I0Z

! [1+yabusT - seutzebeu] sutzebey mau = sutzebeHpappyYYl TMSauTzeben

! () seoanossgTRUOCT] TPPY3ab - dureq

} (TTnu =; sourzebew)zT

! () e11deuTtzebenpesa

soutzebeu

sautzebew []autzebeR

() TeutwasgorssurzebeyTTYandane proa ot3eas otyqnd

Butiios noysta TRUTWIRY PUI O3
BIOIEHCO] Y} uy seurzebew syl Tre Sandino - TentuIsonseutzeberT TYandine 4

‘(u° " "#ou 3T Burjesio ‘3sTxe jou ssop 91T autzebew sayg,)3utad andano

‘{uwiu + [[]seoanosax)jzutad gndano

{utu + [[lseoanocssx)urjurad:andano
(T-y3busT - seoanosex == ()3T

} (++€ ‘y3zbust-seoanosea>l !g=[jut)zxog
seoanossa []butaas

!{uin + ()PI33b a9ystTIand)jurad-3andino
! {uin + ®0T1ad)jurad:andano

!(uiu + sobed)qurad:andino

{uin + °T7313)3urad-andano

!(u*u + PT)3utad-andano

‘®TFF eTTiRutzebEm eyy o3 weyy puadde//

asystTqnd

! () aoysTIand3=b - dusy

! ()®oTag3eb - dusy
! () sobegaeb dusy
{{)°13TI39b " dway

! {)eso1o 3ndano

ISYSTIAN

sotad jut
sebed jurt

21373 Butaas

! (,o)uTautad - 3no ws3lsis
{(, ®x03sy00q @y3 ut ssurzebew ou sxe axsyg,)uriurad-ano-uweysis
! ﬁ: " w ﬁ._un_.ﬁ..n.ﬂnm. 3Jno " uejl m\nm

} osT® {

! {wu)ut3zurad-ano we3sig
lu +)uT3uTad 3no wesis
! (()sweNaeb - zoystrand + , MIHSITHEN.)uUT3uTId 3no-wsisis

{
{ ([C]seoanosex + ,: (S)HDYNOSHY,) UT3uTId jno walsis
({((,u)sTenba' (Jwtxy [[]sesoanosax) ()3T

} (++C {yabueT‘seoanosea>l /=L juT)aor
! () sepanossyYTRUCTI TPPY3eb 'duey = sooanosex []bButajs

‘(eotad + ,:(¢) EDOI¥d.)ur3durad 3no-usisds

! (sobed + ,:§H9V4,)ur3utad ano welsis

{(2T3T3 + . !TILIL.)ur3utad gno- welsds

£(PT + .:4I.)uT3utTad 3no wa3sis

! a u)uT3utTad 3no-welsis
f (wu)uT3utad ano-uwe3sis

: () zoysTIgng3=b dwey = zsystrqnd ISYSTIANd

! ()@oTag3sb-dwsy = oorTad jutr

! () sebegysh -duey = sobed jut
{()or3TL3ob dwey = o13T3 butaas
{()p13eb-dwey = pT 3uUT

! [t]soutzebew = dusy sutzebeR
} (++T ‘y3buet-ssutzebew > T Q=T 3UT)IOF

{
! (wo)uTautad-3no walsis
{ (., K3dwe st °x03sj00q °8YL,)ur3zutad-ino welsiAg
! (wu)ut3urad: ano welsis

} (0 == y3zbuet ssutzebeuw)IT

! (wulur3aurad gno - weysig
! (u== w)uT3utad: 3no wegysis

f(ST3AT3 + W IHILIL u + PT + ,:QI.)uTl3utad jno-we3sis
‘() zoysTtrang3ishb-dusy = asystrqnd I9yYsSTTANd

! () @oTa3396 dumg sotad jut

! () sebegzab- duog sabed jut
‘()°T3TI396 dwey = o1313 Butazg
{()pIasb-dwey = pr jut

1l

‘{[T]ssurzebew = dwey surzebey

} (+#+1 ‘y3zbuet-ssutrzebew > T {0=T 3IUT)zx03

Ha a)urT3utad-3no wsysig
! (. ssutzebew o1geTTRAY,)UuTjuTad qno0-wWe3sis
! (uu)ur3utad-3no-we3sis

} ®sT® {
! (wu)utzurad-no-wegsis
! (u A3dwe sT ex03s5300q oYL,)ur3utad-3no - welsis
! (wu)ur3zurad-ano-uszsdg
} (0 = y3zbuet - seurzebeu) 31
} (1t1nu = seurzebeuw)zt

! ()eTTaouTZEbENpEax = sourzeben
!TInu = ssutzebew []surzebeR
1
avHmnﬂﬁnwaoammﬂuﬁanHmmGﬂNmmmzﬂﬂmusmuzo PTOoA DT3e3s oTIqnd
/=
but3yzos jnoyztm TeUTWIS: ®Yl 03 BIOISHYOOQ BYF UT
SOT3 T3 PU®R SQI ,ssutzebew oyy TR sindano - TBUTWISLIOLSe 3T LSgIseutzebeNT Tvindano 4
waxf

{1 + punogsesurzebew = punogssurzebew
} ((p13eb-asystiand == 3ebael)zT
! ()asysTTqngieb -dwey = asystTqnd ISYsSTTANd

! ()ooTagysb-dursy = sorad jur

! () sebegasb-dusy = sebed jur
{{)e13Ta3eb dwey = =1313 Burals
{()pr3eb - dwey = pT jJuT

! [t]ssuTzebew = dwey surzebeR
} (++T ‘yzbueT -ssuizebew > T Q=T JuT)IOZF
{0 = punogseutrzebew FuT

} esTe {
: A: :v ﬁ._”.u.:._.u.Hnm.n_.._..—O .Eﬂu.ﬂhm
(. "A3due sT ®x03sSI0Oq BYL,)uT3jutxd jno-ue3sis
(5 ..vﬁHHﬁﬂH&.HﬁO.E@NMMW
} (0 == y3buet-ssurzebew)IT
} (TInu =i sourzebew)zT

! () oTTaoutzebENpESaI = ssurzebeu
!TTnu = sauTzebew []auTzebey
}
(3ebaey juT)IRYSTIAnAFOTRUTUISOLSSuTZebERTTYandine pToa oT3e3s otTdand
/%
PuTtiaos INOYJITM TRUTWIDG dYy3 03 ‘Joystignd uTElI9d B JO «
‘szozsycoq oyyz ur seurzebew oyjz TTe sS3andino - IBYUSTIRAFOTRUTUEISIOoLSsutzebelTivandino
#x/

{(uu)utautad-no-ueisis
! (, '@x038300q oyj utr ssurzebew ou aae =2a9Yg,)urzurad-3inc weisisg
!{yu)uT3utad: ano-wagsisg

} esTe {

}
STTAXIDYSTTORg sseTd oTTand

!TopeoYsSTId oT ‘earl jxodurt
! zopesypexeIrIng ‘ot 'eael jzodut
{293 TIM3IUTAZ "OT "eael jxodurt

g8uLn oTTATBYSTIANI//

! (wn)uTautad - 3no-ue3sisg
! (,'®3038300g Sy3 ur ssurzebew ou °ae =asyl,)uTzutid-ino we3sis
! (wau)uTaurad: gno - wogsisg

} es10 {

!, asystiand sTY3 woazy punol ssutrzebeuw op,)uriutad-ano-weisis
} (0 == punogssutzebeu) FT

i

(u

4l __v ._._.._”u..__h._n.Hm "qno-

s)ut3urad-jno:

wo3sis
we3shg

! (()euwen3ob asystrgnd + , :WAHSITENG,) uT3uTId 3no-wejsis

! ([C]sepanosex + ,: (8)HDYNOSHEY,) uTautad 3no ‘weysis
({(,u)sTEnb® " (Jwrxy [[]seoanosax)) IT

i

(u

} (++C !‘y3bueT' seoanosea>L !p=L jur)zoz
! () seoanossyTRUOTITPPYISL ‘dwey = seoanosex []bButaas

‘{eatad + ,:(4) @EdI¥4.,)uTzurad-jno

! (sebed + , :s@E9Vd,)ur3utad-qno:
‘ua3sis
‘wo3sig

{(®T3T3 + , 'EILIL.)uT3uTad 3no
f{PT + ,:QaI.)ur3jutad-3no

! (au)uT3urad-3no

swiurzurxd-3no-
‘wa3sks

‘wa3sdg

wazsisg

wea3sig

!usyoJ3Xeu = uaxjo3l
! ((usyogaxau ‘T+usxol) butaisgns- sutT)3uresazed- xebsjur = suoydeTel 3IUT

{(T+ueyol ‘,:,)JOXSPUT SUTT = USHOLIXBU
{UsyoL3XOU = USHO}

! (usyor3xau ‘1+ueyol)butalsqns suTT = ssoappe butajg

f(T+usyox ‘,:,)JOXSPUT SUTT = USYOIIXSU
!usioLIXdU = UsyO0]

! (ueyoraxau ‘T+usxol)butagsqns-surT = sweu butaizs
! ((ueyox ‘gQ)burtazsqns-sury)jurssaed xebejul = PT JUT

! (T+usxo3 ‘,:,)FOXSPUT SUTT = USYOIIXSU JUT
! {u}u) FOXSPUT SUTT = U=303 3uT

!T + yabuer = yabust
} (TTnu = (()suripesa asystTqndindur = SUTT))STTuUM

{0 = yabust 3ur
feutT butajas

! (BT TAISYSTTANASY]Y)} IopeaypaIsiing Msu = rsystiqngindut zepesypeiaiing
{(AWYNTTIIA YAHSITHEN) I9PESYSITd MOU = ITTIISYSTIANISYTF ISPRSYSTT
} Axa

{TTu = saeysTIqndFoldeaae []rsystiqnd
{()onend mMau = szxoystIgnd Snend
()o1TazeysTIqngpesx []I9YsSTIgNd OTFIEIS oﬂansw
striasysrrand sy3 3o 89USUCD Syl TIT UITH Aevaxe xnsu@nmxn
gatagus H@&ﬂﬁﬁ&ﬁm Byl TTE Sp¥el - L[TJISYUSTTUnAPEsI H
wu/

{,oTTdroystIand, = EWYNATIA WEHSITENd Butals T=uTy oT3els

(d zoysTTqNg) ®TTIAISYSTIINOLSFITaM PTOA DT3e3s oTTqnd
/e
Azqus zoystignd mau e d wezxedp
X
‘a1TF zoystigqnd syl 03 Axjus asysIiTand MSU B S93TIM -~ STTAIIYSTTIANJOLIITIM y

.‘.#\
!sxoysTTAndIOARaTIR UINjeI

! (wu)ur3rutad: ino us3sis

! ()Ybutxjzgoy's = axs bBurazs

‘PR3 ESID 9 JOUUED IO JSTXS® 30U s=9op ortjrsystiqnd//
} (@ uotadeoxm) yojeo {

!{ (o 1sgsm ‘suouydeTsy ‘ssaappe ‘sweu ‘pPT)ILYSTIqng Mmeu = [T]sIasystTqndayoleaxe
! ()@ Tsgemr=bh snenfuozgrsystiand = aj3rsgeam butaag
! ()euoydeTagysb - snenpuorgrsystiand = suoydsTe] JuT
! () sseappy3ab enenguwoxgasystrand = ssaappe burtais
! () sweN3ob enengwoxgaaysTtiand = suweu Durxjs
{()pI3eb snenfuwozgzaysTiqnd = PT JUT
! ()ononbep-sazoystTqnd (I9YysTIqnd) = enenjuwoxgasystiaqnd IeysITqng
} (4++T {uyabusi>T !Q=T 3JuT)I0Z

! [yabusT] aoysTITang #2u = sIsaysITTARIIQLeaxe

! (Razue) ensnbus - sasystTand
! (@3tsqgom ‘suoydsTa] ‘ssaappe ‘sweu ‘pr)IsysSTIqngd MeU = Axjus IBYSTTANg

! (uayogaxau ’T+usyol)burirsqns suTT = °23T1SgeM Dutajs

212

{(T+ueyol ‘,:,) FOXSPUT ' SUIT = USYOLIXSU

! (T2YSTTANIPEPPYUI TMSISYSTTANd) STTIISUS FTANOLSISYS TTANISF TIM

td = [g]asysTIanapeppyYUlI TMSIBYSTTANd
![T]laeysTIqnd Meu = I9YSTTANAPOPPYYITMSIeYsTTqnd
} sst1e {
‘d = [1-yzbueT - I9USTITANIPEPPYUI TMSISYsSTTqnd] I8Ys TTANdPePPYY3 IMsIoysTTqnd

![TlsaeystTand = [T]a0YSTTANAPEPPYYI TMSIOYSTTInd
} (++T {yabuer-saeystiand > T Q=T 3JUT)I0F
! [1+yzbuat - sxeystIgnd] I2USTIGNg MU = ISYSTINAPSPPYUITMSISYsTTqnd
} (TTnu =i sasystIqnd) 3T

{T9YSTTANIPOPPYYI TMSIOYsTIqnd []aeysTTand
{()oTTaToysSTIndpPeaa = sasysTIqnd []asyustTIand

! {uu)3urad-3ndano
} esT® {

(uia + @3TSgem)urzurad gndino

!{yiu + suoydetey)jutad andino

!{(u:u + ssesappe)jutad-andano

i {n:, + ouru)jutad-jndano

f{uiu + PT)3uTad 3ndano

*8713 ®rTdxeystiqnd sy3 o3 weyl pusdde//

{()oaTsgamasb dusy = a3Tsgem bButaasg
! (ysuoydeTezisb-dwsy = suoyder=s3 jur
{ () sseappyaeb duey = sseappe burajs
! ()sureN39b dwoy = sweu butajs
{{)prisb-due3 = pt 3Jur

{[T]sasysTtiqnd = dwel IsysTTAng

} (++T ‘yabust-sasystiand > T !(Q=T 3JUT)I0F
} (0 =i yabust 'sasystiand 33 TTnU = sasystTTand)IT

! (wu)uT3urad: 3no wejsis
! {.,'pPojeaad 9q jouued STTI asysITqnd ayL,)ur3zurtad-jno-weilsisg
! (wn)ut3utad-qano-wajlsis
! (}buTtazgsox e = zae bButaig
‘Pe3ESID DY JOU UBD IO 3STXS 30U S20P STTAISYSTIand//
} (® uotadsoxm) yozeo {

! (IWYNTTII MEHSITANG) I93TIMIUTIZ Mou = 3ndino
} &x3

{TTnu = jnd3ino I93TIMIUTIS

(saaysTqnd []z8YysTiqnd)STTIISYSITANIOLSISYSTIINSITIM PToa Dr3els oTTqnd
sasystTgnd Jo Avaae ue sasystignd uexedy x

‘2713 zoystrand oyl o3 sasystigqnd Jo Arzze ur S23TIM - STTIAISYSITONACLSIDUSTITONASITIM
axf

}

I (uu)ur3urad-3no - wa3sds
!, sasysTtrqnd ou -z 9YL,)Uur3lutad-jino welsAisg
! {,a)ur3urtad-3no-ws3sig
} (0 == yzbuet sasystrand)IT
} (tTnu = sasystTand)IT

{()eTTaIBYSTTANdPER®I = sI8YsTTqnd

!{TTnu = sasystrqnd []xeysTTang
}
() TRUTHIDLOLSIRYSTIAnATTYINdaINO pToa DT3e3s orfqnd
/o
Putazos anoylTM TEUTWIDG =yj o1 sasystraqnd oyj IR sindino - TRUTWISOLSIDUSTTANgTIVAIndInoc
xx/

{

{TINU uIngax

![T]saeystTand = aoysTTqnd uinisx
} (pT = ()pr3eb’[tlsysystiqnd)sT
} (++T ‘yabust sxsysTtTqnd>T {Q=T 3JUT) 107

{xeystiqnd IavYSTTANg
{()eTTaaeysTIqngpees = saaystIqnd []x9ysTIqng
(PT 3UT) QIY3ITMIOYSTTANIPEST ISYSTIINd OT3e3s Uﬁﬁnsw
pr aoystignd 8y3 Pr Emnwmm\H
‘Pt orzToeds B yzTm ISYsTIOnd BY3 SUINRI - QIUI THISYSTIONGPESI H
*%\

! {y@so1o "3ndjno

} {tInu =; sasystIqnd)IT
{()eTTATOYSTTNIPESI = sSasysTTnd

f1Tnu = saeystrand [lasystrand

}
() TRUTWIBLOLSeWENSQISISYSTIANITTY3INdIno proa or3e3s orTqnd

e

B3

HUT3IOS JnOYITM TRUTWID] DYF 03 »

soweu pue T ,sxsystignd sya TTe s3andino - TRUTHIASDLOLSSUENSUIEISUSTTONITTYINdIBO
wx/

{

! (wu)uT3utad- 3no-weysiy
‘(. sasystTqnd ou ®xe BIBYE,)uT3iutad: 3no wolsig
E _.Vﬂ.ﬁn_.ﬂn..n.ﬂm.ﬂﬂo.&@u.mhm

} este {

! (ww)uT3utad 3no-we3sig

‘(a w)uT3uTad 3no welsis
! (®@3TSgeM 4 ,:93TSgeOM,) UT3uTad 3Inc we3sisg

! (suoydeto3 + ,:ouoydeteg,)urautid jno-waysis

! (ssoxppe + ,!SSOIPPY,)UT3uTad 3no walsis

{ (ewreu + , :3weN,)uTiutad’jno wolsisg

! (PT + .:QI.)ur3iutad 3no wsgsds

(o m———===,) UT3UTId 300 " Wwo3sAS
! (wu)uT3utad: 3no - welsis

{()o3Tsgemasb-dwsy = @3Tsgem Butais
! (yeuoyderag3eb-dwey = suocydoarsl Jut
! () sseappyasb-dwey = ssoappe butilsg
! () sureN3ob - dweg = sweu Butais
{()pr3eb-duey = pT 3UT

{[T]lsasysTtiand = dwoy IoYsSTTANg

} (++7T ‘y3buet saeystignd > T {Q=T 3JUT)IOF

-reystrand otztoads B X071 $pIooel IsYSTIGnd IO ARITR UR SOUDIRSS - UDIRDSIBOUTT x
xx/

}

yoxeagaesutr] sseTo orTgnd

SSRTD UDIBRDBSIRDUTTL//

{ (wn)utrutad: ano-walsis
{{, saoystiqnd ou |xe 8avyy,)urjutid ino welsis
! (wu)uT3rutad: ano-wa3sAs

} este {

f{un)urzutad ano uwelsig
Hu a)urzurad-jno welsig
{

{(oweu 4+ ,iEWYN ‘. + PT + ,:QI,)ur3lutad ano welsis

! (yoaTsgamieb-dwey = s3Tsgem bButaas
{ () euoyderegieb dwey = suoydsTe3 JuTt
! () ssoappy3ob-dwey = sssappe burtizg
! ()oureNa®b -dwey = sweu burtaas
{()pr3eb-duey = pT JUT

{[t]lsasystrand = dwey xsysTTIAnd

} (44T {uzbuet-saeystrgnd > T {0=T 3IUT)IOF

H " JJuTautad-ano weasig
{{,:sxoystTqnd oTgeEITEAY,)UT3uTad 3nc wolsis
! {uu)uT3utad 3no-wajsis

} os1® {
! {uwu)uT3uTId 3no walsisg
! {, sasysTTand ou aae 8aymL,)uriutxd jno wejsids
! (wu)uT3utad 3no-welsis

} (0 == yabusT szaystrand)IT

R e B e v b e

! (Ypra=h’ [everd]sasystiand = PUTIO] JUT
}
(punoz| 33 °z1s > soefd) STTUM
{0 = =oerd 3UT
!9STEI = puUNnOy ueaTo0q
fyabusT-saeystrand = °2TS JUT
}

(szsysTignd []asysTfqnda ‘3®bae3 jur)yoresgaedUTT JUT OTIRIS OTTgnd

I/

rAexxe syl UI SepTSeI QUSNSTe IN0O SIDYM XSPUT 8yl 2STH puUnoI 20U 1USWSTS IT T- UIN}oxy »
peysIeas 9 03 SpIosel ISYUSTTnd Io Aevaze syl szeystTqnd wezedy .

punoy sS4 03 PT SuU3 39bxey wexedp »

k3

rxsustiqnd OTIToeds B 03 SPIOORIT IDYSTIQUI IO ABRIIR UR SOYDARDS - UYDIARDSIRDUTT «
x5/

{
{ {1- uanjysax }
CER]
{ ‘eoe1d uanjex }
(puncz) 3T

{ ‘T + @oeTd = =oe1d }
asTe
{ ‘enajz = punozy }
((wragputgon)stenba-3abae]) 3IT
{ (JwTay "puTIol = WIILPUTIO] butizg
! ()sureN3ob - [eoeTd]sasystrand = putgol burijs
}
(punoz 33 2215 > =20eTd) STTUM
{p = soerd 3ur
!9STEJ = PUNOJF UBSTOOQ
iygbuet-sasysTtTand = ®ZTS JUT
}
(sxeysTtiqnd []asystTqng ‘3abaex bBurxjg)yoxesgieauTT JUT OT3EIS oTfgnd
/%
Aexae ®y3 UT SOpPISSI JUSWSTS JINO DISYM XSPUT oYl o5Te ‘punci jou juswsT® IT - UINIDIF »
peUDIBSs B 03 SPIODSI ISYSTTUNG JO ABIIe U3 saeystTand wexedy
punoci g 03 sSweu Iy 3ebxen wexedp

x % ok
213 :

{ {1- uwanjyex }
asT®

{ ‘ooe1d uznisz }
{punoz) IT

{
{ /1T + soe1d = =oe1d }
asT®
{ ‘enx3q = punoy }
((uTarputgol) sTenbe 3sbaeq) It
{ ()WTIY PUTIOI = WIILPUTIol Butaas
{()o13tI396" [eoeTd] syooq = purgol Burizg
}
(punozi 33 @zTs > soerd) STTUM
{0 = @oerd 3uUT
!{9sTRI = PUNOJF UEBITOOQ
!yabueT -syooq = SZTS JUT
}
(syooq []ycog ‘3eobxes Burtals)yoaeesIesutl JUT ©T3E3Ss oFTqnd

i=
-Aezxe 9yl UT SOPISHX QUSWSTD INC SIBYM XOPUT BYJF SSTS puUnoy jou JUSWILE IT [- uIn}BIP x
psyoIess °q 01 syooq jo Aexze 9yl sxooq wexedd s

puncy sq 03 }ooq IJYI IO STITI 8y 39bxey wezwdf »

*
‘a73T2 oritoeds v 107 SY0OQ FO Aviie ue SB2UYDILSS - YOIEIJIAVSUTT »

ax/
{

{ {1- uanzex }
as1o

{ !ooe1d uanjsx }
(punoz) 3T

{ /1 + o9oerd = soetd }
{punoz) 3T

{ !‘enag = punoj }
(putgo3 == 39bxe]) IT

{0 = soe1d juTr
{9STBI = pUNOJ UBITOO]
{yzbuet-sourzebew = szTS UT

}

(seutzebew []aurzebey ‘gsbae; butzjg)yoaesgaesurT jur or3zezs orTand

/%
‘Aeaxe syj3 ur sopisex IUBUSTS INO BIABYM XIPUT SUYJ 9ETS ‘punog 10U JUSWSTS JT 7= UXNDIY ¢
peyoaess 8g o3 seutzebew go Aevxae sy seutrzebew wezedy

punozy sq o3 surzebew syl Jo 8[1T} oyl 18bxey weaedy

i
*
‘ar otztoeds ® g0y syooq jo Aeaze ue soyozess - YOIERBgIRBUTT «
¥

{ {1- uanyesx }
asTa

{ !soe1d uznasx }
(punoz) 3T

{ ‘T + spe1d = =soerd }
asTo

{ !‘®ni3 = punoz }
(Putgol == g3ebae3) 3zt

*{)pr3eb- [soe1d]sjooq = purgon jut
}
{(punoz ®»3 °zTs > soerd) STTYM
{0 = soerd jut
!9STBEF = puUNoOy ueaTooq
‘yzbust ' syooq = 8=ZTS jut
}
(syooq []xocg ‘aebieg JUT) YDIBSSIAESUTT JUT DOT3e3s orrand

/o

‘Apaxe 9y3 UT SOPTSOX JULWRTS INC 2I8YM XSPUT BYI} IST® 'PUNOy 30U JUSUDTS IT T~ UANIBIFH
Peyoxess 8q 03 sjycoq jyo Aevzxe sy sjyooyq wexedy i

pPunoy 2g o3 jyooq |Y3 IO 4I DY 3ebzrey weaedp

E

‘qr otFroeds B 107 syooq yo KRAXR UBR SOUYDIEDS - YDIBSZARSUTT 4
s/

asTo
{ !oo0e1d uanyaszx }
(punogz) 3T

{ {1 + ooe1d = soerd }
asT2

{ /®najz = punoy }
(putgol == 38bxe]) IT

! ()p13sb- [eoerd] sautzebew = puTjgol Jutr
}
(punoz 33 °22Ts > ®oerd) STTUM
‘g = ooerd juTt
!98TRBI = PUNOF UEBSTOOQ
{yabuat ssurzebewt = 92Ts JuTt
}

{seutrzebew []sutzeben ‘3sbreq juT)yoaESSIEBSUTT JUT DT3e3s DTTUnd

[
-AeIze 9U3 UT SOPISHI JUBWSTS JINO SIHSYM XSPUT O] SSTP pPuURoi Jou JUBUDTO FT I~ uInIeIy x
payoaeas aq o3 soutzebew yo Avize oyl sourzebew weied) .

punoz agq o3 surtzebew syl Fo 4i =Yl 39baeny weaedp

¥

'Y

‘ar otIToeds B a0 SHOOQ JO ARIIR UER SOUDIERSE - UDIBBSIVSUIT x
I

wxf
{
{ {1- uan3=x }
Ss8T2
{ {soerd uxznysx }
(punoz) 3IT
{
{ {1 + @oe1d = =ooetd }
28T
{ /enay = punozy }
((wragputgol) syenbs-3sbxey) 3T
! ()wTal puTgol = WTATPUTIOl Buralg
{()213TI3°96 " [eoeTd]ssutzebew = putdol butiag
1

(punoz; 33 °zTs > eoerd) STTUM

!{syooq uInysx

! dueg [3sxTI]sy00q
{[3saTz]lsyooq = [3sesT]syocq
! [asesr]lsjooq = dwel

{

{ {3uexano = 3seaT |}
(()eoTxg39b" [3seeT]siooq > ()®0Tag3sb- [jusxand]syooq) IT
} esT® {
{ {3usxano = 3sesT }
(()ooTag3=h [asear]syooq < ()eoTagaeb- [juezano]syooq) 3IT
} (butpusose)zT
}
(I + 3uexand = juexano !yizbusT’ sYooq > JUSIIND ! T+3ISITF = JUDIIND) I0F
{48ITF = 3sE8T
1
(T + 3saTy = 3IsaTF !yszbusT-'syooq > AsaTF {Q = IsATI)I0F

!dweg joog
{4sesT ‘guaxino ‘34sITI JuT

(Butpusose uesTooq ‘sjyooq []joog)3aosuorioeres []xyoog orjess orrand

Butpusosep zo Burpuesse =g prnoys bHurjzos zoyzsys DBuriworputr suyea uesiooq ® Burpususe uezedy
PS3I0S B 03 S$HOOY 2YZ bBututejuon Avxxe uwe syooq wexedy

sorxd Ag 91035300 243 UT SYOOY DYI SIIOS - AIOSUOTIDATAS

3I0SUOT309To9S sseTo otrqnd

SSBYD 3X0S UOTIVBIBS//

{ {T- uangsx }

}

£z
%
=
%
x

wx/

}

{

222

} ()enend otTqnd

‘onanb <joslqo>3sTtTiexay ajeatad
} snenpd ssero orTqnd

‘qgtTheazy 113N BARL jxodut
ssBIo snend//
{

{seutzebewr urnisa

{dureq [3sxT3]ssuTzebew
{[asat3]seutzebew = [3sesT]ssurzebeu
{[3sesr]soutzebeu = dwej

{

|

{ {queaano = 3sesT }
(()eotxgasb: [3seat]seutzebew > ()o0Tagysh: [3uszano]ssurtzebew) IT
} ss18 {
d { !qusaaino = 3se9T }
(()sotxgash: [3sesat]seutzebew < ()°0Tag3sb- [3uszand]ssutzebeu) IT
} (Butpueose) T
}
(I + 3usxand = jusxano {yjbuey ssurzebew > Juszano !T+3SITI = JUSIIND) I03F
{983TI = 3SEST
}
(I + 3sat3 = 3saty ‘yjbusey-ssurzebew > 3sITF /() = ISIATI)I0T

!duey surzebel
‘3se9T ‘juaaind ‘3sITI JUT
}

(Butpusose uesTooq ‘sautzebew []surzebel)izosucrioeTes []leurzeben or3e3s orTgnd
/=
Butpusosep o burtpusose og plnoys Hurqzos Isyjzeym HuTiledIput eniea uesjcoq B Hurpusose wexedy i
pe3xos oq o2 ssurzebew oy3z HDurureiuocd Aexze ue ssurtzebew wexedy i
E'a
sotad Ag sxo3sjooq Sy} UT soutzebew SY3 SIIOS - JIO[UOTIDDTBS x
22/

B 03} POSU OSTE® TTTIM AVEDRTIIISUSTIANd ® ‘oIowrsyling

‘yooq vyl ut zeideyn STYI IO SVSTDIDXD
syl zo jaed se pejerdwon ST SseTD STUL 'pPeileTdwco g jsuuw SSBRIO
Av¥eTTdTeTaslepbuIpesy 8UY] SnJ3 = STTISSODOYWOPUBNUITM BYI YITA

ATaoeazon uoriovng o3 wexboxd eyl 203 ISPIOC UT HNTNUYM
EX 3

N ¥ ®¥ k Kk %k

}

Teutwxagindur sseto otTqnd
sseTo Teurwrsiandur //
{

! {)9zTs onenb uanjax
} ()szts jur orrgnd

{IDqUMU UIN3SI

{{1 - ()ozTs =nenb)saocwsx’snanb
{
!({1+1)3°6 'snenb ‘T)3es:snsnb
} {++7 /1 - ()e@zTs'snenb > T /g = T 3uI) IoO%

{(0)asb snsnb (3oelqQ) = xaqumu 323lqo

} esto {
!TInu uanjax
!{n"A3dws st snenb :xo0xam,)uTzutad-ino usysiAg
} (() Aadumst-enenb) 3T
} ()snsnbep zo0elqo ortgnd

{

! (o) ppeonanb
} (o 3oelqp)ensnbus ptoa orTqnd

! ()<3oelgo>astifezay msu = snenb

‘(, :oureu,)3ndutr Ol = sSueu

! (Laodozdwt sem paxsjus noi sweu eyy :I0axH,)ur3iurad-jno-welsis
} (0 == ()uabust' ()wra] suweu)sTTys
{(, :oureu,)andut QI = Sweu

! (yenTea3ut” ((Jwrtaz’ (, :PpT,.)3ndur oI)Foeniea asbsjur = pPT

! {uxoqumu pT zodoxd ® jou sem pexejue nok pPT oYL :I0IIH,)uriutrad-jno-uelsis
P (0 ==PT || 0> PF)STTUM
: ()enTeA3UT" (()wrz3y® (, :PT.)3ndutr-OI)3zoenyea 19b653uI = PT

! {nyuT3utad: 3no we3sAs

S um—m e W)uT3utad- 3no ‘wo3sis

! (,STTR3OP IBYSTTAnd,)uTautad jno weisis

! {wwyuTautrad- ano ‘wegsis

! (yw)urautad- 3no -uwe3sis

! (yu)ur3urad-3no uwe3sis

Hili=== WJurt3zutad-gno rweisiks
! (,Axzaue ®xo3siooq MaN,)uriutad- 3no welsig
&0 ==,)uT3utad 3no ‘we3sig
! (wu)utautad 3no wejlsisg

! {yun)uT3autad- ano -weysis

{suoydsTel ’‘pPT 3JuT
‘{93Tsgeom ‘ssaappe ‘oweu Butals
() Azgugaeystignd ISYSTTGNd OTIE}S Uﬂﬂnnw
-axonsyooq 8yl ut Axzjus aoystTand meu e zog judut awsn burzzeb oz mﬂnﬁmsomnwm\”
poyzew Axjugaeystrond “
%*\

!98TeF = OSTTASSOOOVWOPURYYLTM UBSTOO(Q TBUTI OT3e]S
[x
‘Arnzsseoons pelerduion UDSG 9ARY SOSTOIDXS i
eya uays ATuo onxy = STTISSOOOVUOPUBRYUITM 3yew 'Udns sy

‘yooq eyz urt zegdeyp sTyl Jo s9stoIex® 8yl jo jred
se pejordwoo ‘urebe eouc ‘ST ssETD STYL CerII AIBUTg ® O3
uwel]TIM DU®B pesx =g o3 sasystrgnd 2y3 x03 x9pac ur pojetduco

X ¥ ®k ¥k ¥

{27313 BuTtazs

() Azaumyocq yoog 213E3s 2tTdnd
‘saoasyoodg Byl ur Axnus yoogq mou v zoz 3ndur zesn Burizzed oz ergrsucdssy .

poyzsu AXJumgNood x
#xf

!9TTISSOOOYWOPURHYI T UINIDI

() pouzeroI3zeh ueeTooqg oT3E3S OTTANd
‘andino pue andur 103 gseooe reriuenbeg xo eiTgsseoovuwopury HUTSH BIR BM ISUISUM UINIOIF 4

poylsw poylsioIlnd i
wxf

!d uanjzex

! {egTtsgem ’‘suoydeTel ‘ssoappe ‘sweu ‘pr)IBYSTIngd MU = d I9yYSTTANg
f{, i®3TsgemM,)3nduT 'O0I = SSSIPPE
{ (,aodoxduiT sem par9ju® nod 23TsgaM YL :Ioxxd,)urizutadjno wolsAs

} (0 == ()uabusT' ()wrxl e3Tsgen)sTTUM
! (u :°3TSqeM,)3nduT QI = S3TsSgeM

f{)enTeparuT” ((Jwtal: (, :Iequnu sucyders],)andut-oI) JoonTea asbejul = auoydeTes

{(yxoqumu suoydesTol zodoxd ® jou sem paxejud nod aoqunu suoydeTel oyl :Ioxam,)uriurxd-ino wszsis

} (0 =PT || 0>pPT)aTTUM
! (YenteaduT - ((Ywtag: (, :Ixoqunu suoydsTsl,)3ndur "OI) Joonrea asbejur = suoydsTal

!{, :sseappe,)andutr QI = Ssaappe
! (,asdoadut sem pesasjus nok sssappe aYL :I0IIH,)ur3iutad zno-wazsis
} (0 == ()yabust* ()uwray sssIppe)sTTys
{(, :ssoappe,)3nduT QI = SsSaappe

}

{
}

{

} (0 == szeadeys || g > saozdeyd)oTTUus
f()enTeaszut- (()wraz: (, :sa=zdeyo,)andut’QI)Foenrea zsbejur = saszdeyo

{()yenteazut ((uwTtxl - (, () so1zd,)3ndut ' Q1) J0enfeA I9b93ur = =9oTad

‘(,Toqunu saT3Tsod ® 30U sem pazsjus nok eortad eyl :I0xxH,)uTiurid-ino welsig
} (0 == eotad || o > sotad)sTTym
{ (yenTeA3UT (()wTx3" (, :(4) °ot1ad,)3andut OI)FoonTeasa z9boqur = eotad

: (Yenteazut’ ((Ywrxy- (, :s=bed,)andut - 0I)Josntea’aebejul = sebed

{(,Taqunu oaT3Tsod B j0u Sem paiajus nok sebed syy :Ioxa™,)urizurad ino welsds
} (0 == sebed || ¢ > sebed)oTTyus
! (yenTeazut" (()wray ' (, :ssbed,)andut oI)Ioeurea z9bejur = sabed

{

{{, !973713,)3ndut 0I = ST3T3

{1 {,S19308IRYD GZ URY3} oIow sey X0 Ajdue Sem pPRILVJUI NOA STITI BUTL 11019,) uT3uTtId 3no w3 sisg
} (g2 < (uyabuet (Jwrxy- o1313 || 0 == (Jyabusr’ ()wray STITI)STTUM
(s 1®T3T3,)3ndur 01 = ST3IT3I

! (yenteasutr’ {(Jwraly - (, :PT,)andut 0I)Foenies asbojur = pr

{{,zequnu pTt zadoxd ® jou sem peaieju2 nok PT YL txo0xxq,)uT3utad 3no - we3lsig
} (0 ==mpt || 0> PT)OTTUM
f (YenteazuT (()wraa - (., :PT,)3ndur OI)Foentea zsbejul = PT

! {wu)uTauTad: 3no ‘we3sis
(| romre e e Jyut3utad- ano 'welsisg
! (usTTE3®P 3ood,)ur3iutad 3no uwe3sds
f{au)ut3autad: 3no wa3sis
! {uu) uT3uTad’ 3no ‘welsAs
f{un)uTautad: ano we3sis

Hily —=,)ur3jutad 3nc we3sisg
f (,&x3us sx03syooq MON,)ur3lutid-ino wsisis
=== W) uT3utad-3no ‘we3sig

f{uu)ur3zutad:ano ‘welsig
! (uu)ur3autad: ano ' wolsis

!{zoysTTand asystIAnd
!saoadeyo ‘sotad ‘ssbed ‘pt jut

/¥

"BI03SHOO BY3 UT Axjus ooq mBU ® Fo saoyane syl oy andut xesn Burazedb zox aTqrsuodesy
e

poylew ATjugIoyine

2/

{

‘q uanaex

! {asystrand ‘Aexxygaoyzne ‘sasjdeyo ‘eorad ‘ssbed ‘sT3T3 ‘PT)Yoodg Mau = q joog
! () Azaugaoygne = Aexxyzoyzne []Butazsg

! (PrasyusTIqnd) AIY3 TMISYST IGNAPLSI AYISTTIIOUSTIAnd = IoystIqnd

‘()enteajur ((Jwrxly - (, :pT xeystTand,)andut OI)Foentea'zsbejur = prasystrand

! (yToqumu pT x8doxd B jou sSem pexsjus nok pr Iyj 1 x0xad,) uT3uTad 3no -welsis
} (1Tnu == zeystIgnd || p == =01ad || ¢ > soTad)eTTys

! (prasysTIand) AIY3 TMISYSTTANIPESI " IV T4I9YSTTang = Isystiqnd
f()snteajur: ((Jwraxa - (, :pT asystTqnd,)3ndut-OI)Foenyea xebejur = prasystrqnd JuT
¢ () TeUTWUISLOLSOWENSQISISYSTTARd TTY4ndane " JvgeTTIIoYSTIqNg
SS8D0R WOpUBRI//
} est1o {

! (prroysTIgnd) AIYI TMISYSTTINIPEST " OTTIISYSTIqRg = IoyustTand

f()enteA3uT: ((Jwrag - (, :pt asystTqnd,)3ndut-OI)FoenTea aebejur = prasystiqnd

{{uToqumu pt xodoxd ® jou sem psasjus nol pr oYy :z0aag,)urjurad-ino wozsis
} (TTnu == zeystrand || o == eotad || o > eotad)eTTym

! (prasystTqnd) IY3 TMISYSTTINAPEST "STTIISYSTTANG = xaysTTqnd
f{)entearur” ((Jwras - (, :pT asystTand,)3andut-oI)josntea x9bwjul = prasysTtiqnd JuT
¢ () TRUTWISLOLSSWeNSQISIBYSTTgnd TTY3nd3no sTTaIsysTTqng
ArTeTiusnbas//
b (()pouareswoIz=bi) st

{ (uu)utlurad- ano ‘wegsis

‘(yenteaqut- (()wraz - (, :sxe3ideyo,)andut oI)zyoentea asbejur = sasadeyo
! (yToqunu @at3Tsod B jou seM psasjus nok sasizdeyo eyy :Toxxm,)uTzurid gno-weysis

*
poyzaw Axjugsutzebeu i

s/
{

{fexzygaoyane uanisax
! () enanbep - sxoyzne (butaysg) = [T]Aeaayaoyzne

} (44T ‘yabuet-Aexayioyine > T /Q = T JUT) O3

{[()ezTs ‘szoyzne]butazs msu = Kexayxoyane []butaas

{(,N, = saoyjnysIow 3§ ,U, = SIOYIOYSIOW I3 ,X, = sSaoyjnygsxow 33 &, = szoyjnyerow)sTIys |
{{0)aygaeyo- (, ¢é(u) oN xo (&) sex ‘xoyzne xsyjoue sI8Yl ST u)3ndut 01 = saoyjnysaow
} op
} esT®
{,U, = saoyjnyaIouw (f < WNNIOUINR®)IJT

TSIOYINE p UBYJ DIOW DABY 30U ued }ooq B//

{ [HUNNIOYIAME = UMNIOYFNE
! (xzoyane) snenbus - sxoyane

{{y 'y + unnIOYINE + , Ioyine,}3andur- ol = Ioyine
{(,sIoq0BIRYD GZ ueyl oxow sey xo Ajdwe sem peasjus nok Sweu Ioyjne oYL :I0IIH,)uTiutid jno- walsis
} (gz < (Jy3zbuet' (Jwral zoyane || ¢ == ()yabusT- ()wral Ioyjne)sTTys
i, u + unNIOY3NE 4 , Ioyane,)indut QI = Ioyjzne
} (X, == szoyanyszow || &, == sroyjnysaouw)sTTUA

{1 = umpIoyjne 3JutT
! K, = szoyjnygsiow IBYD

!zoyzne bBurijas
! ()onoand mou = sroyjne anend
}
() Azqugaoyzne []butizs otzexs orrgnd

{(yentRARUT ((wTaa - (, :(¢) @otad,)3andur-oI)Joentea-asbejur = =oTxd

{ (,xoqumu sAaT3TS0d B jou sem paiejus nod sortxd 8yj :xoxxd,)uriurxd-ino-uelsAs
} (0 == eotad || o > eotad)erTym
! ()enteajur: ((Jwtaa- (, :(¢g) ®otad,)3ndur or)3zoenyeaaebezur = sortad

! (yenTepAjuT” ((Ywtaz - (, :sebed,)andutr-oI)goentea xsbejur = ssbed

! (,Toqumu aaT3Tsod B jou sem pazsju® noik sebed oyy :x0xxm,)uTiutad- jno wezsis
} (0 == sebed || ¢ > sabed)srTym
! ()snteRAjuT” ((YwTag - (, :sebed,)andut 0I)F0onTeRA I8bB3UT = sabed

{{u :9®T3T3.)3ndut ' 0I = ®T3IT3

! (,ST®3DBARYD GZ ueyl =xow sey Io Ajdwe sem pesasjus nod 97313 9YL :30xxy,)uTzurad 3no-welsds
} (62 < (Juyabusr: (Jurtaz o3ty || 0 == ()yabuser’ (J)wraz- ar3Ta)eTTUm
(. :®137T3,)3nduT 0I = ®T13T3

{()ysnteajur” ((jwray - (, :pt,)3ndut’01)Foeniea zsbesjur = pr

! (L xoqumu pt xadoxd B j0u sem pazsjus nod prT oYl :JI0xaH,)uTrzutad-ino-weilsis
} (0 ==PT || 0> PT})STTUM
! ()enteAjur: ((Jwrxz' (, :PT,)3ndur-oI)3FoenTea aebejur = pT

! {un)UuTmuTad- gno-wegsis

(e Lo R e D L) utautad- ano rwegysis

! (usTTRI®P Putzebeny,)urjutad-inoc welsAg

! {(wu)urtzurad-no - wejlsis

! (wu)uT3utad: 3ano we3sds

! (wu)ut3utad: 3no we3sis

210 Wyurjutad- gno "we3sis
! (WAx3u® ®I03Sy0oOq MSN,)UuT3uTId-3no wslsisg
A o) uT3uTad 300 ‘We3sis
H{uw)uT3utad ano ws3sis

! {yu)uT3utad-3no weq3sig

{xoystIgqnd IousTITANd
!eotad ‘sebed ‘pT 3UT
‘®13713 butass
}
() Kxzqugsutzebeu sutzebel oT3els oTTand
/x

‘axoasyooq 2y3 ut Axjus surzebew mou v oz andur zesn HBuriyzsh xoy srgrsucdssy

() £zqugsoznossa []butizs oT3els orTqnd
/x
‘8I03syo0q 83Ul uTr Axjus sutzebew meu B IO ssonossa syl xogy andur zssn Burjazsb xory syqrsuodseyw i
E3
poyarem Axjugesinossa .
xx/

! uxnlsx

{(zoystTand ‘ssoxnossx ‘sotad ‘sebed ‘ST3T] ‘pT)surzebely msu = w sutzebey
! () Azqugeoanosax = saoanosax []burxls

! (praoyus TIand) IUI TMIDUST TANGPRDI " IVYSTTIIBYUSTIANG = IaysTIqnd

! ()yenteajur’ ((Jwraz: (, :PT IdYsTIqnd,)3ndut-oI)Fosniea xsbeiul = prasystiqnd

! (,aaqunu pT asdoxd e jou sem pasxsjue nok pT eyl :Ioxxy,)urjurad jno-wajsig
} (TTnu == aeystiqnd || @ == @otad || ¢ > sorad)oTTym

{ (prasysTTand) AIY3 TMISYSTTQNIPESI " IVYSTTAISYSTIqnd = IeystTgnd

{()enreAjur: ((Jwta3’ (, :PT aeystrqgnd,)3ndut-0I)3Foentea xsbejul = prasystrqnd jurt
{ () TRUTWISLOL SOWRNSQISISYSTTANA TTYINdINO ' AVISTTAISYSTTANd

SE9DDR wopuex//

} este {
{
! (pTaeysTTAnd) AIY3 TMISUSTTQNIPead ' 8T TIIBYSTTqnd = IoysTIqnd
{(ysnTeprut” {()wrtay - (, :pT FoystTqnd,)andur-QI)Fooniea asbejul = prasystiqnd
{{3oqumu pT xodoad B jou sem psasjus noA pT Syl :Ioxxd,)uriutad ino wolsis
} (1Tnu == zsystignd || o == ®otad || o > eotad)sTTym

! (p1aeys TTONd) IUI IMIPUSTIANIPRS ‘ST TIISYSTIANd = ISYSTTand
{ ()enteazut: ((Jwray - (, :pt asystiand,)andut-oI)JFoeniea asbejur = prasystiqnd jutr
{ () TeUTWIS LOLSOWRNSAISIDYSTTANI TTYINdIno - o1 TAIYSTIqNg
Ar1etausnbes//
} (()pouaswoIaebj)zt

! A: :v ::Hn_.—.n..ﬂﬂm. noe .Eou.mmm

0 W G A 0 s i i e

sxogsyoog sseTo otTqnd

sseTd dIaojsyood//

! Rexayeoinosss uingasax

/ ()eonanbsp-seoanosax (butayg) = [T]Aezaysdanossx
} (++T !yzbuey-Aeaxyeoanosax > T {0 = T JUT) IO

{[()ozTs ' seoanosaz]butazs Mmau = Aexaysoanosax []butiag

!{,N, =i SeDInosagsIoW ¥¥ ,U, =| SSDINOSSYSIOW 3I¥ , %, =| SSDINOSIYSIOU 3F K, = sooanossysrow)oTTUM {
‘(0)3gxeyo- (, &{u) oN o (A) sox ‘eoanossx xdyjour 8I9Y3 ST »)3ndur QI = ssoanosogsIou

} op
} osT®
{,u, = sepInosay dIoU (f < WONDOINOSSI)IT
‘S9DINOSDI F UBYJ 2I0W 2ARY jou ued sutzebeuw ev//

{ THWNNIDINOSDI = WNNSOINOSDI
{ (eoanosex) snanbue " seoanosax

{, . + WnN®OANOSDI + aoznosazx, })3nduT QI = S0anosex
! (,SI930®IRYD GZ UEY] oI0w sey Io Ajdws Sem peOISIUS SVINOSSI BYJ tz0xxd,) ur3juTad- 3no - wolsks
} (gz < ()uyabust' ()wrz3-@oancsax || 0 == ()yabueT' ()wral 90INOSSI)STTYM
{(, . + WONSDINOSSI + , 90INOSEX,)3INduf QI = SOINCSSI
} (,x, == seooanossysaocu || ,A, == ssdanossyszow)STTYM

{1 = wnNeoINCSaI JUT
! &, = sooanoseygsiouw IBRYD

!{@naxnosax butajs
! ()enend meu = s9IDINOSII INBNYH

TRUTWI®] 28U} IBSTD O3 pesn//
apop orytoads LONTH wxxx//

}
() nusymMoys PTOA otTand

[

¥+
-{euTwze] SY3 UT NUSW 3IEAS BYI skerdsTp - DPOY3IBU NUDHMOUS x
%/

! (Yynusymoys
}
() @x038300¢ otigqnd
I
axols)oog SSETD 3O ggoelgo 103 IOJONIJFSUCD &
wxf

! ()@x03sy00d MBU
}
(sbze []Butxlg)uTew PTOA DTIEIS or1and
/%
poyasu UTeH x
wx/

‘osTe] = OTIJISS9DOYWOPURHYITA UBSTO0Q TBUTI OT3e3S

/%

-Erngsseoons pajeTdued useq ALy SOSTOIDEE

sya usym Afuoc aNI} = STTISSO0OYUOPUBYYLITH BB ‘yons SY x

»

‘yooq eyy ur zejdeyd STUR IO sestozoxe =y Fo 3aed »

se pajerdwon ‘urebe soUO ‘gT SERTD STUL "9TTF Axeutq B O3 x

U233 TIMA pue pEsI °q O3 sToysTIand 2y3z I0F ISPIO UT pajaTdwod x

g o7 pedu OSTE TTTAM AYYOTTIISYSTTIONG B ' °IOUIDYIANH »

3
-yooq ey3 ut a9jdeyd sTUI IO SPSTDIAIBKD
syy 7o azed se pejerdwod ST SSEIR gTyyL ‘pejstduon g 3SHUl SSBID
gygertaTerIojepbutpesy oyl enij = STTASSPOOYWOPURIUI TS SUYF YATH
Af3oexxon uoriony o3 wezhoxd =yl IOF ISPIO UT DNINYVTM

* K ¥ ¥

{yesxq

! () zoysTTAngAgTRTISIRROUTPESYISTT @ .o, 2SED
{yeaxq
{ () TeTa®1eNDBUTPRSYTIVISTT @ P, 95ED -
!yeexq
! (YasysTIqngsAaowax . ,2, 25BD
!yeaxq
{()xoysTTAndPpPE @ ,q, OSED
Iyeaxq

{()sIvYSTIANATIVASTIT & @, 9sed

} (uot3oerss) yoaTus

. {(,L, =j uoT3oeT®s 3% ,T, = UOTIODSS %%

,U, =j uorjosTes 83 b, =j uorloeT®s 33 ,F, = UOTIDSTIS I¥ ,d, =| UCTIDSTSS 7%

,P, =j UOT1DST®S %% ,D, =| UOTIDS[SS ¥F ,q, = UOTIDSTSS §% ,®, =] UOTIDDTSS)aTTUA {

f{p)agreyo- (, cwxogaad o3 jues nolk op uoTio® UYSTUM,)InduT QI = UOTIDBTSS

} op

{UuoT309Tas IBYD

f{wu)urzurad-3no

‘(uu)urrurad-ano

! (w3tx"E (L,)urjutad-3no

! (,(®T3T3 20 (@I) TETa=ozew Burpesa aoz yoxess (T,)uriutad-ano

! (, (butpueosep xo bBurpusose) sortad Aq sTetaszewm HButpesx 3108 (y,)urjurad-ino
! (,@x03S)y00q Y3 woxF TeTaszew Burpesa B saocwsy (6,)urjurad-zno

! (,@x038300q @y3 03 TeTasjEw Burpesx ®B ppy (J,)urjutad-ino

f(,xoystTand oryToeds jo sTeTasjzew Burtpesx ay3z TTE 3ISTI (9,)urjurad:ino
! (.@I038300q 2Yy3z uT sTeTIolew Surtpesa 8yl TI® 3ISTT (P.)urlurad inc
{(,T9ysTrqnd ® saowsy {0,)uriurad’ino

!{,xoystiand ' ppy (q.)ur3jurad:ino

{(usxoystTand ®y3 TIe 3IsTT (e,)urjutad 3no

{{,:suoT3or BuTMOTTOF ®Yy3 FO Suo OOTIg,)uriurtad-’3Ino

! (wu)uT3urad-3no

o ===========,)ur3utad- 3no
{(,2xI035300g Y3 03 ewooTeM,)uTr3zutad 3no
2 WYuTautad-qno

‘woasis
‘we3sAs
‘we3sis
‘welsks
-ue3sAs
‘w3 sig
‘w3 sks
‘w3 sAs
‘ue3sAs
‘w93 sis
‘ue3sAs
‘we3sAs
‘wua3sAs
‘wa3sAs
‘ue3sAs
‘wa3sis
‘ue3 sAs

epoo S13toads 0enlg xx+//

{.F\,)urzutad-3no"

wa3sAs

SIUSWUOITAUS IDYLIO UT PISR JT JNO PIJUSWMOD g PINOYS//

e

%/

! () snurtjuoporssaad

{ {) TeUTWISLOLsIBYS T TANA TTYInd3no " gydeTTAToYSTIANS
sSsaoDe .EO.UQ.MH\\
} esTe {
{ () TeUTWISLOLSISYST TN T TYINd3NO 9T TIIBYSTTANG
Arteryuenboes//
} (()poureworasbi) syt
}
() sa9YSTTANATTYISTT PToA oTTand
/%
‘TEUTWI®} 8Y3 03 sxeysTIqnd oy3 TT® SISTT -~ POYUISW SYOOHTTVISTT »
wxf

/9T TASSSOOYWOPUBRYYJITM UINJDI
() poyarswora=sb uesTooq oTjElS Uﬂﬂnnw
‘andano pue jndutr oz sseooe Terjusnbeg x0 oTTIssoooywopury Hursn oxe M aSyjOUM :uﬂumu@\H
poyjau poylenorieh H
wx/

!yeaxq

I 3Inezsp

!yesaq

!(p)aTxe-wegysAs : [, sseo

{yeaxq

{{) TetxoyepbuTpesyYpUTI : ,T, ©SED
{yesaq

! {)eotagligreTaegeybuTpesyjzos : ,y, osSed
{yesaq

! () Tetaoyenbutpesyssocwsx : b, eseo
!yesaq

‘() Tetaozebutpesyppe : ,J, ©os5ed

! () TRUTWISLOLSOWENSQISIBYSTTANd TTY3IndlIno " WIS TTATISUSTTANg
SS800® wopuex//

} es1® {
{ () STTITSYSTIANGPESA "SI TIISYSTIANd = saesysTrand
{ () TRUTWISTOLSSWENSAISIIYSTIGNATTYINdIno sTTII9YSTIANG
ArreTausnbes//

} (()poursworasbj) st

‘TTnu = sasystrand []asysTrand

!{(,9, =j UOT3DSTSS B} ,B, =| UOT]OSTIS)oTTUM {
{(0)avxeyo - (, cwxogzaad ol juem nok op uor3ioe yotym,)InduT QI = UOTIDDTIS
} op

{UoT3D8TeS IRUD

f{wu)urzutad-ano ‘we3sis
! (woueN (9,)ur3jutad-3ino uwe3sisg
‘(w@1 (e,)ur3utad: 3no wejsig
{(,+Aq sacwex o3 xaysTIand ® I03 yoxess,)uriutad jno welsis
! {un)urrurad:ino - welsig
}
() zoysTIqndsacwsr proa otTqnd
[x
TeuTwIa] 8yl ybnoayy xsystignd ' SACWSBIT 03 IBSN SY] SMOTTE - POUISUW ISYUSTTORASACUDIT 4
»x/

! (yenutjuopogssaxd

{ (d) eTTAISYSTTANIOLOT TAM " IVIS T TATSYSTTANG
SS800B wopuex//

} esTe {
{(d) @TTAILSYSTTANAOLDY TN STTIIDYSTIANG
AtrTerqusnbes//

} (()pouyaswoIieb -exogsyood|)FT

! () AzqugaesysTtrand - Teutuxsrindur = d xsysTIqnda
}
() zoysTTANgppe PTOA DTTgnd
/*
Teutwzsl ayz ybnoxyz asystiand B PPR 03 I9SN 8y} SMOTIE - POYISW ISUSTIALIPPE »

‘g = € qur
‘ [T-yabueT ' sasysTTaqnd] aoysTTqnd Mou = dwel []IaUSTTIINd
} (\x, == uot3oeTes || &, == UOTIDST®S)JIT

‘(,N, =i UOT3O®T®s 3% ,U, = UOTIDSTIS 3% ,X, =i UOTIDST3S 3I¥ K, =i uoTjoeTes)aTTUs {
‘(o) 3w=eye- (u
i (u) oN zo (£) sex ‘Axjus ooq BAOQE BYF SAoWSI 03 quem nok ains nok 8y,)3andut QI = UOTIOSTIS
} op

! (wn)uTzutad 3no-uwelsis

Ol ======,) ugjutad 3no - wejsig
! (97TSqem + ,:EIISHEM,)uT3uTad 3no-we3sis

! (ouoydeTe3 + , :ENOHAETHEL.)uT3uTxd 3no- ws3sis

! (sseappe + ="mmmmnn4=vGﬂunﬂnm.pﬂo.ﬁmumhm

! (sureu + :"Hzmz=vnﬁu=ﬂnm.yﬂo.ﬁmummm

{ (sweu + ,:QI.)ur3utrad-ano we3lsis

o s)urrutad- jno-welsis
‘ {,u)uTautad- jno welsis

makuﬂmnmsuwm.mwboEmMOpHmumgmﬂHnﬂm = o3Tsgem butals
“ﬁw@ﬂoammﬂwaumm._mboﬁmeaumuazmﬂHnﬂm = suoydaTol JuT
uAummmuﬁvﬂuwm.Hwboﬁmeuumumnmﬂﬁnam = ssaippe bButaas
“HvoemZMww.HmboﬁwmouumnmSMﬂHnﬂm = sueu burxls
{ ()p1aeb- [sacusyol]sasystiand = PT 3JUT
} =s1°®
! (, aoystrond yons ou ST sxoug,) uT3uTad 3no w23 sis
(T- == ©aA0WaYO])3IT

! {saaysTTand / T oUERIRYD IS) YDIRSSIESUTT " YOIBSSIBSUTT = 2A0WDYOT
{(,iyoaees o7 surey,)3ndur’ Ol = IIISBURIBIUDILSS putaas

} osto {

! (szoysTTand ! 1971 9WeIBYDIESS) UDILSSIESUTT ‘' YDIBSSIRIUTT = SAOWSHOT

f()enteA3UT (()wtaz - (, :ydIESS 03 nszusmnﬂ.Ovaomﬂﬂmb.nmmmunH = IS3jsweIBgULIBDS JUT
} (e == ﬂOﬂPU@H@MvNNﬂ

f{1- = sAcwWeyojl 3JUT

¢ () 9TTIXOYSTTANIPEST * IYHSTTAISUSTIANG = sIxoystiand

A1TeT3uUsnbes//

} (()poursworaehi) st
} (e, == uoT3089T9S) 3T

Haaq, =i UOTIDITBS ®F B, = UoT3OSToSs) aTTYM {
‘{0)3avaeyo- (, swrogxad ©3 juem nok op uorjoe YSTuM.,) 3Indut 01 = uorjosTes
} op

{uor3overes aeyo

{{uu) utautad - 3ano -we3sks
! (WsauTZRbEyR HA=vnﬂunﬂum.u=o.Emvmhm
! (,syoog ﬁm:vuaunﬂum.uso.ﬁwumhw
{(,:edf3 3O STeTa=jew Butpesx TT® umﬂﬂ=vnﬂuﬁﬁum.uso.ewumhm
! (wu)uT3uTad 3n0 ‘WEqsig
}
anMﬁhwumzmnﬂﬁmmeHmumﬂH PToA DTTgnd
/x
‘TRUTWI®Y 9y} UT DI03S30Oq DY3 30 Tetaeqew bBurpeer syy TTe S3ST{ - poyzsuw TRTISeRBUTPRONTTYASTT «
*x/

{

! ()enuTtjuonorssexd

! (v "PO3aTOP A13us ISYSTTUNg,) uTjutad 3no - wog sy

uhmsouvwaﬂhuwgmﬂﬂnnmoawuﬂnzmn.m«mwﬂﬂmnmSmﬂﬂnsm
sSsa00w EOUGMH\\

} este {
uAmswuvwaﬂmuozmﬂﬂnnmosmnmnmﬁﬂnammuﬁus.mﬂﬂhumnmﬂﬂnum
mHHMﬂuﬁmzwwm\\

} (()pouzsnoraebh;) st

1+ = L
‘[TlszsysTTand = [[]dweq
} AT =j SAOWSYOC]) IT
} (++T {y3bust-szsystraud>T f0=T 3UT)I03z

5

s ()enTeazuT’ (Qwrxa - (., &(ar) asystiqnd YDTyYm JO STETISIEU Putpesz TTE 35T7.)3ndut QI)Foenrea Iebejur = pT
i {,7equmu pT xedoxd B 30U SBA PIIDJUD nok pT I9YL :70xxd,) uT3uTad 3no we3sis

} (0 ==pT || 0>pPT)oTTUM

/(yenTeAjuT’ (()wray- (, &(ar) Feystrand YOTUM JO STERTISIEW purpesaz TTE 3STT,)3ndut OI)FoenTes I8bejul = PT JUT

! (wu)utdutad: jno -us3sig

{
uAuHmuﬂahmaoamemZmnHmanmﬂﬂnsmﬂﬂﬁunmNSo.&ﬂmmﬂﬂhHNSMHﬂnﬁm
sso00' wopurl//

} ssT® {
uAvHmnﬂﬁnwaoamwﬁmZmnHmumﬂmﬁﬂnamﬂﬁmusmpso.waﬂhumnmﬂﬂnﬂm
Ayterausnbss//

} (()pour=roIlnbi) 3T

! {wu)uTautzd-ano weisig
}
() zoysTTAndAdTETIS3 BROUTPESHASTT PTOA orTand
/=
- TRUTWIS] OYl UT Bxoisiooq IJY3 Fo ‘zoysTiand &
uTe3IsD B JO ‘[ETISRBW Purpesa eyl TTB S3ISTT ~ POUISW ZoYsSTTANAAGTRTIDIeROUTPRSERSTT «

ey
{

¢! () enuTtjucporssead
{

“AvHmnﬂEumBoammuHNmmmsﬂﬁﬁpﬂmuﬁo.hﬂMwHﬂhaMﬁnwumEmnﬂﬁmwm
ssa00e WOpuRI//
} @ste {
uhuHmnﬂEhwaoemwaﬂNmmmzﬁﬂmuﬁmuso.wﬁﬂhﬂmﬁuwumzmnﬂvmwm
Atterjusnbes//
} {()poureswoIaebi)FT
} sst1° {

“avquﬁenmaoawxoomaﬂﬁusmuno.h¢meﬂMHmﬂnwumzmuﬂvmmm
sseooe wopuex//

} ss1® {
/() TRuTHIS oL SYood TTYIRdINO *OTTATRTIS I BROUTPRSY

fuu) ﬂ-.H.u.C.._.-.Hm. Jno .E@u.mhm
! (woutzebey (qgq,)utjutxd:ino we3sig
{{.,3oeg (®,)urjurad’ 3no-we3sig
! (,:PPe 03 TeTI®jeWw bBuTrpeax jyo adi3y 3eyM,)uriutad ano ue3sis
! (ww)ur3utzd:3no ws3sisg
}
() Teraszenburpesyppe proa orTgnd
/x
TRUTWI®] =2y3 ybnoayl TeTasiew Burpessr v ppe 03 IVSn SYJ SMOTTE - poylsw Tetaejepburpesyppe x

.1*.\

! ()snurjuoporssead

! (PT) a9ysTIqndFoTRUTUIASLOLSouTZzebeNT TYIndine avysT TATE TIS3 BRbUTPESY
ss2D0® wopuex//
} est3 {

{{PT) T9US TTIANAFOTRUTWIDLOLSSUTZebeNT TY3ndino "sTTATe TIo3ERbUTPESY
AtreTausnbes//
} (()pouzsworzebi) st

it Wur3utad-3no -wejsis
! (sauTzebey,)urzutad - 3no ‘weisis
! (wau)ur3utrad-ano weisig

! (PT) I9YSTTANIFOTRPUTUISLOLSHOOHTTYINdINo gyge T TATe TI93eRbuTPESy
SE900v wopuex//
} st {

! (PT) I9YS TTANIIOTRUTWISLOLSYOOET TYINd3N0 " eI TATE TI83 BbUTPRSY
A1Tet3usnbas//
} (()pourswora=bi)zT

S ymm—m e a) uT3utad: 3no "we3sis
{ {uS¥yoog,) uT3uTad 3no ‘we3sis
! (yu)uTrutad-jno - wajlsis

! (4outzebeR (q,)ur3urid-ino we3sis
! (,oog (®,)uriurad jno wajisig
{(,:oa0wsz 03 TeTiojew burtpesx yo odh3 jeum,)uriutid-ino welsisg
{{wu)uTautad-ano ‘wa3sis
}
() TetaszenbuTpesyssowsx proa oTTqnd
/%
TeUTWI®D] oyl ybnoiyl Yooq B DAOWSI O} ISSN DY) SMOTTR - PoylRW TeTI=leHbuTpRogsscuRx
wx/

{

! ()snutjuopogssaad

{ (w) 9TTASoUTZRORNOL®] TIM AYYSTTATE TIo3 eRbuTPESY
SS90DR wWopuex//

} est® {
f (u) o TAouTZEDROLO] TIM T TATETI=3 eNbuTPESY
Atterausnbas//

} (()pouyzswoIleb-exoasyoogi)IT

! () KzqugeuTtzebew TeuTwIDIIndul = uw surtzebey
} estTe {

{
! (q) ©TTAACOHOLOF TIN * IVISTTATE T3 ebuTPEay
SE9DDE wopuex//

} osT8 {
! (q) @TTayoogoIel Tam @TTATeTI2] BRbUTPRSY
Artetausnbas //

} (()poulrswoIleb-exo3siyood|)FT

! (YAz3zugyooq ' Teutwaarindur = g yoog
} (,®, == uot3looTos)3IT

{(,9, =i uocTlo°[SS §% ,B, =| UOTIDSTIS)aTTum {
f(0)ayaeyo " (, iwxojiad 03 jueM noi op UOTIDE Y2TYM,) 3ndur’'QI = uOT3O9TeS
} op

{UOT3D9TOS IBRUD

! (wu)ur3utad-3no-we3sis
(. W)uT3utad ano - welsis

{(()oureN3o=b-aoysTtTand + :¥EHSITENG,)uT3uTad 3no welsig

{([C]saoyane + ,: (S)YOHINY.)uT3zuTad 3no-wea3sis
(((uu)sTEnbe- (Jwtxy ' [[]saoyane))3T
} (+4+C {y3bust-saoyane>l !o=[jut)zoz

{ () saoyanyz=sh- [saocweygol]syooq = sxoyine []bButaasg

! (szegdeyo + ,, :SUALAVHD,)uT3uTad 3no- weisig

{(eot1ad + ,:(¢) EDOI¥A.)ur3iurid-3no- we3ysds

! (sebed + ,:5E9¥4,)uriurad 3inoc um3sis

£(9T3T3 + L EILIL.)uT3uTad 3no wajsig

{(PT + .:dr.)uT3utad 3no-we3sis

o J)uTzutad ano-wegsis
! (uwu)urautad-ano-wegsis

{()zsysTtTangi=b [saocwsygol]syooq = asystiqnd IaysTIgRg

{ () saoxdeypaab- [sacwayol] sjooq = sxejdeyo jut

! {)oo1ag396" [@aoweyoz]syooq = @otad jut

! () sebegayeb- [eacweyol]siooq = sabed jutr

! (Yeratraeh [sacwsygol] siooq = 97313 butags

! ()p13eb’ [saowsygei]sijooq = PT 3uT
} esT®

! {,"@x0383)00q 9UY3 UT JYooq UYDNS OU ST SIASYL,)UTIuTad 3no - umisis
(I~ == 2aocudyol)3T

! (sna3 ‘s)o0q) TRTIL]eNOUTPESYIOIYOIRSS = DAOWSHYO] JUT
! () syoogpeoT = syooq []3jood

} (e, == uoT3jo®T®s)3IT
(g, =] UOT3ID9[SS 33 ,B, =] UOTIOSTos)aTTym |

{(0)3v¥zeyo: (, ¢uwxozzad o3 juem nof op uoTrioe YOTYM,)3InduT QI = UOT3DOTSS
} op

{UoT3DO[®S IBYD

{{wu)ut3utad- 3no ‘weisisg

¢/ () zoysTIqnd3lob - [esowsygol] seutzeben = aeysTtTand IoysTIqng

{ ()ooTagaeb [eacweygos]seutzebew = sotad jut
{ () sebegaeb ' [eacweyos] seutzebew = sabed jur
{()oTaTI196 " [9Acuweyol] seutzebew = BT3T3 butais
! ()pr3sh - [escwsyoql]ssutzebew = P Jutr
} osT®
! (, @x0353)00q By} ur Surzebew yons ou ST axoyL,)ur3iutad - ano welsis
(T- == 2aA0WSYO3)IT

! (snagy ‘ssurzebeuw) TeTIolPROUTPEOYICIYDIEDS = SAOCWSYOZ JUT
/() seutzebeypeoT = ssutzebew []surzebel

} os1° {
{

f (. po3sTop Axjue yoog,)uriurtad-jno walsis

{
! (dueq) @ TTAN00EOLOI TIMNSI " AN TTATRTI23eNbuTPRSY
sseDDe wopuex//

} este {
! (dws3) 9T TINOOHOLEHOOHSF TIM BT T TR TISFeRbUTPESY
Arterausnbes//

} (()poyaswoIlebi) It

‘140 = C
:[1]sjooq = [[]dwel
} (T =i oacws¥ol)3T
} (++T ‘uy3zbueT syocog>T Q=T FUT)I0F

‘g = [qur
{ [T-yabueT sjooq]yoog mou = duey []3oodg
} (X, == uotioores || &, == uotjo®eTes)IT
{(,N, =i UDI3DOT®s ¥% ,U, =| UOTIIDDTOS ¥3 X, =| UOTIDeIesS 33 K, =j uotzooTes)erTum {

f{0)ayxeyo’ (, <(u) oN o (&) sex ‘Azjue Jooq SAOQER SYF SAOUSI O JUBM no& sans no&k aay,)3andur QI = UOT3IDSTOS
} op

“ﬁmﬁmuumﬁﬂhmﬁﬁummmzoawuﬂuzwn.hdeHﬁhHMﬂumumzmnﬂﬂmmm

S8200® wopuex//

} este {
“Amﬁwuvmathqﬂummmzoamwnﬁummmzwuﬂna.wﬁﬁhHMHnmumzwnﬂﬁmwm
A11eTauenbes//

} (()pouzsrorzebi)

{

(1+0 = €

! [T]ssutzebew = [[L]dwsq
} (T =i sacweygoz)ztT

FT

} (++T ‘yabuet‘ssurzebeuwst ‘g=T JUTI) I03

{0 = € qurt

! [1-yabuet ' seurzebew] surzebey msu = dusi [1sutzebey

} (L&, == uot3oeTes || &, == uor3oeTes)IT
((N, =i UOT3ID9[®S ¥% ,u, =] UOTIISTIS %3 X, =i uotiosTss 3% A, = uoryperes)sTTyM {
‘(0)avxeyn - (,, ¢{u) oN xzo (&) sofx ‘Azjus sutzebew aa0qe 9Y3 saowex o3 juesm noX =ins nok 81y,)3ndut QI = uoTjoSTes
} op
! (uu)utzuTrad: 3no-uwegsis
2 aYurjutad-3no-weysis

£ (()sweN3ab-zeystTand + , WAHSITENG.)UuT3utad 3no-we3sig

!([C]sepanosax + ="amvamDOmHM:vqﬂunﬂnm.uﬂo.ﬁwumhm

(((uu)sTENb®" ()wray' [[]seoanosaz) i)

FT

} (++L ‘y3zbust seoanoseasl g=[JUT) 303

uAvm@UMﬂOmwmAMQOHuﬂUU¢me.HmboEmMOpummuﬂNmmmE = ssoanossax []

nA-—

‘(eotad + ,:($) EOIMA.)ur3jurad 3no:
! (ssbed + ,:gE9HYd.)uT3urad-qno:

H Am.ﬂn—.ﬂnﬂ + i um_.HH.HH:v n.ﬁu.ﬂn._u.ﬂm.n—.ﬂ_.o '
S(PT + ,:adI.)ur3utad-3no-
wJurlutad-qno:

! (wu)ur3urad-3no-

butaag

w3 sis
welsis
walsisg
we3sig
wa3siy
wo3siAg

! () syjoogpeoT = sjooq []3jood

} (e, == UOT30DTIS) IT
(.9, =i adhz3zos 3% ,e, = edirjzos)sTTum {

‘(g)avaeyo- (, cwurxozazed o3 jues nodk op uorloe YoTyM,)andutr oI = =2dArjaos
} op

‘adAzaaos xeyo

! (wn)uTautad: ano -wegsisg

! (,BuTpusossg (q,)uTiutad-jno - wejlsis

! (,butpusosy (e,)urTjutad’3no welsig

! (,:buryacs Fo odA3 jeym,)urzurtad‘3no - uelsig
! (wu)uTiutad- ano "wa3sis

{{,q, =j UOT3D®IeSS 3% ,®, =| UOTIOSTSS)ISTTUM {
! (p)ayaeyo - (, cwrxozzad o3 juem noA op uoTio® YOTUM,)3nduT OI = UOTIOSTSS
} op

{UoT308T8S IBYD

! (wu)uT3utad-3no ‘welsis
! (,eutzebey (q,)urT3utad- 3no uwe3sAsg
{(uqoog (e,)urzutad 3no-welsis
! (,:90tad &q 3a0s o3 TeTasjew Burpeex yo =2dR3 jeuyM,)uriurad-ano-welsig
! (wu)uT3utad-ano 'wa3sisg
}
() ®oTaghgreTzejeNbuTpEaylIos pToa oTTqnd
e
¥
aotxd Ag peazcs Tetiojew SHurpmea eyl sdeTdsTg - poylsw sotxgigrerasienbuipesyulzos

2/

! {)snuTtauoporssaad

‘(. -peo3eTep Axjus sutzebep,)urjurtad ino-welsis

HL{ JyuT3urad-ano rwelsisg
! (()oueN3ab- asysTTand + , :¥FHSITENG,)UT3uTId 3no-wslsis

{([C]1szoy3ane + ,: (8)YOHINY.)UTIUTId 3no welsis
(((.u)sTenbe- (Jwray- [[]saoyane))3T
} (++C ‘y3zbust- szoyzne>[!g=[juT)zoz

! ()saoyanyaeb- [T]syooq = sxoygne []Burtazs

! (sxegdeyo + ,:S¥ELAVHD.)uT3utad-jno-welsiyg

{(eoTad 4+ ,: (%) =oIrud,)ur3zutad-ano-wo3siAs

! (sobed 4 ,:sE9V4,)uT3iuTtad-3no-weglsis

{(®T3T3 + .:EILIL.)uT3auTad jno-welsig

{(PT + .:QI.)ur3jurad jno-welsig

u o) uTautad-ano ‘we3sis
! {ny)ur3zutad ano wolsisg

! ()asysTIqna3z=b- [T]syooq = aeystTqnd asysTIgng
{ ()sxzeadeypasb- [Tlsyooq = sasjzdeyo jut
{()ooTag3=b- [T]syooq = sotad jur
! ()sebegyab [T]syooq = sebed jur
t{)o13Taaeh’ [t]syooq = 13713 Burazs
‘{)p13aeb- [T]sjyooq = PT Fut

} (--T ‘0=<T !T-y3zbuef sjycog=T IFUT)IOF

! (wu)uT3urad-ano welsig
! (., : (butpusosep) sotxd Aq syooq pajaosg,)uriurtid-ino walsis
{{uu)ur3urad 3no wa3sis
! (esTe3 ‘S)}00Q)3IOSUOTIDSTIS 'JIIOSUOCTIDD[SS = Syoog
} es1e {
! (wn)urTdutad- 3no wa3sis
! {.: (butpusose) sortad Aq sjyocoq pe3xos,)urTijutad ino- walsis
! (wu)uT3utad 3no wagysig
{ (9n13 /SY0OQ)IICSUOTIVBTSS '3IOSUOTIODTSS = SYooq
} (e, == edAgpjaos)3T
} esTe {
{(,"330S 03 ©I03SHOOC SY] UT SYOOQ Ou =1 2I9YL,) ur3jurtad‘3no-uelsig
} (0 == yabusi-sjyooq || IInu == SYOOq)3IT

PR L TR — - T TR IR RIS

! ([L1seoanosax + ,: (S)HADOINOSHY.) uTdutad 3no welsig
(({uu)sTEnba" (Juwtxy' [[]sedanossa)) It
} (++4L ‘yjzbusT seoanossx>L {o=L[jut)aoz

! () sooanosoygTeUuoT1TPPYISb - [T]ssurzebew = ssoanossa []butais

f(@ot1ad + ,:(§) HEDOI¥W4.)uT3iutad-jno wa3sis

{(sobed + ,:sEOV¥4.)uTr3iutad-3no-walsis

(®T3T3 + u:!ETLIL.)Uur3utad 3noc welsids

{(PT + u:dI,)UuT3uTtad-3no-wailsig

2 o) uT3uTad 3no wagsis
! (wu)ur3urad-yno welsig

{ () aoystIqngl=b- [t]soutzebew = xoaystigqnd xoysITqnd

! ()ooTagasb [T]sautzebew = aoTad jur
! () sebegisb’ [T]soutrzebeu = sabed jqut
!{()e13tiaeb- [T]sautzebew = 1313 Butazs
‘{)p13eb- [T]seurzebeuw = pT 3ut

} (--T {0=<T {1-uyzbusT ssutrzebew=T juTr)IOoI

f{uw)ur3autad-gno-wes3sig
! {.: (Pbutpusossp) ooTad Aq ssurzebeuw pojIog,)urjutad-jno‘walsis
! {wu)urdutrad-3ano-welsis
{ (osTe3 ‘sourzebeu)I05UOTIOSTOS 3IOSUOTIOSTIS = Sourzebeuw
} esT® {
! (un)uT3utad-ano - uslsAg
!(,: (butpusose) so1ad Kq ssutzebew psijzog,)urjurtad-jno-ws3isis
! (wu)uTduTad N0 Wa3sisg
{(snx3 ‘soutzebeuw)1105UCT3OSTSS JIOSUOTIOSTIS = sSsutzebew

} (e, == edig3zos)3T
} este {

{{, 3708 03 @2I03S)00CQ IY3 UT SauTzebew ou oI JI9YL,)UTIuTrxd jno- wua3sis
} (0 == yabusar-ssurzebew || TINU == ssurzebew)IT

{ () ssutzebeypeor = ssurtzebew []sutrzebey
} este {
{

! (wu)urlurad-jno walsig

! () I9YsTIANd3eb - [sacwsyos]syooq = asystIqnd zoysTIgng
uAvwnwumM£Uumm.Hwboﬁmmouumxoon = szajdeyo jut

! ()®0123396 * [@Acweyo3] syooq = @otad jut
mavmwmmmumm._wboEwmouumMoon = ssbed qut
‘()°T3TL3I®6 " [enowenol] syooq = ©T3T3 Burrag

{ ()PI3®b" [2nocweyo3]syooq = pT jur

! (u"®I038y00q SY3 UT J0Oq yons ou ST @I9YL,)urguTtad-
(-

! (enxq ' sj00q) TeTIog EHbUTPESY 10 yDIRSS
! () syoogpeot

PG

{19, =j uoT3lOaTES I3 B, =j
:(0)3gaeys- (, cwrzogaed og juesm no&k op uortjoE yotym,) 3ndut-

._ ﬂ.—_._w

! (uoutzebey (q,)

h. ﬁ:.vmoom ﬁ.m:u

!(,:PUTT o3 Teraszew Burtpesx o adiy 3euM,)
-\ ﬁ_._:v

} estT2®
3no-wa3sisg
== SAOWIYOZ)IFT

sAoOWSYOo3 JuUT
sjyooq []xoog

I

B, == UOT3DOT35)IT

UOTIDSTOS) ITTYM |
QI = uoT3oaTes
} op

{UOT3D9TaS IERYD

utjutad- 3no -we3sig
urjutad-3no-weysis
uT3utaid:3no ‘weilsig
utjutad-3no ‘we3sisg
urlutad-qno ‘we3siks

}

() Tetaerenbutpeeyputy proa orrgnd

/x

TETroqew Burpess ® sputy - poyjsw TeTISlRNbUTPROYPUTY »

‘{uu)uriurid ano:
L wyuT3zutad-qno-
‘ (()sweN3eb zeysTTand + , :WEHSITANA,)uT3utzd 3no:

! ()enutjuoporssexd

uralsig
ua3sis
weagsig

ax/

! () sooanosoygieUuoTlTPPYISb ' [sacumyol] ssutzebew = ssoanossa []Durais

.\Au—

{()asysTtIqngiab- [oaowsyoi]saurzebew = saystrand

{(eotad + ,: (%) FOIM4.)ur3zurad 3no

! (sebed + ,:8@9¥d.)ur3zurad-jno-
{(eT3T3 + IETILIL.)uTl3uTtad-ano-

{{PT + .:dQI.)uT3urad-3no

{ ()ooTag3=b- [eacwsyos]sauTzebew
! () ssbegysb’ [sacwsyol] ssutzebeu

s yuT3zuTId-3no
; ﬁ_: i v .__.u._”u..__h._.-Hn.H. ano:

= 8D

‘ue3sis
uelsAs
wa3sis
‘we3sAs
‘we3sAs
wa3sisg

I9ysTTAnd

Tad jut

sabed jut

! ()oT3TI396 " [oAacwayol] ssutzebew = a1313 butaas
! ()p1aeb - [eaouweyol]seurzebew = pPT 3UT
} esT®

! (4 '®3035300q SYy3 uT DuTrzebew yYons ou ST IIJYL,)uriurtad-ino

.\A:

(1-

rureg s kg

SAOWSYOZ)} FT

! (snx3 ‘ssurzebew) TeTI3eHDUTPESYIOIYDIESS = DACWSYO] JUT
! () seutzebeyproT = sautzebew []surzebey

f{wa)urlutad-3no-uwe3sis

WyuT3uTtad-3no-wajsis

! (()sueN3sb-xoystIand + , IWIHSTTENd,)uT3uTad 3no weysis

‘([Clszoyane + ,:(S)¥OHLAY.)uT3utrad 3no we3sis
(({uy)sTEObS" (Jwtag - [[]1szoyine)) IT
} (++[!yabust- sxoyane>lL :g=L jut)aoz

*(u

! () saoyznyay=h- [sacweaygol]syooq = sIoyzne []Hutaas

! (saeqdeyo + , :SHALAYHO.)uriutad-
{{eotad + ,:($) FOIW4.)urjurad:

! (sebed 4+ , :s¥9v4,)uriurad:
(913713 + . FILIL.)uT3uTad:

ano

ano

{(PT + .:QIu)uTautad-ano

Wyutiutad-3no
! {uu)urjurad:

ano’

3no*

ano"

wa3sAg
‘wa3sis
ue3sis
‘wag3sAig
‘uelsAsg
‘wa3sis
uelsAs

} esTo {
{

} (syoogrTvAerdsTIp)IT

{(Jutzutad-ano - weisis

{1- = 2A0WBYO] JUT
{(,9, =i UOTIDD[OS 33 B, =| UOTIDSTIS)aTTYM {

!{pYayxeyo - (,, cuxogaed o3 juem nodk op uoTlioO® YDTYM,)3InduTt'QI = UOT3IOSTIS
} op

!{uoT3o09Tas IRYD

{{un)uTauTtad 3no ‘wa3sAg
{(4®T3TL (q.)uT3uTxd 3no wesisdg
‘{wa1x (e,)uT3utad 3no welsig
! (. &g sacowex 03 F0Oq B IOF YoIRSS,)UT3uTad 3no wa3lsAg
! {uu)uT3utad: 3no 'welsis
} (syoogrivAeTdsTp uESTOOq ‘sycoq []jood) [ETIojeWbuTpESyIOcIyoIE®s 3uT e3eATad
/x

‘punoz yooq ou ST - ‘ABII® $}OOG SYY UT IOF PIYDIESS Yooq @yl Fo xopur eyl burdyrtubrs zsbejur ur uanlazp

*

sTqeTTea® syooq TTe Aerdstp o3 jou xo zayzsum Burdytubrs uewsroog v syoogTTvAeTdsTp wezedsy x
syooq oTgefIea® Jo Aexxe ue syooq wexedy i

¥

TTeutwasy ay3 ybnoays .

YOO B XOJ UYDIESES 0] Iesn SY} SMOTIE - poylsm TeTIDIBHDUTPESHICIYDIRSS .

xx/

! ()snutjuopojssaxd

{ {wn)urautad-3no-we3sis
A wJuT3utid-ano-we3sis
{(()eueN3ab - xoysTIand 4+ , iMEHSITENA.)Uut3utad jno weisis

! {[C]lsepanossx + ,:(S)IDYNOSHE,) uT3uTtad 3no-wa3sisg
(((u.)sTEnba" (Jwray' [[]sedanossa))3T
} (++L ‘yabusT'ssoxnossa>l (g=L jut)aoz

{uoT3oOT9s IBYD

! (wu)utjurad: ano we3sis
f{uwdT3Te (9,)ut3lurad: ino wslsisg
{(.aI (e,)uryurzd 3no -wea3sisg
{(,:Aq oaowex o3 osutzebew B I0F yoaIeasg,)urliurtad 3no - wejsis
! (an)uT3utad: 3no -uwe3sAg
} (ssutzebeyrivAeTdsTp uesaTooq ‘ssutzebeuw []surtzebel) reriojzenburpesyrogyoxess jur sjeatad
/%

‘puney YOog ou $T -

*

*Aeaxe ssurzebew syl ur 03 poyodzess surzebew ayjz yo xopur oyl HburdAyrTubrs xebHejur uer UINIDIAP

£'3

aTqeTTEAR seutzebew TTe AerdsTip 03 30u 0 xoyjzsuym Hutdzytubrs uesToog ® sautzeberyiivderdstp wexedp
soutzebew STqeTTEAR JO Avxze ue ssurzebew weredp .

¥

‘TRUTWI®Y 9yl ybnoayl

surzebew v 107 yoaepss 03 880 SY] SMOLTE - poyssu Teraslppburpesyiofyoaerss
2x/

!sA0WSY¥O] UANIDI

! (syooq ‘Io3PWRIBJUOIEDS)YOIBDSIBPOUTT UOIBRSSIBOUTT = SAOUWDYOTF
f{,:yoaeas o3 STITL,)Indur QI = I93suweIeguoIess bButilg

} os1° {
! (sjooq ‘I9]9WERIBdUOIESS)YDIBSSIBDULIT 'YOIESSIBBUTT = 9A0WSYOT
{{)snTeAzuT ((Jwrxy - (, :yoaess o3 qI,)3andur'QIl)Igosniea asbsjul = IsjsweRIBRgUOIBRSS JUT

} (e, == uot3osTes)IT

£ () TRUTWISLOLSSTITLSAISHOOHTTYINdINC " AVYSTTATE TI8] BHbUTDRSY
SE9DDE wopuex//

} os1° {
! () TeuTWIDIOLSSTITISAISHoodTTYIndgno ‘o7 TATR T ebUTPRSY
A1terjusnbes//

I (()poyasworaebi) st

‘OTTI 9YI WOIT SIYOO

AtteTausnbes//
} (()pouaswoIa=bij) 3T

!TInu = syooq []3joog
} () syoogpeoT []xoodg ojeatad
/x

‘8)yo0q Fo ARII® uUBR UINADIP &

")
 SPBOT -~ POULSUW SHOOHDEROT x
xx/

{pAcuEYOl] uINlSI

! (souTzebew ‘I9]0WRIRIUOIESS)YOIBSSIBSUTT 'YOIRSSIBSUTT = DA0WSYO]
!{{,:ypaees o3 °T3TL,)3ndur QI = Iejsweaegyoress burilg

} osto {

! (seutzebeuw ‘I9joWRIBJUOIRSS) UDIRDSILOUTT YDIESSIBSUTT = SACWDYOT

! (yenteazur - ((Jwraz - (,

:yoaess 03 gI,)3Indut- QI)FoenTea asbesjur

= JI93SUWERIBJUDIEBSS JUT

} (., == uoT3DOTeS)JIT

{{) TeuTWISLOLSOTITISAIsouTzebRNTTYAINdIno ' gy¥eTTATR TIe] eybuTpRay

Sse0DR wopuRi//
} st {

{ () TeuTWa®IOLSOTITISAISouTZzebeTTYandano ‘eTTdTE TI93 eRbUuTpESy

{(,9, =j UOTIDITIS 3%

A1tetausnbes//
} (()pourswori=bi) st

} (seutzebenwrTyAeTdsTR)IT
! {yuTzutad-qno ‘welsAsg
{1- = DAOWSYOT JUT

B, =j UOT3D®T®s)oTTyM {

{(g)avaeyn - (, cwrozaad 03 Juem nok oOp UOTIOE YDTUM,) 3ndur‘ QI = UOTIDST8S

} op

! () nuspmoys
! {uu)uTauTad 3no we3sig
‘(, onuT3auUoD ©3 NOLIAE ANY S§91d,)3ndut OI
! (uw)uTautad-ano ‘we3sds
} ()enutjuoporsseaxd pIoa saeatad
/=
‘nusu 07 S8NUI3UCD pur 2bessau shkeTdsTp - pPoUj=awW snutiuopoLssaxd x
sxf

{

!goutzebew uInNlSI

{

mnvwﬁﬂhwuﬂummmzvmmu.hdﬂﬂﬁﬂ&ﬂﬂﬁuwuusmcﬂummm = seutzebeu
SS9D0R WOPUBRX//

} es19 {
“Avwﬁﬂhmnﬁummmzﬁmwn.mHﬂMHMﬂkumﬂmuﬂﬁwmm = ssutzebeu
Attetauenbas//

} (()poy3zeswoIzx®bi)IT

:TTnu = seutzebew []surzeber
} () ssutzebenpeoT []eutzebeny a3eaTad
I
-soutzebew Jo Avage ue uIN3SIY »
*
‘o713 °Sy3 woxg seutzebew speol - PoUldUW souTzZeDRHPROT »
wx/

{siooq uInysa

{

uAvwﬁﬂhxoomvmwn.hmmmﬂﬂmHMﬂumumzmﬁﬂﬁmwm = S§)}ooq
sE200® wWopuri//

} st {
uﬁvmﬁﬂmxoomﬂmwu.mﬂﬂMAMﬂuwumzmnﬂvmmm = s)j0o0q

(pT asystrand ‘sotad ‘sebed ‘pr) s3UT ¥ «
L
130 dn
SpRW ST 30 SHLAY Q¥OOHY MOOH ©3 IRTTWIS ST SHEIAY QHODEY ANIZYOVH »
xf
{GxSHIAY ONIWIS + GxSHIAE INI = SHILAE QJOOTY MOOH IUT TBUTF DTRe]S
/*

‘jooq Aue oy juesesd 8 URD SIOUANE INOT FO UNWTXRW B JEY] POUNSS? ST 3T &

*

593484 GFT = GZT 4+ 9T = G252 + Sx¥ «

3*

idn eye] PTNOM BTTF UT PBI0IS PIODSI OOq UDES 4

*

(v Toyane ‘¢ aoyane ‘gz Joyzne ‘T aoyjzme ‘e13tl) sburiag ¢ «
(pT asystTand ‘sxeadeyo ‘eotad ‘ssbed ‘pr) squr ¢

*

:30 dn spem ST pIODBI HOOG B SOUTS

*®TTF B UT POI03s piovea jooq ® sayusseadex §EIAY HODTI MOOH «
%/

!y = SELAG INI JUT TRUTI OT3e3s
"se1tF Indino Syn UT JUT U BI03Ss 03 pepesu ssihy sy3 sjusseadex SEIRE INI//

‘Gz = SHIXE ONIVIS JUT TBUTF DTIE3S
/x
‘zsqunu Aue useq SarYy PTNod 3 - rsumexaboxd eyl Agq peprosp ST STYUTL &
sty 3ndano 9yl ut se3dq gz dn exey TrTm wexboxd sTyy ur pesn oq
TTTh 3oyl HButang Azsas ‘Aem sTUYL 'UDED SISIDRIBYD GZ x
Fo ummTxew e 2aey Aew ‘ ("D3o ‘sioyjzne ‘S9T3T3 "%3) STTEISP SHOTIBA 4
@303s o3 ‘wexboad sTyz ur pesn sburilg Byl eyl uBew so3Ad GZF «
.mmuhnaﬂ‘usmmﬂmgﬁnummcmwonamcoﬂwsumunwmwammuwmguanszam¢
¥
\

}
Av¥aTTATeTI=] eRbUTPEeY ssero ot1qnd

{uotydeoxmOI ‘o1 ‘earl 3zodwt
!9TTASs9ooyuopury "ot "eael jzodwt

dyyerTdTetIianepburpesy/ /

! (peoyoriIjus) picodgeTTdioogpesx = [T]seTajudgyiooq

! SELAE QH0DEY MOOH+T = PESYOLAI3US JUT
} (++T !/SSTIIUZIOASQUNU>T ‘(=T JUT)IOF
aTTIelep o2yl ubnoayy dooT//
}&x3
! [seTIjUIIOIDqUNU] JOOg MBU = SOTIJIUIN0Oq []3oog

{SUIAY QUODHM MOOd / ®ZTSOTTINCOq = SOTIFUFFoILSqUOU

£ ()yabus STTINO0ESYF (FUT) = SZTSSTTIHOOQ JUT
{{u#T, ‘ENYNTIII MOOH) OTTISSODOYUOPURY MSU = 3TTIYCOSY]
}Ax3

!0 = S9TIJUIIOIDqUNU JUT
!oTTaAYoodgeY] O TJISSeDOYWOPURY

}

()oTTayoogpeax []joog or3eis orTqgnd

/x
STTANCOq SY3l FO S3UIIUCD Oy TTe uUITa Lexae UINIDIH 4

3

2I03SK00 BYIF WOIF SITIJUS H0oq TTE SPEII - STTIHOOHPERDI
.4..4.\

-spoyjew pejleTex HOOH//

! dvgeTTdsurzebew, = EWYNITIZ ENIZYOVW Butais TeUTF OT3e3s
{AVEeTTANCOq, = HWYNETIA Y00 BuTIls TRUTF OTIE3S

‘GxSELAE ONIMIS + PxSEIAE INI = SELAE QUODEY ENIZVOVW JUT TRUTF DT3e3S
/x

rautzedbew Aur 10T »
auesesd 8 UBD SIDINCSIIT TEUCTITPPE INCI IO UNWIXEW B 1LY} PIUMSSE ST 31 »

»

s93Aq TFT = GuGZ + Fxb »

.¢
”&awxmuﬁﬂuoz@ﬂﬁmcﬂvwhoumﬁuoomuwﬂﬁummmﬁﬂumw*
.<.
k.

(p ®oanosex ‘g Loanosea ‘g soanosex 1 soanosex ‘@y3ra) sburays g

! {)3urpesa-srTagyoogeayly = sabed jut

! (se3hge13Ty) butazs msu = er313 butazs
_ ! (s®34geT13T3) ATTngpEea - 9T TAYOOHSYS
! [sELXE ONI¥WIS]®3dAq msu = sozhgsTatay []ezikq

‘()3uIpesx’oTTiy0OgSY] = PT JUT
! (pesyoriajus) yoos aTTINOOHSYT

!SHLAY QYOO MOOH / ©ZTSSTTIHOOq = SOTIFUTFOISQUNU

! ()yzbueT-arTayo0odsY3 (3JUT) = SZTSSTTINOOG IJUT

f(uMT, 'EWYNTTIA MOOH) 9TTJSSOOOYWOPURY MU = S7T4}00g9U3
}&a3

{0 = SOTIJUFFOISqUNU JUT
{9TTAY00gaY] ST TISSSOOYWOPURY
uoT3deoxE0I sM0IY3 (PEeYoLAIlUS JUT)PIODSYSTTINOOIPESI 30Og OTIERS Uﬂﬂnsw
STTINOOq DY} woxF peel o3 Aijus jo equmu pesyorkijus Emhmmwxﬂ
sxols)oeq By} woxy AIJus }oOq B SPESI - PICODYSTITINOOHPEDI H

xxf

{TINuU uInglex

! (u7®TTF °x03syooq 2y3z usdo o3 butlzy zoxay,)urjurtxd-qno-ueisig
} (ot uotjdeoxmor) yo3eo {

{89TIJUANOO uAN3SIX

! (uu)uT3rurad-3no-wezsds
‘(4 'P®3®9ID 9] 30U UEBD IO ISTXS JOU SI0P ITTF Hoog Yy,) uiautid 3no wsisis
! {awaw)uraurad- gno uegysisg
{()butazgoz-e = zas bButaag
TPEIEVID BC 10U UBD A0 ISTXS J0U SDOP BITIYOOT//
} (® uotideoxm)yojeo {

!9TTANOOgRY] OT TiSS8eDoyuopuey
}
(Axz3us xyoog)oTTAOOdOLO} TaM uesTood 2T3B3s oTTqnd

/»

INISSS0ONS SeM B)TIM By} ADYISDYM VANIDAY x
BTTAYOOT 3Y3 03 93TIM 073 Axjus Axqus wexedpy

*

BxO1SA00Y BYY 03 AIUB YOO B SDATIM - STLANCOHOLIYITIM y
w3/

{TTnu uaniax

(., ®TTF @x035y00oq oy3 usdo o3 bButdxy xoaxy,)urzurad-jzno-wezsisg
} (o1 uworadeoxmor) uo3zed {
{(xoysTtTand ‘saoygne ‘sasjzdeyo ‘ootad ‘ssbed ‘ST3T3 PT)yoog MPU uanisa

! (arasysTTqnd) ATYI TMISYUSTINJPesa "I TAISYSTIAnd = ISYSTIqnd IsYsSTIINd
{{ paoygne ‘gaoyzne ‘zxoyjne ‘Trxoyzne } = saoyane []bButajs

! (se3Agpaoygne) butazs ssu = proyzne buriazg
! (ssaAgpaoyane) ATTnapeax o TTAyoodayd
‘! [sEIAg ONI¥IS]®l&q meu = sejdgpaoyine []93iq

! (sejfggroyane) butals mau = gaoyane buralg
! (seahggaoyine) ATTngpeaa 9T TIHCOEIYT
! [SELAD ONI¥LS]®3&q msu = sojdggxoysine []s3dhqg

! (so3hgzaoysne) butalg meu = zaoyjzne Butazs
! (se3jAgzaoyzne) ATTngpeaT ST TINCOHIYD
! [SHLAE ONIULS]®3&q msu = sejiggaoyine []a34q

! (segzhAgraoyane) butags meu = TIoyzne buraasg
! (se3hgraoysne) ATTnIPeSI " STTANOOESYS
! [sEIAE ONINIS]23&q msu = sejigraoyzne []e3ziq

! (}auIpeea -eTTayocgay3 = grisystiqnd Jut
! ()yuIpesa -eoTTaAYcogeyUl = saajdeyo jut
{()3urpesx-oTTacogoy3 = @oTad Jut

{SEIAE QUODEM MOOH / ©ZTSOTTINOOG = SSTIFUFFOISqUOU

! (}uzbust eTTaxocogeyy (3Jur) = SZTSSTTANCOq JUT

{{uM3, ‘ENYNTTIIZ MOOH) 9TTISSeD0YWopuey Msu = oTTIXoogsyl
YAx3

{0 = S9TIJUAIOISQUNU JUT
{BTTANOOHSY] STTISSoDoyuopuURy
}

(seta3us []3jood)eTTAN00HOIS1TIMSI uEafoog oT3e3s or1qnd

rEs
INZSSO00ONS SBMA B1TIM SY3 ISYISUM uzneIy
STTANOOG BY3 03 ©ITIM 0] SSTIJUS setzque weredy

"
9I03SYO0Y BYF O] SOTIZUD HOOG SOJTAM-BI - DTTIHOOHOLOITIMDI
xf

!TTnu uxnisx

! (4 ®TT3 ®x03sj0o0oq ayz usdo o3 Butdxy xoxxm,)urautad: jno- wegsis
} (ot uotradeoxmoI) uyo3zeo {
{

!9sTe3 uanlesx

! (,"®303syooqg 2yl o3 bBurjiTam STTYM Ioxad,)uriutad-jno-welsdAs
} (ot uvoradeoxmor) yozeo {

!ana3 uanisa

{T4SSTIJUAIOISqUNU = SOTIJUHFOISUINU

! (Azzue ‘e3Tamoriajue)prcoeysSITINCOGD]TIM

!SHIAE QUODEY MOOHxSOTIJUIIOISCUMU = 93TaMozhijue Jut
} Aax3

{gELAE QHODEM YOOH / ©ZTSSTTINOOG = SSTIFUTIOISUINU

{ (JyabustT-ofTayoodsy3 (IUT) = SZTSS[TIAYOOq JFUT

(M3, 'IWYNITIA ¥0Og) ©TTJSSO0O0YWOPURY MOU = 87TIY00gaYm
}Aza

{0 = SOTIFUFIOISUOU JUT

!{)p13eb-Axqus = pT 3JuUT

!SELAE (MODTd ¥OOH / 92TISSTTANcoq = SSTIJUIIOISUMU

! (Jyabust aTTaN0OEaY] (JUT) = SZTSOTTINOO] JUT

{(uMZ, ‘EWYNTTIIA MOOH) STTISSODOYWOPURY MU = STTIyoodaul
}Ax3

{0 = seTIjUxIOISqUNU JUT
!aTTdoOogoyl ST TASSo0OVUOpULRY
}

uotgdeoxgol smoayy (Azjus joog ‘S3TIMOLAIZUS JUT)PIODSYSTTINOOHSITIM PTOA 2T3e3s orTand

/

STTANOOT Byl ©3 83Tam 03 Axjus Axyue wexedp

STTANOOG 8yl ©3 93Txm o7 Arjus Jo xsqunu exTamorAague wexedy
>

8107 SH0O0T SYF 03 AIJUS HOOG ¥ SOITIM - PIOOSPSTTIHOCHSITIM

xx/

{ITnuU uani}sx

{(, ®TT3 =x03syooq =y3 usado o3 Burthiy zoxxm,)uriutad jno- welsisg
} (ot uvorjdeoxmOI) yo3eo |
{

!{98TRI UIN3iSI

{(, @2x038)00q 9yl 03 HUTITAIM STTYM IoxIH,)Uurlurad- 3no- weisig
} (o1 uorideoxmyoI) yoazeo |

!snay uiniax

{
! ([T]lseTIzue ‘°93TIMOLAIIUS) PIODSYSTTINCOHSITIMN
{SEIAE QH0DHY MOOdxT = ®3TIMOLAIIUS® JUT

} (++T fyzbueT seTazus>T {(Q=T 3JUT)IOCT

!yabuseT sOTIJUS = SSTIFUFIOISqUOU

{ (0)yabusyes ey TANOOHSYR
} &x3

: n " :u ﬁﬁmmmm ‘BqgS
} (SELAE ONI¥LIS > () yibusT =gs)erTTym

! {,u)I9F7IngbUTIIS MOU = BQS ILFFngHUTIIS
} (#4T !p>T {yabuel saoyjne=T 3JUT)I0F

{{()butx3zsol - eqs)seligelTan 9T TIHOOHIYY

{
d ﬁ noou v .muﬂ.mmm.m ‘Bgs

} (SEIxg ONIMIS > ()u3busT-eqs)sTTUm

! {[t]saoyane)aazgngbutals msu = eBgs IoIyngbutals
} (++T {y3busi- saoyine>T Q=T IUT)IOF

{()saoyanyysb-Axjus = szoyjne []DBuraas

! (grasysTTqnd) JUISI TIM ST TAHOOHSYS

! (saoydeyd) JuIs3lTIM ST TIHOOHSYT

! (eoTxd) qUuIe3 TIM ST TAYCOoH2UT

! (sebed) qurezTam oTTIYCOH2YT
‘(()se1&gaeb 913 1T3) 93 TaM ST TINOO0HDYY
{ (PT) 3UIS]TAM STTINCOHIYF

! (@3 TIMorAaqus) yo8s ‘9T TAH00HIYY

f()prasb- () zsystTgnaisb Lazjue = qrasystiqnd jut
! (ysaszdeypaysb £ajus = sasadeyo jut

! ()ooTag3sb Axqus = sotad jut

! () sebegysb*Azqus = seobed jur

! {)butazgoz-3qs = IT3IT3

{
f{u u)pusdde-3qgs

} (SELAZ ONIUIS > ()u3zbust 3gs)sITus

! {o13713) 2933ngbuTazs meu = 3qs aazyngburigs
{()oT3TIaeb Axqus = 81313 ButrIias

! () szoygnya=sb-dwez = saoyzne []butazs

! (szozdeyo + , :SUEIAVHD,)Uul3uTtad 3no-ue3sis

f(eoTad + ,: (%) ®DI¥4.)ur3utad 3no welsis

: (sebed + ,:5EO¥d.}uT3zutad jno-welsig

(21313 + ., FILIL.)uT3autad 3no-welsig

{{PT + .:iaI.)urijurad-3no wslsids

a W) urlutxd-ino welsis
{{un)urzurad-ano-we3sisg

! ()zoystiqng3ieb -dwey = zsystrqand IsysTIqNd
! ()saeadeypzsb-dwey = sxsjdeyo jur

! (yoo1ag3sb -duey = sotxd jur

! () sebegiysb-dusy = sabed jur

! (}eT3taaehb -dwey = sT3T3 Butals

! ()praeb dwsy = pt juT

|

! [t]syooq = dwa3y joog
} (++T ‘yabusT-sjooq > T {Q=T 3JUT)IOF
} (TTnu =i sjyooq)3T

! ()STTaNoodpESI = Sj00q
!TTnu = s3jooq []3ocodg
}
() TRUTWIDLOLSHOOHTTVINdINO PTOoA OT3e3s oTTqnd
/¥
F'
Butiaos 3noylTH TRUTWIDY 9yl 073 8I0ISHooq Pyl uT g3jooq 9yl TR sindino - TrutmIerorsiocgrrvindinoe
¥/

{
{
! (. '91T3 ©103sy00q =y3z uado o3 Butdxzjl zoxxdm,)urjurad:ino-uwolsig
} (ot uotr3zdeoxmoIl) yojeo {
{
{ (()Butxigosl egs) so3lAge3Tamn oI TAHoogSUY

} (44T ‘y3zbusi-sjyoocq > T ‘0=T 3JuT)IOF

wJuT3utad: 3no-weasis
! (i, 'syooq aTqeITRAY,) uT3uTad 3no-welsis
! (wu)ur3zutad: ino weisisg

} este {

! (wu)uT3uTad 3nO ' WH3SAS
{{,'A3dws sT saojzsyocoq oylL,)urzurxd-jno wsa3lsisg
{ {uaw)urzutad-3no wa3sig
} (0 == y3zbust-syooq) 3zt
} (TThu = sjooq}IT

! {)eTTdMoogpe®x = S3jooq

= sjooq []3ood
}

() TeuTwIaTOLSSTITLSAISYooETT¥Indinoe proa oT3e3s orrqnd

/x

»

bButgaos 3noylIM TRUTWIS] BY] O BIOISNCOY B8Y3} UT
§9T3T3 PU®R SQI ,5300Q ®Y3 TTe s30dino - TRUTWIDLOLSOTITLSAISHOOHITVIndIno

{{ua)urtrurad:
{(,"®2038300q 8Y3l UT Syooq Ou 2I® 2ISYL,) uTzutad
{(uu)uriurad:

!{wu)urautad-qno-
w)ur3zurtad-qno-
IYAHSITENG) uT3uTId 3no-

S

A_-
(()suweN3ob-xoysTtTqnd +

{([Clsxoyane + ,: (S)WOHINV.)uT3uTad 3no welsisg

v/

3no - ue3sis
*3no - we3sAs
3no-wa3sis

} es19 {

wa3sis
wa3siAs
u=3si&s

{((.n)sTENnba" (Ywtry - [[]szoy3ne)) It
} (++C :y3buer-saoyzne>L :g=C 3jut)zo0z

} esT® {
! (wu)uT3utad ano wsisAsg
! (. A3dws st exojsyjooq ayg,)uriutad-ino welsAg
! (wu)uT3uTad-3no-we3sis
} (0 == y3zbusT sxooq)IT
} (TTnu =j s3jooq)IT

f{)eTTaMocogpesx = S30ooqg
ITTnu = syooq []3yoog
1
(3@bae] JUT)ISYSTTANIFOTBRUTWIDLOLSHOOGTTYINd]INO PToa DT3e3s orTand
/*
Butjyzos 3noylTM TRUTWISD] /Uy o3 ‘roystrognd uTelIso B 3O .
‘paoasood 9Y3 UT SYOOQ Y3 TTE S3ndino - ISYSTITANIIOIBUTWISLOILENOOHTTYandino x
wx/

!{aw)uTdutzd 3no welsis
{{, ©303S300g Sy} UT SYOOq Oou aIB 818y,)uriutad ino usisdg
H A il :u .ﬂHnw._H._anm T3no T ueg Wkﬁm

} es1o {

H ﬁ TR v .ﬂ.ﬂ.ﬂ—.ﬂ..n.ﬂ&. no .Ewn..mhm
A JJuT3utad-ano -welsig

{{ST3T3 + L :HEILIZ . + PT + ,:dI.)urjurad:jno uweisig

{ () aoysTtTanga=b-dusy = zsystTqnd TOYSTTANd
! () sasadeypysb-duey = sasideyo jurt
{()eoTagasb-dwey = soTad jut

! () sebegyeb dwey = ssbed jur

! ()oT3ta3eb-dwsa = s13T3 bBuTags
{()p13sh-dwe3 = pT JUT

{[T]s3yooq = duey 3yoog

{{yraaysTtTaqnd STY3 wWoaF punog sood ON,)uTjutad-3no wejlsAg
} (0 == punogszjooq)IT

! {wu)urzurad-3no ‘weqsis
{u W) ut3uTad-3no -waysisg
! (()sweN3sb zsysTTand + , IWAHSITHENG.,)uT3utid 3no wslsig

{([C]lsacyane + ,: (S)HOHIAVY,) ur3utad jno weisis
{(((uu)stenbs- (Jwrxa- [[]sxoyane) {)3IT

} (+4€ !‘yzbuet saoyzne>[!g=[jur)zoz
! (yszoyanyysb-dwsy = saxoyane []Burtais

! {saeadeys + , :SYALAVHO,)uT3utad -jnc wsjysisg

{{eoTad + ,: (%) FOIWd.)ur3zurad-jno-wejsdsg

! (sebed + ,:8H9Y4.)uT3luTad jno welsis

(91313 + . EILIE.,)ur3urxd 3ino wsysds

{(PT + .:QI.)ur3dutad ino wsisis

o o) ur3utad-3no-welsig
! (wu)ugrurad - 3no wa3sis

{1 + pUnogsyooq = puUnCgsyooq

} (()prasb-asysTtiqnd == 39bx®]) IT
{{)xoystTanga=b-dwey = asystTand ISYSTTANA
! () sa=sadeypiysb -dwey = sasjzdeyo jur
{()ooTxgaeb-duey = sotad jut
{()sebegyeb-dusy = sebed jur
f()eT3TI3eb duey = 87313 Butazs
{()pr3sh'duey = pt 3JuT
{[t]syooq = dwe3z oog

} (++T ‘y3zbusy-sjyooq > T ‘(=T JUT)IOF

10 = pPuUnogsyoocq JuUT

! (uu)uT3urad - 3no-welsig

{()butazgol s = xas bButajzs

‘po3RaID SF 30U UERD IO JSTX® 30U s8op aiTdsutzebeu//
} (® uotizdesoxuy)yojeo {

{

! (peeyorAijua) prooaysTasurtzebeypesx = [T]setajugsurzebeu

{SELAE QUODTd EANIZVOVHxT = peayoriijus jur
} (++4F !sSTIjumgzoILqWAU>T (=T JUT)IOF
eTTyeIEp oyl ybnoayz dooy//
}Ax3
! [seTayugzozequnu] sutzebey mou = ssrxjugsurzebew []surtzebeR

!SELAE 90Dy ENIZYOWW / °zTsoTTdsurzebew = ssTrjumsorsqunu

! ()yabust - errasutzebensyl (3ur) = ezTseTTgourzebeu JuTt
f(.MI, 'HNYNETIA ENIZYOVW) ®TTISSsooywopuey Mau = ofTiaurzebesy]
}&x3

{0 = SOTIJUFFOIDqUOU JUT
!aTTdouTtzebeReoU] STTISS20DYUWOPUERY

}

()oTTgoutzebeypeax []Jsurzebey oraeys orrand

e

£

®I03800gq DYl WOIF soTIjus surzebew TTe spesx - SITJIOUTZERDBHPERRI »
wx/
-osTDIR¥X® se polerdwod 8q O - sSpoynew ponerox surzeber//

{{aa)uT3uTad ano welsiyg
£ (, 83038300 IY3] UT SYOOQ OU SIAEB BIIYJ,) UTIUTId' Ino wa3sis
{{aa)uT3utad 3ano-wa3sig

} es1a {

! [SHIAE ONINILS]1S14q Meu = sexfgreoanosex []Jo3dq

! {)aurpeea eTTgoutzebewaus = grIdystrdnd JuTt
! ()jurpesx oTTgouTzebERey3 = SoTad JuTl
! ()3uipeax oTTgouTzEbEeReYl sabed jut

! (se3fgeT3t3) buTazs msu = °1313 burazs
! (so3AgeT3Tl) ATTndpeea e TiouTzRbRRaYS
{[SELXE ONI¥LSlo3zAq meu = se3dgerita []o34q

! ()3urpeea-eTTgeutzebeyeyl = pT Jut
! (peoygoAxjus) ¥o9s "oy TdauTZzebegoyy

{SALAE Q900 EY ENIZVOVH / 9zTISe[Tgsurzebew = seTIjuUgzoISqunu
/() yabusT ‘o1TgouTzZebeey] (3ur) = SzTgeTTAsuTzebew jut

! (AT, ‘HENYNIETII ENIZVOVW) TTASSO0OYWopu®Ry Meu = oTdsuTrzebersys
YAa3

{0 = SOTAJUFIOISqUNU JUT
!aTTgouTzebENeY] oTTJSSeDOYWopURy
uot1deoXmOI SMOIyz (peayosAijus juT)paoosysTTiourzebeppesa sutzebey o13R3s uﬂﬂnﬁw
orTgeutzebem syj woxsy pesx o3 Azjuse JO Iosqumu peayoriijus Emum&®\H
2x038)00g Byl woxy Arjue surzebew ® speex - paoooygsTigeurzebexpesx H

wx/

{TTNU uUIN}8eX

‘(,'8TT3 ®x03syocq ouyz uedo o3 bButdaz zoxaxm,)uriurid-ino uelsisg
} (o1 uotadeoxmgoI) yoleo {
{gsaTIjugautzebew uinjax

! (uu)ur3zutad jno-welsis
{(, PO3EDI0 ¥ 30U UBD IO 3ISTX® 30U S0P STTF sutzebew ayJ,)ur3utid-3jno welsis

! ()y3buet-oTTaSUTZEOERRYI (IUT) = szrgeyTAuTZEbRW JUT
S MT, ‘HRYNTTIII ANIZYOVH) STTISSSOOYWOPUEY MU = aTTgsutrzebenayly

7.5
{p = seTIjumgIoISqUNU JUT
‘p7TaeuTZebERSY] ST TIiSSIVOVUOPURY
}
(Azaue surzebey)oTTIoUTZELEHOLS]TIM UBSTOOH DT3IBIS ot1and
[
{nJSSO0DNs SeM 83TIM BUY IBYUIIUYM UinaDIy x
aTtgeurzebew Byl 031 93TIA 07 Azzus Kajue wexedy x

X
sroasxooq oyj o3 sutzebEw NOOQ B SI}TIM - BTTISUTZEDRHOLSITAA
rey)

{ITNU UINIDI

‘(. ®TTF oI03sijocq oyj usdo o3 butday xozxd,) ur3utad- ano welsis
} (o1 uotr3ideoxmol) uolEd {
! {zeystTqnd ‘seoanoseoz ‘eotad ‘gobed ‘eT3Ta ‘PT)euTzZEbEW MBU UINISI

s (grreystTqnd) gIU3 TMISYSTIqRIPESIT ST TIISYSTIqNA = zoystIqnd ISYSTIANd
{{ pooInossa ‘go0INOSDI ‘ZEDInossx [IDINOSDI } = ssoanosex []butails

! (so3Agpeoanosax) HBuTtals MAU = pO0INOSAI Bbutaas
uAwmuhm¢mvnsomwuvhﬂﬂﬂhﬁmmh.mﬁﬂhmnﬁummmzmnu
! [SEIAE ONIMIS1®3&q Meu = s93kgpeoanossx []934q

! (seahggenanoseax) butils MOU = £IDINOSST butaag
mAmmummmmuunommuvmﬁﬂshﬁmwu.@ﬂﬂhmcﬂummMEGSH
‘ [sEIAg ONINIS]®3Aq meu = sa3kggeoanosax []eo3hq

! (sejhgzeoanosax) butals MeU = ZSDINOSDIA butaas
uAmmuthGUHSOmwnvhaaﬂ&ﬁmou.mﬂﬂhwcﬂnmmmzwnu
! [sELAE ONIYIS]®3Aq meu = sojdggeoanossx [1o234&q

! (seaxkgreoanosex) butals MU = TIDINOSSI butaas
uAmWHMmHmonomonvhﬂﬂsﬁvmmu.wﬁﬂhmnﬁumvmzmnﬁ

{yabuaT seTIjUS = SOTIJUFIOIDSQUAU

! (0)yarbusaiss o7 TIoUTZRERHRYL
} Axa

{SELAS aHODT ANIZYOVH / 2zTSoTTdsurzebem = soTajugyorsqumu

! {)yabuaT -oTTAouTZRbRKeY] (3UT) = 9zTgSTTAsuUTZEDPW JuUT

f{LMT, ‘INYNETIIS ENIZYOVH) ©TTISSe00YWopuUrRy MU = o1 TJgourzebeysyl
HAx3

{0 = S9TI3UTIOISqUNU JUT
!oTTAouTZRbENOU] OTTJISSSPOYWOPURY
1

(seta3us []aurzebey)sTTdauTzebeROIe]TIMNET ueeTOOd OT3E3ls oTTgnd

/=
INFSSODONS SEBM DITIM SYJF IDUIDYM UIANIDIF
aTtgsutTzebew syl 073 SITIM OF SSTIJUD setaaus wexedy x

*
BIOYSHOOG VYL O SOTIIUS SUTZRDEW $8ITIN-2IT - STTIOUTZeDEHOLSITIMII 4
xx/

{TTNU uangyax

{(, 97T °x03s5yooq =yx uado oz butlzy zoxxm,)uriurad:jno- wa3sis
} (ot uotadeoxmoIr) uyo23eo {
{

‘98T uUaINlox

! (, @3038y00q Byl 03 HUTITIM STTYM Ioxad,)uTjurad 3ano welsig
} (ot uor3zdeoxmoIl) yo3eo {

!enx3 uxnjiax
!{T+SOTIJUHIOIBAUNU = SIOTAJUFIOIDqUNU
! (Axzque ‘@3TaMogAIjus) proosysTTdsurzebesiTtam

{SHLAE QHOOHY HENIZVOYMySOTIJUFIOIDSqUNU = 93TIMOLAIIUS JUT
} &1

! SHLAE QUODTd ENIZVOVKH / ozTssitagsurzebew = sorrjumzossqunu

{(, u)puedde-aqgs
} (SELAE ONIYLS > ()y3abusT-aqgs)eTTum

‘(T3 T13) 297INgbuTals Mou = 3gs zezyngbuTraas
{()er3Tlaob Lxjus = er3T3 BuTaas

{()pr3sb-Axjue = pT 3JuUT

!{QEIAE QUODHd ENIZYOVW / SZTSeTTdeurzebew = soTIjugioIsqumu
‘() yzbuosT ‘eTTasuTZEBRNRYT (3uT) = SzTgeTTgsutzebew jut

(WM, ‘HWNYNETIE ENIZYOVN) STTISSO0OYWopu®y MU = oTTjsutzeberays
}&x3

/0 = seTrIjuEFOISqUOU JUT
fa1TasutzebeRey] STTISSo00YWOPURY
}

uotqdeoxHOI sMoxyy (Axjus sutzebey ‘sjTamoriazus JuT) proooyeTTeuTzebeel TAM PTOA DT3E3ls oTTqnd

/®

sTraoutzebew syz o3 931TIm o3 AIjus Kxjus uwezedp »
s7TgouTzebRW BY3 ©3 23TiM 03 AIjus Fo IoUUNMU o3 tapmorAryus weaeds x
¥

@I01sy00q 2y3 o3 Axque surzebew ® SO3TAM -~ piroosy¥STIIsurzebeNenTIa &

wx/

{IINU uUIN3SX

‘(. 3TTF ®x03s5y00oq oy3 uado o3 burhaz zozx®,)uriutad- - qno-welsis
} (o1 uotideoxgoI) yo3zeEd {
{
/9sTRI uInlLax

f(, @21038x00q °Yyj o3 burjzTam STTUM Fo0xxq,) uTiutad ano uweisisg
} (ot uotridsoxmol) yo3zeo {

!eniy uINloI

{

{([TlseTazue ‘e3Tamoliijus)prooeysirisurzebenslTam
!gEIAE QHODEY ENIZVOWHT = 93TIMOLAIJUS JuT
} (++T {yzbueT‘ seTIjUL>T !(=T 3JIUT)I0I

{{, ®ITF ®x03syo0q sy3 usdo o3 HBurdiy zoxxwg,)uTzutad’ ino wsaisis
} (ot uworadeoxmor) yozeo {
{

! (()butazgos - eqs) sezfgejtan sTTAsuTZEbEKOYS

{

!{u u)pusadde-eqgs
} (SHIXg ONTI¥IS > ()yzbusT'eqgs)srTum

! (wu)asrrngbutiis meu = eqgs aeyyngbutang
b (44T !{¥>T !y3rbusT seoInossI=T JUT) 303

¢ {()Bbutazgol "eqgs) so3hgo3Tan aTTisuTZE RS

{

= ! (u u)pusdde-eqgs
} (SHELXE ONI¥NIS > ()uy3buesi-eqs)errym

! ([t]sooanossa)zeyyngbuTtays Meou = vgs z=zzngburias
} (++T ‘y3abusT'seornossa>T Q=T 3JUT) I03F

! () seoanoseyTeuoTlITPPYISb "A13us = sedanossa []Butaag

! {araeystTqnd) JuislTas’

! (sotad)juregTam:

! (sebed) jurejTam-:

! ({) seadgaeb or3T3) 93 TaNM"
{(PT)3uIs3TIAM”
‘oTTaouTZRbEeNaYg

{ (s3TIMoLAIquD) yses

! ()p13sb: () xeystIgngisb - Aajus =

aTTd2utTzebeysysy
oTta2uTtzebeyeys
sTtasurzebeysys
o1 TasuTZRbRNaY,
aTTd2uTZRbeRa]

grasystiqnd jut

!{{)eotagasb-Azqus = sotad jur
! ()sebegyab-Axqus = sebed jut

{()burazgoz-3qs = °T31T3

au) GH\-_..R._."H& T 3no "t wel skg
} esTe® {

! (4u)uTautad-jno uelsis
Hu Jutzutad-ano-we3isis
¢ (()swenaeb- zsystTand + WEHSITENd .) uT3uTad 3no weasis

{
{([Cl1sonanossa + . ¢ (S) @o¥nosEy,) uTautad-jno we3sis
(((..)sTeEnbe" ()wtxy - [[]seoanosaa) i) 3T
} (++C ‘yzbuaT ssoanosax>l ‘0=C 3uTt)azozF

uAvmmuunommmﬂm=0ﬂuﬂvﬁdpmw.mEmu = gooanosax []buralzs

((eotad + ,:(8) wUHmmzvGH»SﬂMm.uﬂo.Emumhm

! (sobed + ,:SEOVd.)uT3uUTad 3no w3sAs

{(eT3T3 + . {ETIIL,)uT3uT2d 3no we3sis

{(PT + .:QI,)ur3utad 3no-wegsis

{u ,)urautad-3no-welsis
“A==unﬁunﬁum.uso.ﬁwpmhm

¢ ()aeystTandaoh - duey = aeystiand ISYSTTAN
! (yooTagysh duejy = sotad qut

! {)sebegaeb -dusl = sobed jut
:()sTaTIaeb dusy = °o13T3 Buriis
f{)praeb-duel = PT JUT

{[T]sourzebew = duaj sutzebey
}o(++T :yabuet -soutzebewr > T ‘0=T JUT) I0T
} (Trnu =; soutzebeuw)3IT

uﬁvmﬂﬂhmcﬂummmzﬁmvu = sautrzebew
{TTnu = ssutzebew []autzeben

}
ﬁuHmﬁﬁEMmBOBmwnﬁNmmmzﬁﬂmunmuﬂo pToa 9T3E3S orTand

I x
FUTITOS JNOYJITHM TRUTWID] SYJ 07 «
axoasyooq dYJ Ut ssutzebew o2y3 TTE sandino - Hmsﬁﬁumwoawmmﬂnmmmzﬁﬂﬁﬁﬂmuﬂo *®

! (wu)ut3zurad-3no-wsysig
" =,)uT3utad 3no weysis

‘(9T3ITI + ,:EIIIL . + PT + 4 0Iy)urtjurad-gno wsysig

() asysTrqngieh-dwey = zeysTtIgnd ISYSTIqng
! ()e0Tag3eb duey = eorxd jut

! () sebegy=b ' duey = ssbed Jut

‘()®T3TI306 dwey = 1313 butajg

‘()prasb dwey = prt jur

‘[1]seurzebew = durey sutzebey
}o(++T unumnmﬂ.mwnﬂnmmmﬁ > T /0=T 3uT)I03z
" s}urrurad-qno-weisds

! {. ' ssurzebeu ®PTARTTR®AY,) UT3uTad 3no - wogsky
! (wu)ut3zurad-3no-weysis

} est8 {
‘(wu)uT3utad-3no - weysig
(. Kadus st ax035y00q YL,) uT3uTad ano wegsis
‘ (wu)ur3zurad-gno weysig
} (0 == :umﬁwﬂ.mmnﬂnmmMEvmﬂ
} (TTnu =; sautzebew) 3T

!()eItTdsurzebepeas = sautzebem
{ITInu = sautzebeu [1sutzebey
}
AvquﬂsnmaoamwﬂpﬁamnHmmaﬂummmzaﬂ¢unmuno PTOA DT3®3S DTTqnd
/%
¥
Butizos gnoyaTn TBUTWIS] 8yl 03 =2I1015300Q B3 UT
SS8T3T3 pur sgl ,ssurtzebew 8y3 TTe sandyno - ﬂmnﬂEuwHoammHvﬂanHmmnﬂummmzﬂadunmpso *
wx/

! (uu)uTautad- qno ‘wey sis
{4 "®x038)00q Y3 UT SYooq ou =Ie mumﬁazucﬂuaﬁum.#ﬂo.swumhm

{(PT + .:QI.)uT3urad 3noc welsis
Bl L) uT3autad-ano-wsysig
! (wu)urdurad-jno-we3sis

{T + punogsaurtzebew = punogsautzebeu
} (()prasb-asystrqnd == 38bae3) 3T

! (yxoustiqngieb -dumy = zsystTqnd I9ysSTIAndg
! ()eoTag3sb-dwey = sotad jur

! () sebegysb-duey = sebed jurt
{()o13TI139b dwey = a13713 Butalg
{()pI3eb-dwez = pPT 3UT

![t]sautzebeu = dum3 sutzebel
} (++T {y3zbuer'seutzebew > T /(Q=T 3uT)zOZ
!0 = punogsaurzebew jut

} ss13 {
! {wu)ur3urad -3no-uwe3isisg
! (,"&3duwe sT sxojsijooq aYylL,)uriurad-ino wsisis
! (wu)uT3autad-3no-welsisg
} (0 == yabuet ssurzebeuw)3zT
} (1Inu = ssutzebew)FT

! {)eTTasuTzebeypesr = saurzebeuw
{TInu = soutzebew []aurzebey
I3
(39baey jut) asysTIqndIOTRUTWISLOLSeuTZEbRRTTYandino proa o13e3s orTgnd
/=
Burjxos 3noylIm TEUTWISL Iyl o3 ‘aoystrgnd uUTelIsO B JO
‘saogsyooqg oyuz ur ssurzebew Syl TTe s3indinc - IsysTIgngIQTRUTWIBfOorSeutrzebepTivandano
»x/

! {uu)utiutad jno-welsig
! (. "®x038300q ®y3 uTr seurzebew ou sxe saeyf,)urjurad-jno-wezsis
! () ﬂ.mu.ﬁ._u.Hm T3no el W\mm

} este {

TTTA 3ey3 Hutxas Azease ‘Aem sTUL "yoes sioljoeIBYD GZ

JO unwixew B eaey Aew ‘ (-Dq® ‘sSsoippe ‘suRu 'X®) STTRISP SNOTABRA
axo3s o1 ‘wexboxd sTyl ur pesn sburals oyl aeyz uesw solkyg Gz
"seqdq ut ‘audut Butazs Aue o yabust syz sjusssadsz SALAE ONINLS

AYYSTTIZIOYSTIANg ssero oriqud

{97 Tdsse00oywopury "ot ‘eael jzodut
‘uoT3deoxgoI ‘o1 "earl jxodurt

VIS TTaISYSTIONg //

!{uu)utzurad-3no-weasis
! (u ®T03Sy00Q BY3 UT SY0OOG OU BIB BIVYE,)uT3utad’3no - wegsig
! (wu)utjutad ano-we3sAs

{

‘{u-asystiqnd STY3 Woaz punog ssurzebew oy,) urizurtid-3no-weisis
} (0 == punogssutzebeu)zT

! (un)urtzutad-3ano usisdsg
A s)uriutad-3no-wejsis
! ({)swen3eb-asystrand + ,:¥AHSITENG.) uT3utzd 3no wejsks

! ([C]ss2anosea + ,: (8) ADWNOSEY,) uT3utad: 3no ‘we3sis
{({..)sTENbs" ()wray- [(]seoanossx)) It

} (++C ‘yabueT-seoanosaaxl !p=L jut)zo3z
! () senanoseyTRUOT3I TPPYISb "dwey = seoanossx []HButags

‘(eotad + ,:($) FDIud.)uriurad-ano-wsysis
{(sebed + ,:5@9v4.)uriutad no-wegsis
(973713 4+ ,!FTILIL.)uTAuTId 3no we3sis

} este {

'
*
¥
»

/

¥

}

YAa3
! [seTajumFOIoqUMU] ISYSTTARg MBU = setajumxsystiand []xsysTiTqnd

!SELAE QUODTY / ®2TSSTTIISYSTTAnd = SOTIJUFFOISqUNU

! ()y3bueT STTIISYSTIANGOY] (JuT) = SzZTSSTTIILYSTTAnd JuT
{uMT, TWUNETIA GEHSITHNG) STTASSO0OYWOPURY MeUu = STTIISYsSTIqngayl
}&ag

{0 = SSTIJUFIOISUNMU JUT
{9TTAIIYSTTANDY] ST TISSIDOYWOPURY
}
()erTaasysTIgndpesx []asysTIqngd oT3e3s orTqnd
/¥

oTTdIeysTTand 8yl IO Sjudjuod Byl TI® UYITH Amaxe uINYBIAE »

*
satajue saystrqnd oyl TTR® SPEdI - VTTAIRYSTIANIDPERSI x

wx/
! AVHSTTITOYsTIqnd,, = EWYNITIA WAHSITENd Butizs Teur3y oT3eEas
{ExSHLXE ONIHLS + Z+SHIAS INI = SHIAY QUODEY JUT TRUTI DT3Iels
/%
$93Aq €8 = GL + 8 = €252 + T4¥ »

idn eyel pPInoM STTI UT POIOIS PIOISI YOOq UYous

(suoydetes ‘pr) s3ur g

130 dn spewm ST pxopdex asystignd ® 90uTg
‘OTTI ¥ UT P9X0o3s pIoosx asystiand v sjussoadex SELEYE QHOIEYH

4

B
#
*
(eatsges ‘ssoappe ‘sweu) sbutIag ¢ »
LS
%
X
¥

‘p = SEIXE INI 3UT TRUTI OTIE}S
"2TTF aIndlne eyl uT JUT UE PIO]S 03 pepesu ssillg syl sjussoadexr SEIAT ANI//

!GZ = SHIAYE ONIYIS JUT TRUTF OTIEIS

; [
‘zequmu Aue useq sa®y PTnod 37 -xouwexboxd ayz Ag popIoep ST STUL &«
‘2113 andane 8yl ut seldq gz dn eyey TTrm wexboxd sTyy uT pesn g &

! [SHILA" ONI¥NIS]o1Lq meu = sejigoweu []e3iq

{()3urpesa-9ITIILOYSTIANd®Y3 = PT IJuT
! (PesyoLATgue) yoes ‘ST TIISYSTIARI2UT

{SHIXE QHODEY / ®zTseoTTaxoystTqnd = SoTAjzuIFOISCUNU
!)uyabust-o1TarsYSTIANG®U3 (JUT) = @zTgaTTarsystTqnd Jut

! (.3, ‘IWYNITIIA MAHSITENG)STTASSOOOYUOPURY MOU = STTJIISUSTTqNA=2UZ
}&x3

{0 = SeTIJUNIOIDQqUNU JUT
{STTIISYSTTANISYS STTISSO0OYWopULY
uoT3deoXE0I sMoayl (pesyolLijus Jut)proosyeTTiISUsSTTAndpesI ISUSITONd OTFEIS Uﬁﬂﬂﬁh
sTTdrsysTIqnd 8Y3 WoIZ pEex ©3 AIjUD JO ISQUNIU peaygorixjus Edummm\ﬂ
axo3Exooq Yyl woay Axjus zeyusiTaqnd B spees - PIOOSYSTIIILUSTIANIPEReI H
: wx/

{ITINU uIn3}ax
! (w'®TTF ToystTqnd °y3 usdo o3 butdxy zoxam,)urzurad-zno-weisis
} (oT uotrjdeoxmor) yo3zeo {

!setajugasysTtignd uinisx

! (wu)ur3zurad-3no-we3sisg

!(, pPojESID °g 30U UED IO 3ISTXD JOU soop STTF aaustrqnd ayg,)uriutad- ino- welsis

! (un)ur3urad-3no - we3sisg

! ()butaggox-s = x> bButajs

‘PeRESID 2 30U URD IO 3ISTX3 JOuU Seop eTTaIsystTignd//
} (@ uotydeoxd)yojeo {

{

! (PEYOLAI1UR) PACOSYS T TAIDYSTTANIPEaI = [T]sotajumasystrand

!SEIXE QIO0DMIxT = pesyworAijus Jut
} (44T !sS9TIjumgIOoILqUNUST Q=T IJUT)IOF
srryelEp 8yl ybnoayy dooy//

!ena3 uanjisx

!T+SeTIqUIOISqUINU = SSTIJUTFOIDqUNU

! {d ‘e3TIMOLAIIUS) PIOOSYSTTAISYSTTANIDITIM

!SELAE QHODMMxSOTIJUFIOISCUNU = 93 TIMOLAIIUS JUT
} Ax3

!SEIAE QUODHY / °zTSSTTAIeusTIAnd = $STI3UFIOISqUNMU

! (JyabusT-oTTATISYSTIANGDY3 (IUT) = SzTSdTTIa=sYsTIgnd JuT

! (umx, ‘HNYNTTIIA YEHSITHN4)STTISSOODVUWOPURY MOU = STTIISUSTIARISUZ
}&a3

{0 = SeTI3UFFOISQUMU JUT
{STTAIIYSTIUNSYSF ST TISSo00YWopURy
(d zousSTIqNd) ®TTITSYSTTANIOLS]TIA UBSTOOE DT3E3S uaﬁnnw
Axque zeoystignd mou ® d Emum&w\H
‘87T zeystrand syl o3 Axjus zoyusTIqnd MOU B SO1TIM - STTIISYSTIGNIOLOITIA H
wx/

{

!TTnu uxnjsx

! (ne1T3 FeysTtIgqnd oyl uado o3 Butdzj zoxxy,)urzurad-3ne welzsig
} (o1 uotadedxmoIr) yoaeo |
! (o3Tsgom ‘suoydsTo] ‘sSssappe ‘sweu ‘pTr)ILYSTTGNg MOU UINIDI

! (segAgelTsqgem) butaas Meu = s3Tsgem buTtazs
! (sejdgeqTsgen) ATTnApess 9T TIISYSTTINISUT
! [saLxg oNI¥IS]=3l&q mau = sejigesrsges []e3iq

! ()3urpeea srTaavYSITANgSY] = suoydsfa3 JuT

! (so3Agssoappe) butrays meu = ssaappe butazs

! (seahgsseappe) AT Tngpeea " ST TIISYSTIANdSYT

! [sEIAE DNI¥IS]o3Aq meu = sejdgsssappe []e3iq

! (sonAgsweu) Butils meu = sweu DBuTalg
! (se3Ageweu) AT TnIpeea " ST TIIOYSTTANISYU]

} (ot uotideoxgOI) UD3ED {

{8nal] uanjex

{
‘{[TlseTrazue ‘83TIMOLAIJUS)}PIOOIYSTTIISYSTIANISITIM
!SELAE QUOOEY»T = S3TIMOLAIIUS JUT

} (++T ‘yabuer-serajue>T !(Q=T JUT)}ICT

‘yabueT seTIzus = soTIjUFIQISqUNU

! (0) yabuesies STTIISYSTTANGSYUI
} &x3

{SRIRE QUODHY / SZTSSTTAIOYSTTAnd = SO TIFUFFOISUMU

f (Jy3bueT STTATISYSTIANGSYI (IUT) = S2TSSTTAISYSTIqNd JuT

f(uM3, ' EWYNEIIE GEHSITENd) ©TTASS9DOYWOPURY MeU = SITIABYSTIANgSU3
}Aa3

{0 = S9TIjUXIQISQUNU JUT
ST TIIOYSTTANIOUS ST T.ISSIVOYWOPURY
}
(seTa3ue []asysTTUNd)oTTIISYSTTNJOLS3TIMSI ueeTood OT3e3ls oTTqnd

/x
TNISEDDDONE SBA BSLTIM BY3 ISUISUM UINISIP
aTTaIdyUsTTand sy3z o031 S3TIM 0] SSTIJUS satIjus wexedy

*
2z03S)00g Sya o1 sotijus soystTand S8]TIM-9I - BITAISYSTIANIOLSI TIMDI
22/

{

{{TNU uIN3yox

!(,'o113 ToysTTand ayz uade o3 Burhiz zoaay,)uT3zurtad:jno wslsis
} (o1t uotadeoxmOI) yo3zeED {
{

!{9sTeFy uinisx

{{, o1T3 aeysTtTqnd °yj o3 BuTiTam STTYM Ioxxd,)uTiurtad 3no welsids
} (ot uoradeoxmOI) yo3zed {

! (Ssoappe) 193INGOUTIIS MOU = SS°IpPpVlds I9zzngburtais
! () ssoappwaeb-Aique = sseappe butaag

! {)butagsol aueN3iqgs = oureu

{
! {u u)pusdde:sueN3qgs
} (SEIX9 SNI¥ILS > ()yabusT- SureN31qs) aTTUM

! (oureu) ze33ngbuTtils meu = sweN3jqs zozyngbuTtiays
! ()suweN3sb-Aajus = sweu bButias

! ()pr3eb-&13us = pt juT

!SHIXE QHODEM / SzTseTTiasysTiiqnd = SeTA3UFIOISqUMU

! ()yzbust-eTTaTvYSTTAN®Ul (IuT) = @zTSSTTaIsysTIqnd Jut

f{ymx, THWYNITIA YHHSITENG) ®TTJSSOOOYWOPURY MOU = STTJISYSITRISYI
}Aag

{0 = S9TIjUFIQISQUNU JUT
{STTIISYSTIANISY] ST TISSo0oywopuey
}
uoT3deoxXm0I smoayl (Azjus zeysTTAnd ‘o3Tamorhajus JUT) PIOOSYSTTIISYSTIANISITIM PTOA DTIIR3IS oTTgnd

/*

srTgzeystiand ey 03 83Tam 03 Axjue Axjue wexedy
errareystTand syl o3 estTam o3 Axjus Jo xequmu e3TIMOTArius uexedp ,
£

2x038300q oYy} 01 Arjus zoysTITnd B $93TIM - DIODSYUSTIAIOUSTIARASITIN
wnf

{

{ITnu uxnisa

{

!(u"®11TF aoystTqnd syy usdo o3 Huthzy zoxxm,)uTzutad-ano wslsAg
} (ot uor3deoxmoIr) yojeo {

{

!9sTeJ UIN]}aI

‘(w773 zo9ystTand 9y3 o3 Bur3lTam STTYM xoxxd,)urzurad 3no- wsysis

} (++T {y3buaT saeysTTgnd>T !Q=T 3JUT)3I0F

!TTou = d asysTTandg
! {)oTTdIoysTTOndpPEeI = sasystIqnd
{TTnu = saeysIiTqnd []asysTIqnd
}
(PT 3UT) AIYITMISYSTTngpeax ILYsITqnd °T3e3s »ITqnd

/%
pr zsystiand ey3y pr weawdp

»
‘pt oyyToeds ® yats aeustrand oyl SUANIBT - QIUITMISUSTIANADESZ «
xx/

{

! (. 9113 Foysttand oyy usdo o3 bButhxy zozam,)urizutad-ino- welsis
} (ot uoT3deoxmOI) yo3zEDd {

¢ {{) s@3Agaeb o3 TSqem) B3 Tas ST TIISYSTIANISYT
! (euoydaTel) JUISFTIM DT TIIDYSTTANIDYI

! { () se3Agaeb - sseappe) @3 Tan BTTIIBSYSTTANASYI
{ { () se3Agyeb sueu) o3 Tam STTILISYSTTNGSUT

! (PT)3uIel Tam ST TIISYSTTANIOUI

! (@3 TIMOLATI UB) YBOS " BT TIISYSTTANI Y3

{()butaygol @3 TSgemMIds = 93TSgOM
{
i ! {. u)pusdde szTsgsmigs
} (sEIxd SNI¥IS > ()y3ibueT e3TsgeMiqs)STTyM

! (e3Tsgom) x233IngbuTIls MAU = S3TSgeM3ds zozFngburazg
{()eatsgem3eb-Axzjus = o93Tsgom ButIag

! ()ouoydeTerieb - Axgus = suoydsTol jut
! ()butaygol sSoIPPYIgS = SSSIPPE

i {{. u)pusadde'ssaappyiqs
} (SEIxd9 SNI¥NLS > ()y3lbusT sSseappwads)STTus

! {uw)uT3utad 3no-we3sig

o w)urjutad-3no-walsig
{{@3TSgeM + , :93TSgsM,)uTiutad 3no-wa3sis

! (suoydeTey + ,:suoydstal,)uriutad: jno waisis

! (ss2appe 4+ ,:SSIPPV.,)uT3uTad ino-walsAg

! (sureu 4+ , :sweN,)ur3iurtid-ano-weisis

{(PT 4 .:dI.)ur3zutad 3jno-we3sis

(i ===,)ur3utad-jno -wajzsisg
{{ya)urzurad-ano weasisg

! (YoaTsgemasb-dwey = @31sqam Butaas
! ()suoydsTerisb -dumy = suoydelsl jur
! () ssozppvaob-duey = ssaappe buraag
! () sureN3ob ' dway = sweu bButazs
{()pIrasb-dusy = pT 3uT

![t]lsasystiand = dwel IsyYsTIIqng
} (++4TF ‘y3zbust-sasystignd > T /(=T 3JUT)xOF
} (1w = sasystiand) 3T

{ () oTTaI=2YSTIAngpeax = sxaystIqnd
{TInu = sasystIand []xsystiqnd
}
() TeuTwasOLsI8YST TN TTYINnd3no pTroa or3els oTTqnd
/%
*
PBurqzos INOYITHM TRUTWID]
sy3 o3 sasystiand eya TIE sandine - TREUTNMISLOLSISYSTIANgTITVAndano
wx/

{

!d uanjex

![t]lsasystiand = d uxngax
} (PT == ()p1aesb [T]sasysTtriqnd) IT

H ﬁ o v ﬂu.ﬁu..ﬂ._uhnm. ajno .Emu.mkﬂm
fa Jutautad-qno-weisig

{
{(oweu + ,IEWYN ‘4. + PT + .:dI,)ur3utad-jno-uejsis

! ()o3Tsgemieb -dwel = sj3Tsgem Burtals
! () suoydeTegyeb-dusy = suoydeTelz 3ut
! () sseappyasb-duwey = ssaappe Butaag
! (youeN3ob-dusy = sweu Butiasg
{()p13eb duey = pT juT

![t]sasystTqnd = dwajl asysTTgng
} (++T {y3abuet-saeystignd > T {Q=T IUT)IOF
£ w)uT3dutad-3no we3sig

! (u:savysTTand OoTqRITRAY,)uT3uTId 3no - wejsis
! (wu)urzurad-ano ‘we3siyg

} sst® {
! (wu)ur3utad anc welsksg
! (,sxoysTtIgqnd ou 3xR BYL,)urTazurad ano wolsis
! {uwu)utaurad-jno-weysis

} (0 == yabusT' sasystiqnd)IT

} (TTnu = sasystTqand)IT

!{)eTTdIAYSTTANdPEDI = sIaYsTIqnd
‘TI0U = sasystiqnd []reysTTqand
}
() TeuTWIS O SoUENSAISIaYSTIqnd [T¥3nd3ano proa oT3e3s otrqnd
/x
*
Hutyxos Jnoyl TM TRUTHIDY Y3 O «
SSWeU pu® (I ,sasysTiqnd oyl [Te s3ndine - TRUTWISLOLS WRNSUISIDUSTIANdTTYIndino
e/

{

! {an)urTautad- 3no-wezsis
{(,'®I0385x00g OY3 UT SYOOq OU BAB DIYJ,)ur3zutid 3jnc wsisAs
! (wu)uT3autad:no weisisg

} ost® {

b f(au)urzutad-3no - welsis
! (,°®I038)Y00q dY3 UT SYooq ou BAB VISYL,) urjurad-3no-welsis
! {au)uTaurad: ano-welsis

} os1® {

Chapter References

1. International Baccalaureate Organization. (2012). IBDP Computer Science Guide.
Recursion (computer science). (27, May 2016). In Wikipedia, The Free Encyclopedia.
Retrieved 13:39, lune 3, 2016,
https://en.wikipedia.org/wiki/Recursion_{computer_science)

3. Peter Smith. An iterative solution to Towers of Hanoi. Course Comp 151, California
State University Northridge, September 2002. Retrieved 22:20, June 5, 2016,
http://www.csun.edu/~psmith/151handouts/hanoi3out.pdf

4. Dimitriou K. Hatzitaskos M. (2015). Core Computer Science for the IB Diploma
Program. Athens: Express Publishing. More information at:
https://www.expresspublishing.co.uk/gr/en/content/core-computer-science-ib-
diploma-program

5. Class ArraylList. In Java Documentation. Retrieved 19:00, July 8, 2016,
https://docs.oracle.com/javase/8/docs/apifjava/util/ArrayList.html

6. Class LinkedList. In Java Documentation. Retrieved 19:00, July 8, 2016,
https://docs.oracle.com/javase/8/docs/api/java/util/LinkedList.htm|

7. Robert L. Glass. Facts and Fallacies of Software Engineering, Addison Wesley (2003)

8. Indent style. (16, July 2016). In Wikipedia, The Free Encyclopedia. Retrieved 15:05,
July 20, 2016, from https://en.wikipedia.org/wiki/Indent_style

9. Characters per line. (7, July 2016). In Wikipedia, The Free Encyclopedia. Retrieved
15:10, July 20, 2016, from https://en.wikipedia.org/wiki/Characters_per_line

:¢ o@sed
yesIq
f(ydod - xyoe3S
:Z °®seD
!¥yeaxq
! (qusweTd) ysnd- yoe3s
{{)3urzxsu-3andur = jusweaT® JUT
{(, :ausweT® zojud,)3utxd inoc-we3lsig
: T @sed

} (uoT3aoeTss) Yo TMS

"
0 |
Pl

Appendix A

‘ (yurzutad-ano wegsisg
! ()guraxsu-gndut = UOTIDSTSS JUT

{(, :uot3zoefas aesn,)3utad 3zno weisksg

{(,3TXE " p.)uT3rurad 3no we3sis

! (,YoB3sS 9yl FO SIUSWSTS BYJF JUTIJ ‘g.)urzutad ano - wa3sis

‘ (.oe3s woxgy jusweTe dog ‘z.)uT3utad jno welsds

! (.joe3s 03 jusweT® ysnd - T,)ur3zutad-3no uelsis

! (,:suot3zdo burmolToz @Yl IO BUO jo97195,) urT3utad - 3no - we3sAsg
} (esTe3 == 3TX®) STTUAM

! (wexzboad uoTjeTndTUEBW jyoe3s,) uTautad- ano wejlsis

{ (ut-we3s&g)aouuedg msu = 3Indur ISUUEDS
! ()yoels MBU = YOBJS YOE]S
‘@sTeRF = JTXD ueaTO0Oq
} (sbae []Putazg)uteuw pToA DT3ELS oT1gnd
}

utel sseTo otiqnd

i zeuuess ' TI3n eaARL jxo0dwT
a1ty IsxTd//

sses 3sTTARIay oy Suisn uonejuswapduy yoeis Iy

v
(<))
= |
()
=
o
od
75
5
Q
(4]
wed
(V)
|
<C
=
(@]
P
Ll
o.
Q.
<

Appendix A — Stacks & Queues

{(FvCuUmuU + ,, :poscwsI Jusuws Ty,) ur3utad- ano ‘we3sis

(T - Avmuﬁm.xumumvwboﬁwu.xumum
‘{1 - ()®zTs'3oe3g)3eb yoezs = Isqumu Jut
} esTe {

‘{u"&3dwe sT 3DEIS BUL,)uT3utad 3no ‘wezsig
b (() A3dwgst 3yoe3s) gzt
} ()dod proa orTgnd

{
! (F8qUInu) ppe - 3yoe3s
} (x°equnu jut)ysnd proa oTTgnd

{
‘()asT1iexay msu = joeqg
} ()yoe3s or1gnd

{3yoels <aebesgyursystiiezv a3eatad
} ¥oe3s ssero orpgnd

‘3sTTARIIV TTIn eAR[3a0dwT
STT3F puodes//

! (Jurjutad-jno-weysiyg

‘yesaq

fenal = 3TX?

:f oseD

{yeaxq

! ()sauswetgiutad- yoe3s

{(, :uoTzoeres xesn,)3zurad’3no - uelsAg

f(u3TXE Cp,)uT3auTId-3no welsisg

{(,30e3S 9yl FO sJULWLTS Oyl JUTIJ -€,)uTiurad- jno- we3zsAs

! (,qoe3s woxz juswaTe® dog ‘z,)urjurxd-jno - -uwsisdg

! (,qoe3s 03 juswaTd ysnd - T,)uriurtaid-jno-welsis

‘! (,:suotjdo ButmolToFy @yl FO 2UO0 103T9S,)UT3IuTad 3no- welsAsg
} (esTeF == 3TX9) °OTTYM

! (yuexzboxd uotjerndrurw ¥oe3S,)ur3luTad-ano uwelsis

! (ut-wejzsiAg) asuuecg MU = Jndur IDUURDS
! {)oe3g mBuU = OB3S YOEls
!9sSTeF = 3 TXD UuESTOO(

} (sbze []burazg)urew proa OI3Els OTIqnd

}

uTel ssero oTTgnd

! zouueng ' TI3n eael jxodurt
OTTI IsaTH//

ssep 3sTIAeaay oyl Suisn nonejuawsjdwi snang z'v

! ((T)3°b jyoe3g)urzurad-3no welsis
b (--T {0 =< T {1 - ()®2ZTs'yo®3s = T JUT) IOF
} esTe {
!(, £3dus sT 3o®3IS Byg,)uT3zurad- ano welsds
} (()A3dugsT-3yoe3s) IT
} ()sjusweTmiutrad proa orrgnd

i
.

ﬂ._._

{ (Taqumnu) ppe ‘' 32els
} (zsqumu jut)ysnd proa oriqnd

! ()3sTTARIIY MU = HOBIS
} ()yoeas oriand

I3oe3g <asbejulyistideazy ajeatad
} yoe3s ssero orrgnd

{qstrhexay TT3n "earl jxoduwt
BTTI puonsg//

{ ()urzutad-3no - -we3sig

!yeoxq
!ana3 = 3ITXD
iy 9sed
{yeaxq
! () squswargiutad-yoess
:g osEed
!yes1q
! (Ydod-3yoe3s
iz 9sed
!yeaxq
! (auswat9) ysnd - yoels
{ {()3urgxsu-3andur = JUSWSS® JUT
ijueweTe Iojud,)3jutid-jno ue3sAs
:] Sseo

} (uot3ioetss) yojTas

! (Yurzuraxd-3no - wa3sis
! ()aurzxesu 3ndut = UCTJIDS[SS JUT

£ ((1)3°6 yoe3g) uTzutad Ino we3sis
} (--T {0 =< T ‘T - ()®2Ts°3DE3S = T 3JUT) I03F
} este {
! (,"&3dws sT yoE3S oy,) ur3jutad: jno - we]sisg
} (()&K3durgsT-yoe3s) 3IT
} () sauswermEiutad proa otTqnd

{

{
! (zoqunu + "ﬁwboﬁwnaunwsuﬂm=vnﬁuaﬂum.uﬂo.ﬁwumhw
!{(T - ()®zTs'ydels)sA0WSI OB
‘(T - ()ozTs yoe3g)3eb-3yoels = Iequmu JUT

} ®s19 {

! (,-Kqduwe sT 30e3IS OYL,)ur3zurad 3no-welsis
} (()A3dumst-3oeas) IT
} ()dod ptoa oTTgnd

